RU2633616C1 - Способ электропитания космического аппарата - Google Patents

Способ электропитания космического аппарата Download PDF

Info

Publication number
RU2633616C1
RU2633616C1 RU2016145344A RU2016145344A RU2633616C1 RU 2633616 C1 RU2633616 C1 RU 2633616C1 RU 2016145344 A RU2016145344 A RU 2016145344A RU 2016145344 A RU2016145344 A RU 2016145344A RU 2633616 C1 RU2633616 C1 RU 2633616C1
Authority
RU
Russia
Prior art keywords
solar battery
output
voltage
resource
spacecraft
Prior art date
Application number
RU2016145344A
Other languages
English (en)
Inventor
Виктор Владимирович Коротких
Михаил Владленович Нестеришин
Сергей Иванович Опенько
Original Assignee
Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации filed Critical Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Priority to RU2016145344A priority Critical patent/RU2633616C1/ru
Application granted granted Critical
Publication of RU2633616C1 publication Critical patent/RU2633616C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Использование: в области электротехники. Технический результат - повышение удельных энергетических характеристик и надежности эксплуатации системы электропитания (СЭП) космических аппаратов (КА). Согласно способу электропитания космического аппарата от солнечной батареи, солнечная батарея подключена через устройство поворотное с токосъемниками к входным плюсовой и минусовой шинам стабилизированного преобразователя напряжения, аккумуляторная батарея подключена своими плюсовой и минусовой шинами к входу разрядного и выходу зарядного устройств, причем стабилизатор напряжения солнечной батареи выполнен в виде мостового инвертора с трансформатором с n выходными обмотками, где n≥2, а вход зарядного устройства соединен с одной из выходных обмоток трансформатора, к другим же (n-1) выходным обмоткам трансформатора подключены переходные устройства связи с нагрузками со своими номиналами выходного напряжения. При этом солнечную батарею выбирают с максимальным начальным выходным током, исходя из конструктивных возможностей используемых токосъемников поворотного устройства космического аппарата, а выходное напряжение в рабочей точке в конце ресурса выбирают исходя из соотношения: UСБ≥Рн/(IСБ, kпр), где Рн - максимальная мощность нагрузки с учетом мощности для заряда аккумуляторной батареи, Вт; UСБ - выходное напряжение солнечной батареи в рабочей точке в конце ресурса, B; IСБ - выходной ток солнечной батареи в рабочей точке в конце ресурса, A; kпр – коэффициент, учитывающий потери на преобразование напряжения, а число фотопреобразователей в одной последовательной цепи солнечной батареи выбирают исходя из соотношения:
Figure 00000002
, где Uэл - напряжение одного фотопреобразователя в рабочей точке в конце ресурса солнечной батареи, B. 1 ил.

Description

Заявляемое изобретение относится к области космической энергетики, конкретнее к бортовым системам электропитания (СЭП) космических аппаратов (КА).
Для космической техники важнейшей тактико-технической характеристикой СЭП является удельная мощность, т.е. отношение мощности, вырабатываемой системой электропитания, к ее массе, которая зависит, прежде всего, от удельно-массовых характеристик используемых источников тока, но и в значительной мере от принятой структурной схемы СЭП, формируемой комплексом электронного оборудования СЭП, который определяет режимы эксплуатации источников и эффективность использования их потенциальных возможностей.
Известны способы электропитания КА, которые обеспечивают: стабилизацию постоянного напряжения на нагрузке (с точностью до 0,5-1,0% от номинального значения), стабилизацию напряжения на солнечной батарее, при котором обеспечивается съем мощности с нее вблизи оптимальной рабочей точки вольт-амперной характеристики (ВАХ), а также реализуются оптимальные алгоритмы управления режимами эксплуатации аккумуляторных батарей, позволяющие обеспечить максимально возможные емкостные параметры в процессе длительного циклирования батарей на орбите. В качестве примера таких систем электропитания приведем проект СЭП для геостационарного связного КА, описанный в статье A POWER, FOR A TELECOMMUNICATION SATELLITE. L. Croci, P. Galantini, C. Marana (Proceedings of the European Space Power Conference held in Graz, Austria, 23-27 August 1993 (ESA WPP-054, August 1993).
В структурной схеме СЭП предусмотрено разбиение солнечной батареи на 16 секций, каждая из которых регулируется собственным шунтовым стабилизатором напряжения, а выходы секций через развязывающие диоды подключены к общей стабилизированной шине, на которой поддерживается 42 B±1%. Шунтовые стабилизаторы поддерживают на секциях солнечной батареи напряжение 42 B, а проектирование солнечной батареи ведется таким образом, чтобы в конце 15 лет оптимальная рабочая точка ВАХ соответствовала этому напряжению.
При достигнутых высоких тактико-технических характеристиках СЭП современных КА они имеют общий недостаток - они не универсальны, что ограничивает область их использования.
Известно, что для питания различной аппаратуры конкретного КА требуются несколько номиналов питающего напряжения, от единиц до десятков и сотен вольт, в то время как в реализованных СЭП формируется единая шина питания постоянного напряжения с одним или двумя номиналами напряжения, например 27 B, или 27 B и 40 B, или 27 B и 100 B.
При переходе с одного номинала напряжения питания аппаратуры на другой требуется разработка новой системы электропитания с кардинальной переработкой источников тока - солнечной и аккумуляторной батарей - и с соответствующими временными и финансовыми издержками.
Другим недостатком систем является низкая помехозащищенность потребителей электроэнергии на борту космического аппарата. Это объясняется наличием гальванической связи между шинами питания аппаратуры и источниками тока.
Наиболее близким техническим решением является способ электропитания космического аппарата, реализованный системой электропитания КА (патент РФ 2396666), состоящей из солнечной батареи, подключенной своими плюсовой и минусовой шинами к стабилизатору напряжения, аккумуляторной батареи, подключенной своими плюсовой и минусовой шинами к входу разрядного и выходу зарядного устройств, экстремального регулятора мощности солнечной батареи, соединенного своими входами с датчиком тока, установленным в одной из шин между солнечной батареей и стабилизатором напряжения, разрядным и зарядным устройствами аккумуляторной батареи, а выходом - со стабилизатором напряжения солнечной батареи, отличающийся тем, что стабилизатор напряжения солнечной батареи и разрядное устройство аккумуляторной батареи выполнены в виде мостовых инверторов с общим трансформатором, при этом вход зарядного устройства соединен с выходной обмоткой трансформатора, к другим же выходным обмоткам трансформатора подключены устройства питания нагрузок со своими номиналами выходного напряжения переменного или постоянного тока, причем одно из устройств питания нагрузки соединено со стабилизатором солнечной батареи и разрядным устройством аккумуляторной батареи. Известный способ электропитания КА выбран в качестве прототипа заявляемого изобретения.
Недостатком известного способа электропитания КА является отсутствие оптимизации параметров первичного (солнечной батареи) источника электроэнергии, что в итоге снижает удельные энергетические характеристики и надежность эксплуатации СЭП КА.
Задачей заявляемого изобретения является повышение удельных энергетических характеристик и надежности эксплуатации СЭП КА.
Поставленная задача решается тем, что при проведении электропитания космического аппарата от солнечной батареи, подключенной через устройство поворотное с токосъемниками к входным плюсовой и минусовой шинам стабилизированного преобразователя напряжения, аккумуляторной батареи, подключенной своими плюсовой и минусовой шинами к входу разрядного и выходу зарядного устройств, причем стабилизатор напряжения солнечной батареи выполнен в виде мостового инвертора с трансформатором с n выходными обмотками, где n≥2, а вход зарядного устройства соединен с одной из выходных обмоток трансформатора, к другим же (n-1) выходным обмоткам трансформатора подключены переходные устройства связи с нагрузками со своими номиналами выходного напряжения, солнечную батарею выбирают с максимальным начальным выходным током, исходя из конструктивных возможностей используемых токосъемников поворотного устройства космического аппарата, а выходное напряжение в рабочей точке в конце ресурса выбирают исходя из соотношения:
UСБ≥Рн/(IСБ, kпр),
где Рн - максимальная мощность нагрузки с учетом мощности для заряда аккумуляторной батареи, Вт;
UСБ - выходное напряжение солнечной батареи в рабочей точке в конце ресурса, B;
IСБ - выходной ток солнечной батареи в рабочей точке в конце ресурса, A;
kпр – коэффициент, учитывающий потери на преобразование напряжения,
а число фотопреобразователей в одной последовательной цепи солнечной батареи выбирают исходя из соотношения:
Figure 00000001
,
где Uэл - напряжение одного фотопреобразователя в рабочей точке в конце ресурса солнечной батареи, В.
Действительно, заявляемый способ электропитания оптимизирует солнечную батарею по напряжению, исходя из того, что величина выходного напряжения СЭП в данной ее структуре не является определяющей для ее параметров.
Оптимизация выходного напряжения солнечной батареи проводится из условия выбора солнечной батареи с максимальным начальным выходным током, исходя из конструктивных возможностей используемых токосъемников поворотного устройства космического аппарата. При этом, для обеспечения необходимой выходной мощности, выходное напряжение снижается, что позволяет не резервировать дополнительными фотопреобразователями последовательные цепи солнечной батареи и, соответственно, повышает удельные энергетические характеристики и надежность эксплуатации СЭП КА.
Рассмотрим пример.
Солнечная батарея на основе трехкаскадных арсенид-галлиевых фотопреобразователей:
Uэл=2,5 B, примем Рн=4000 Вт, IСБ=100 A, kпр=0,95, тогда
Uсб≥Рн/(IСБ, kпр)=4000/(100⋅0,95)=42,1 B; n≥UСБ/Uэл=42,1/2,5=16,84=17 фотопреобразователей.
Суть заявляемого изобретения поясняется фиг. 1, на которой представлена функциональная схема электропитания КА.
Система электропитания космического аппарата состоит из солнечной батареи 1, подключенной через устройство поворотное с токосъемниками (не показано) к входным плюсовой и минусовой шинам стабилизированного преобразователя напряжения 2, аккумуляторной батареи 3, подключенной параллельно к солнечной батарее 1 в одноименной полярности через сериесный преобразователь 3-1 в направлении протекания разрядного тока, зарядного устройства 4 аккумуляторной батареи 3, трансформатора 5.
Стабилизированный преобразователь напряжения 2 выполнен в виде мостового инвертора. Описания мостовых инверторов приведены, например, в статьях: «Высокочастотные преобразователи напряжения с резонансным переключением». Автор А.В. Лукин (ЭЛЕКТРОПИТАНИЕ, научно-технический сборник выпуск 1 / Под редакцией Ю.И.Конева. М.: Ассоциация «Электропитание», 1993), The Series Connected Buck Boost Regulator For High Efficiency DC Voltage Regulation, автор Arthur G. Birchenough (NASA Technical Memorandum 2003-212514, NASA Lewis Research Center, Cleveland, OH), а также в статье: Структурная схема и схемотехнические решения комплексов АВТОМАТИКИ И СТАБИЛИЗАЦИИ СЭП НЕГЕРМЕТИЧНОГО ГЕОСТАЦИОНАРНОГО КА С ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКОЙ БОРТОВОЙ АППАРАТУРЫ ОТ СОЛНЕЧНЫХ И АККУМУЛЯТОРНЫХ БАТАРЕЙ. Авторов Поляков С.А., Чернышев А.И., Эльман В.О., Кудряшов B.C., см. «Электронные и электромеханические системы и устройства: Сб. научных трудов НПЦ «Полюс». - Томск: МГП «РАСКО» при издательстве «Радио и связь», 2001.
Формирование переменного напряжения на выходе стабилизированного преобразователя напряжения 2 обеспечивается его схемой управления 2-1, которая по определенному закону открывает попарно транзисторы 2-2, 2-5 и 2-3, 2-4 соответственно.
Выход стабилизированного преобразователя напряжения соединен с первичной обмоткой 5-1 трансформатора 5. Солнечная батарея 1 соединена со стабилизированным преобразователем напряжения 2 плюсовой и минусовой шинами.
К вторичным обмоткам 5-2, 5-3 трансформатора 5 подключены переходные устройства связи с нагрузками 6-1, 6-2 со своими номиналами выходного напряжения постоянного тока, выходом подключенные к потребителям электроэнергии 7 (в данном случае - к 7-1 и 7-2 соответственно). Вторичная обмотка 5-4 трансформатора 5 подключена непосредственно к потребителям электроэнергии 7 переменного тока 7-3.
Одно из переходных устройств связи с нагрузками выбирают в качестве основного и по нему осуществляют стабилизацию напряжения. С этой целью устройство 6-1 соединено обратной связью со стабилизированным преобразователем напряжения 2.
Зарядное устройство 4 своим входом соединено с вторичной обмоткой 5-5 трансформатора 5, а выходом - с плюсовой и минусовой шинами аккумуляторной батареи 2.
Сериесный преобразователь 3-1 состоит из силового транзисторного ключа 3-2, управляемого схемой управления 3-3, представляющей собой широтно-импульсный модулятор.
Система электропитания работает в следующих основных режимах.
Питание нагрузки от солнечной батареи
При наличии мощности солнечной батареи, превышающей суммарную мощность, потребляемую нагрузками, стабилизированный преобразователь напряжения 2, связанный обратной связью с переходным устройством 6-1, поддерживает стабильное напряжение на нагрузке (потребителе электроэнергии) 7-1. При этом на потребителях электроэнергии 7-2 и 7-3 автоматически поддерживается стабильное постоянное и переменное напряжение с учетом коэффициентов трансформации обмоток. При необходимости заряда аккумуляторной батареи величина ее зарядного тока ограничивается в пределах разницы между текущей мощностью солнечной батареи и суммарной мощностью нагрузок.
Питание нагрузки от аккумуляторной батареи
Режим формируется при недостатке или отсутствии мощности солнечной батареи для питания всех подключенных потребителей, например, при включении пиковых нагрузок, при маневрах КА для коррекции орбиты, при входах и выходах КА из теневых участков орбиты или при нахождении КА на теневом участке орбиты.
В этом режиме напряжение на входе стабилизированного преобразователя напряжения 2 снижается до уровня рабочей точки солнечной батареи в конце ресурса, и недостающая для питания нагрузок мощность от солнечной батареи добавляется за счет разряда аккумуляторной батареи 3.
Система электропитания работает полностью в автоматическом режиме.
Таким образом, предлагаемый способ электропитания КА позволяет повысить удельные энергетические характеристики и надежность эксплуатации системы электропитания КА, что в свою очередь повышает энерговооруженность и функциональные возможности КА.

Claims (9)

  1. Способ электропитания космического аппарата от солнечной батареи, подключенной через устройство поворотное с токосъемниками к входным плюсовой и минусовой шинам стабилизированного преобразователя напряжения, аккумуляторной батареи, подключенной своими плюсовой и минусовой шинами к входу разрядного и выходу зарядного устройств, причем стабилизатор напряжения солнечной батареи выполнен в виде мостового инвертора с трансформатором с n выходными обмотками, где n≥2, а вход зарядного устройства соединен с одной из выходных обмоток трансформатора, к другим же (n-1) выходным обмоткам трансформатора подключены переходные устройства связи с нагрузками со своими номиналами выходного напряжения, отличающийся тем, что солнечную батарею выбирают с максимальным начальным выходным током, исходя из конструктивных возможностей используемых токосъемников поворотного устройства космического аппарата, а выходное напряжение в рабочей точке в конце ресурса выбирают исходя из соотношения:
  2. UСБ≥Рн/(IСБ⋅kпр),
  3. где Рн - максимальная мощность нагрузки с учетом мощности для заряда аккумуляторной батареи, Вт;
  4. UСБ - выходное напряжение солнечной батареи в рабочей точке в конце ресурса, В;
  5. IСБ - выходной ток солнечной батареи в рабочей точке в конце ресурса, А;
  6. kпр – коэффициент, учитывающий потери на преобразование напряжения,
  7. а число фотопреобразователей в одной последовательной цепи солнечной батареи выбирают исходя из соотношения:
  8. n≥UСБ/Uэл,
  9. где Uэл - напряжение одного фотопреобразователя в рабочей точке в конце ресурса солнечной батареи, В.
RU2016145344A 2016-11-18 2016-11-18 Способ электропитания космического аппарата RU2633616C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016145344A RU2633616C1 (ru) 2016-11-18 2016-11-18 Способ электропитания космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016145344A RU2633616C1 (ru) 2016-11-18 2016-11-18 Способ электропитания космического аппарата

Publications (1)

Publication Number Publication Date
RU2633616C1 true RU2633616C1 (ru) 2017-10-16

Family

ID=60129482

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016145344A RU2633616C1 (ru) 2016-11-18 2016-11-18 Способ электропитания космического аппарата

Country Status (1)

Country Link
RU (1) RU2633616C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2689401C1 (ru) * 2018-06-22 2019-05-28 Акционерное общество "Научно-исследовательский институт электромеханики" Способ обеспечения автономного электропитания

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132093A1 (en) * 2004-12-22 2006-06-22 Nguyen Don J Battery pack leakage cut-off
RU2396666C1 (ru) * 2009-06-29 2010-08-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Система электропитания космического аппарата
RU2510105C2 (ru) * 2012-03-26 2014-03-20 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Способ заряда комплекта аккумуляторных батарей в составе автономной системы электропитания космического аппарата
RU2572396C1 (ru) * 2014-07-03 2016-01-10 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ управления автономной системой электропитания космического аппарата

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132093A1 (en) * 2004-12-22 2006-06-22 Nguyen Don J Battery pack leakage cut-off
RU2396666C1 (ru) * 2009-06-29 2010-08-10 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Система электропитания космического аппарата
RU2510105C2 (ru) * 2012-03-26 2014-03-20 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Способ заряда комплекта аккумуляторных батарей в составе автономной системы электропитания космического аппарата
RU2572396C1 (ru) * 2014-07-03 2016-01-10 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ управления автономной системой электропитания космического аппарата

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2689401C1 (ru) * 2018-06-22 2019-05-28 Акционерное общество "Научно-исследовательский институт электромеханики" Способ обеспечения автономного электропитания

Similar Documents

Publication Publication Date Title
RU2396666C1 (ru) Система электропитания космического аппарата
US6369461B1 (en) High efficiency power conditioner employing low voltage DC bus and buck and boost converters
US11043831B2 (en) Charging device and on board power supply device
US20110298442A1 (en) Converter Circuit and Electronic System Comprising Such a Circuit
RU2337452C1 (ru) Способ питания нагрузки постоянным током в составе автономной системы электропитания искусственного спутника земли и автономная система электропитания для его реализации
US20230352934A1 (en) Power grid
CN104836247A (zh) 实现储能容量动态优化的光储微网***
RU2560720C1 (ru) Система электропитания космического аппарата с экстремальным регулированием мощности солнечной батареи
US8427097B2 (en) Hybrid electrical power source
US9537391B2 (en) Voltage regulation of a DC/DC converter
Zhang et al. Power management of a modular three-port converter-based spacecraft power system
RU2633616C1 (ru) Способ электропитания космического аппарата
RU2392718C1 (ru) Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли
Rao et al. A comparative study of Bidirectional DC-DC converter & its interfacing with two battery storage system
US20230318435A1 (en) Power Grid
RU2488933C2 (ru) Способ электропитания космического аппарата
RU2010127541A (ru) Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли
RU2574911C2 (ru) Способ электропитания космического аппарата
Nagaraju et al. A transformer less high gain multi stage boost converter fed h-bridge inverter for photovoltaic application with low component count,(in press)
RU2699084C1 (ru) Система электропитания космического аппарата
RU2650100C1 (ru) Высоковольтная система электропитания космического аппарата
RU183357U1 (ru) Автономная система электроснабжения с унифицированным силовым модулем
RU2613660C2 (ru) Система электропитания космического аппарата
RU2704656C1 (ru) Система электроснабжения космического аппарата с экстремальным регулированием мощности солнечной батареи
Abdelmoaty et al. A single-step, single-inductor energy-harvestingbased power supply platform with a regulated battery charger for mobile applications