RU2631573C1 - Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава - Google Patents

Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава Download PDF

Info

Publication number
RU2631573C1
RU2631573C1 RU2016113971A RU2016113971A RU2631573C1 RU 2631573 C1 RU2631573 C1 RU 2631573C1 RU 2016113971 A RU2016113971 A RU 2016113971A RU 2016113971 A RU2016113971 A RU 2016113971A RU 2631573 C1 RU2631573 C1 RU 2631573C1
Authority
RU
Russia
Prior art keywords
rest
metals
titanium
nitrogen
vacuum chamber
Prior art date
Application number
RU2016113971A
Other languages
English (en)
Inventor
Юрий Михайлович Дыбленко
Василий Андреевич Гонтюрев
Аскар Джамилевич Мингажев
Анатолий Михайлович Смыслов
Дамир Рамилевич Таминдаров
Марина Константиновна Смыслова
Константин Сергеевич Селиванов
Original Assignee
Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" filed Critical Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология"
Priority to RU2016113971A priority Critical patent/RU2631573C1/ru
Application granted granted Critical
Publication of RU2631573C1 publication Critical patent/RU2631573C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава и может быть использовано для гравюр штампов, применяемых для горячей объемной изотермической штамповки металлических деталей. Способ включает помещение штампа в вакуумную камеру установки, создание требуемого вакуума, ионную очистку поверхности гравюры штампа с последующим нанесением на нее заданного количества слоев соединений титана с металлами и азотом. После ионной очистки наносят подслой из титана или из сплава на основе титана толщиной от 0,3 до 0, 7 мкм. Затем наносят разнородные слои соединений титана с металлами и азотом толщиной от 1,0 мкм до 1,8 мкм каждый. Чередуют формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 2⋅10-2 Па до 5⋅10-2 Па с формированием слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10-1 Па до 3⋅10-1 Па. Для формирования соединений титана с металлами используют соединения титана со следующими металлами: Al, Mo, Zr, V, Si, С или их сочетание. 4 з.п. ф-лы, 1 пр.

Description

Изобретение относится к машиностроению и может быть использовано для защиты поверхностей гравюр штампов, применяемых для горячей объемной изотермической штамповки металлических деталей, в том числе деталей сложной формы, например лопаток газотурбинных двигателей.
Метод горячей объемной изотермической штамповки используется, в основном, для изготовления деталей, работающих в условиях действия значительных статических и динамических нагрузок. К таким деталям относятся, например, лопатки компрессоров ГТД и ГТУ. Лопатки компрессора являются наиболее дорогостоящими деталями, определяющими ресурс двигателя, поэтому повышение их эксплуатационной надежности является достаточно важной экономической и технической задачей.
Процесс горячей объемной изотермической штамповки в условиях сверхпластичности включает пластическую деформацию металлической заготовки, происходящую под воздействием прикладываемого к ней давления штампа, имеющего гравюру, соответствующую форме получаемой детали. При этом в процессе эксплуатации штамп находится под постоянным воздействием высокой температуры.
Титановые сплавы, например такие, как ВТ6, ВТ3-1 и др., обладают высокой удельной прочностью и коррозионной стойкостью, поэтому они являются наиболее распространенными материалами для изготовления лопаток компрессора. Так, например, штампованные лопатки из сплава ВТ6 после стандартной термообработки имеют прочность до 1100 МПа и относительное удлинение 12-15%, а уровень усталостной прочности лопаток из сплава ВТ6 составляет около 410 МПа.
Наиболее распространенным методом производства деталей из титановых сплавов является объемное деформирование в горячем состоянии и, в частности, такие широко применяемые процессы, как штамповка и прессование. При изготовлении лопаток из титановых сплавов горячая объемная штамповка выполняется в условиях высоких температур, обеспечивающих структурные изменения в сплаве для получения заданных механических свойств деталей.
В условиях горячей объемной изотермической штамповки из-за высокого уровня напряжений, которому подвергается материал штампа при контакте с материалом заготовки, на рабочую поверхность штампа накладывают смазку, позволяющую несколько уменьшить контактные напряжения между материалом заготовки штампа. Однако, например, даже при прессовании титановых сплавов со смазкой матрицы выходят из строя через каждые 10-15 прессовок [М.З. Ерманок. Прессование титановых сплавов. - М.: Металлургия, 1979, с. 120-135, 2, Л.А. Никольский. Горячая штамповка и прессование титановых сплавов. - М.: Машиностроение, 1975, 205 с.].
Процесс штамповки заготовок из сплавов на основе титана характеризуется высокой температурой нагрева заготовки до 1000°С, значительными усилиями, обусловленные высоким пределом текучести материала (при t=1000°C т>200 МПа, в то время как сталь при t=1200°C имеет т<100 МПа), значительной величиной коэффициента трения пары Тi - материал инструмента, склонностью Ti к адгезионному схватыванию с материалом инструмента, особенно в условиях горячей объемной изотермической штамповки.
В этой связи достаточно большой интерес представляют способы обработки рабочих поверхностей штампов, с помощью которых достигается их значительное упрочнение. Значительный эффект поверхностного упрочнения достигается за счет повышения не только твердости, но и износо-, и коррозионной стойкости рабочей поверхности инструмента деформации. Для реализации указанных достоинств в промышленных условиях нашли применение методы упрочнения концентрированными потоками энергии.
Известен способ упрочнения штампа с оплавлением передней поверхности пуансона и матрицы непрерывным излучением лазера, сориентированным перпендикулярно передней поверхности и перемещающимся от периферии к рабочим кромкам (RU 2033435, C21D 1/09, C21D 9/22, 1995).
Известны также способы упрочнения штампа, заключающиеся в том, что на предварительно подготовленную поверхность наносится износостойкое покрытие из нитрида титана, при этом образуется переходная зона между поверхностью инструмента и покрытием, величина которой влияет на сцепление покрытия с материалом инструмента (Патент РФ 2062817, С23С 14/00, 14/26, опубл. 1996.06.27).
Наиболее близким к предлагаемому техническому решению является способ упрочнения штампа для штамповки, включающий подготовку поверхности гравюры штампа под нанесение покрытия и нанесение на подготовленную поверхность упрочняющего покрытия (Патент РФ 2096518, МПК С23С 14/06, С23С 14/16, МНОГОСЛОЙНОЕ КОМПОЗИЦИОННОЕ ПОКРЫТИЕ НА РЕЖУЩИЙ И ШТАМПОВЫЙ ИНСТРУМЕНТ, опубл. 20.11.1997). Многослойное композиционное покрытие наносится на режущий или штамповый инструмент. Покрытие состоит из чередующихся слоев тугоплавких соединений, причем один из чередующихся слоев содержит тугоплавкие соединения металлов IV, V или IV, VI групп Периодической системы элементов, а другой - тугоплавкие соединения металлов IV, V, или VI групп, при этом толщина слоев составляет 1-10 мкм.
В то же время штамп для горячей изотермической штамповки, имеющий гравюру, соответствующую конфигурации готового изделия из титанового сплава, изготавливают из жаропрочных сплавов, например, таких как ЖС6-У, ЖС6-К, ХН77ТЮР и др. В условиях воздействия высоких напряжений и температур возникают локальные адгезионные взаимодействия (схватывание, сварка и т.п.) между материалом поверхностного слоя гравюры штампа (жаропрочным никелевым сплавом) и материалом штампуемой заготовки (титановым сплавом). В результате такого взаимодействия и связанных с ним локальных «выровов» с поверхности гравюры ухудшается ее микрогеометрия. Изменение микрогеометрии поверхности гравюры приводит к увеличению неоднородности напряженно-деформированного состояния поверхностного слоя гравюры. В результате этого возникающие на локальных участках поверхности в процессе штамповки значительные механические напряжения приводят к резкому возрастанию температуры на этих участках до 900°С-1000°С и, как следствие, к разупрочнению материала штампа на этих участках. Далее наступает ускоренная фаза износа поверхности гравюры из-за сильной деформации ее разупрочненных участков поверхности.
В этой связи, основным недостатком аналогов и прототипа является низкая стойкость штампов из жаропрочных никелевых сплавов из-за неэффективности их поверхностного упрочнения, не предотвращающего разупрочнение материала поверхностного слоя.
В основу настоящего изобретения была положена задача уменьшения адгезионного взаимодействия между материалом штампа и штампуемой заготовкой.
Техническим результатом изобретения является повышение износостойкости штампа.
Поставленная задача и указанный технический результат осуществляется за счет того, что в способе нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава, включающем помещение штампа в вакуумную камеру установки, создание требуемого вакуума, ионную очистку поверхности гравюры штампа с последующим нанесением на нее заданного количества слоев соединений титана с металлами и азотом, в отличие от прототипа, после ионной очистки наносят подслой из титана или из сплава на основе титана толщиной от 0,3 до 0,7 мкм, а затем разнородные слои соединений титана с металлами и азотом толщиной от 1,0 мкм до 1,8 мкм каждый, причем чередуют формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 2⋅10-2 Па до 5⋅10-2 Па с формированием слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10-1 Па до 3⋅10-1 Па, а для формирования соединений титана с металлами используют соединения титана со следующими металлами: Al, Mo, Zr, V, Si, С или их сочетание, при следующем их соотношении, % вес: либо - Al от 4 до 8%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, V от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 0,5 до 2%, V от 0,5 до 3%, Si до 0,5%, С до 0,3%, остальное - Ti, либо - Al от 4 до 8%, Мо от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti.
Кроме того, возможны дополнительные варианты воплощения способа: ионную очистку проводят ионами аргона при плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа; заданное количество пар слоев покрытия определяется ее общей толщиной, равной от 7 мкм до 15 мкм; перед помещением деталей в вакуумную камеру установки проводят электролитно-плазменное полирование деталей, погружая их в водный раствор электролита и прикладывая к деталям положительное по отношению к электролиту электрическое напряжение.
Способ осуществляется следующим образом. Промытую от загрязнений и подготовленную под нанесение покрытий в вакууме штамповую оснастку (пуансон, матрицу) помещают в вакуумную камеру ионно-плазменной установки. Покрываемые поверхности детали должны иметь шероховатость поверхности Ra 1,2-2,5 мкм. При визуальном осмотре поверхности должны иметь металлический блеск, не иметь следов окисления, загрязнений и других поверхностных дефектов. Перед нанесением покрытия рекомендуется провести виброабразивную обработку в среде порошка карбида кремния. Промывку можно осуществлять ультразвуковым методом в моющем растворе. Далее целесообразно промыть детали горячей (60°С - 90°С) водой, просушить в струе горячего воздуха и протереть этиловым спиртом. В связи с тем, что пуансон и матрица закрытых штампов представляют собой сложнофасонную объемную форму, а используемый для формирования покрытия состав является многокомпонентным и, кроме того, напыляемым несколькими электродуговыми испарителями, то для обеспечения стабильности свойств поверхности пуансона и матрицы их целесообразно обрабатывать одновременно за одну загрузку. При этом расположение рабочих поверхностей пуансона и матрицы при нанесении покрытия должно обеспечивать получение однородного по толщине и свойствам покрытия. Для формирования покрытий на основе нитридов металлов необходимо обеспечивать температуру детали порядка 300°С - 400°С. Из-за значительной массы штамповой оснастки целесообразно осуществлять их предварительный нарев в вакууме, например, за счет электронов плазмы, подачей положительного потенциала на деталь (возможен также нагрев штампа вне камеры установки, но такой нагрев менее предпочтителен).
Последовательность процесса ионно-плазменного нанесения покрытия может быть следующей.
Ионная очистка поверхности. Ионная очистка согласно предлагаемому способу проводится в целях удаления окислов, активации и нагрева обрабатываемой поверхности. Ионная очистка проводится в вакууме 10-3 Па. При подаче электрического напряжения на деталь порядка 1000 В включают электродуговые испарители.
Нанесение покрытий. После окончания процесса ионной очистки на деталь подается опорное напряжение, при этом электродуговые испарители продолжают работать, формируя подслой из сплава на основе титана из толщиной от 0,3 до 0, 7 мкм. После нанесения подслоя в вакуумную камеру напускают азот, и формируют многослойное покрытие нанесением разнородных слоев соединений титана с металлами и азотом толщиной от 1,0 мкм до 1,8 мкм каждый. При этом чередуют формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 2⋅10-2 Па до 5⋅10-2 Па с формированием слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10-1 Па до 3⋅10-1 Па. Для формирования соединений титана с металлами используют соединения титана со следующими металлами: Al, Мо, Zr, V, Si, С или их сочетание, при следующем их соотношении, % вес: либо - Al от 4 до 8%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, V от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 0,5 до 2%, V от 0,5 до 3%, Si до 0,5%, С до 0,3%, остальное - Ti, либо - Al от 4 до 8%, Мо от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti. После нанесения покрытия детали охлаждают в вакуумной камере до температуры 160°С - 180°С при давлении в камере 10-3 Па. В качестве примера приведены основные технологические параметры процесса напыления. Толщины полученных на штампах покрытий составляли от 7 до 15 мкм.
Для оценки стойкости штампов были проведены следующие испытания. На образцы из высоколегированных жаропрочных никелевых сплавов (ЖС6-У, ЖС6-К) были нанесены покрытия как по способу-прототипу (патент РФ №2096518), согласно приведенных в способе-прототипе условий и режимов нанесения, так и покрытия по предлагаемому способу.
Режимы обработки образцов и нанесения покрытия по предлагаемому способу.
Ионная очистка: ионы аргона при энергии от 8 до 10 кэВ; плотность тока: 110 мкА/см2 - неудовлетворительный результат (Н.Р.); 130 мкА/см2 - удовлетворительный результат (У.Р.); 160 мкА/см2 (У.Р.); 180 мкА/см2 (Н.Р.); время ионной очистки: 0,1 часа (Н.Р.); 0,3 часа (У.Р.); 1,0 часа (У.Р.); 1,5 часа (Н.Р.).
Толщина подслоя из сплава на основе титана: 0,2 мкм (Н.Р.); 0,3 мкм (У.Р.); 0,5 мкм (У.Р.); 0,7 мкм (У.Р.); 0,9 мкм (Н.Р.). Толщина слоя соединений титана с металлами и азотом: 0,8 мкм (Н.Р.); 1,0 мкм (У.Р.); 1,3 мкм (У.Р.); 1,5 мкм (У.Р.); 1,8 мкм (У.Р.); 2,0 мкм (Н.Р.).
В соединениях титана с металлами и азотом использовались следующие металлы: Al, Мо, Zr, V, Si и их сочетание (AlMo, AlMoZr, AlMoZrV, AlMoZrVSi, AlZrVSi, AlMoVSi, AlMoZrSi, AlVSi, AlMoSi), при следующем их содержании, % вес: Al - [2% (Н.Р.); 4% (У.Р.); 8% (У.Р.) 10% (Н.Р.)]; Zr - [0,5% (Н.Р.); 1% (У.Р.); 3% (У.Р.); 5% (Н.Р.)]; Мо - [0,5% (Н.Р.); 1% (У.Р.); 2% (У.Р.); 4% (Н.Р.)]; V - [0,3% (Н.Р.); 0,5% (У.Р.); 1% (У.Р.); 3% (У.Р.); 5% (Н.Р.)]; Si от 1 до 4% - [0,5% (Н.Р.); 1% (У.Р.); 4% (У.Р.); 6% (Н.Р.)]; остальное - Ti.
После нанесения каждого слоя изменялось давление в вакуумной камере установки. При этом чередовали формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 2⋅10-2 Па до 5⋅10-2 Па [1⋅10-2 Па - (Н.Р.); 2⋅10-2 Па - (У.Р.); 3⋅10-2 Па - (У.Р.); 4⋅10-2 Па - (У.Р.); 5⋅10-2 Па - (У.Р.); 7⋅10-2 Па - (Н.Р.)] с формированием слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10-1 Па до 3⋅10-1 Па [0,4⋅10-1 Па - (Н.Р.); 1⋅10-1 Па - (У.Р.); 2⋅10-1 Па - (У.Р.); 3⋅10-1 Па - (У.Р.); 5⋅10-1 Па - (Н.Р.)].
Общая толщина покрытия-прототипа и покрытия, нанесенного по предлагаемому способу, составляла от 7 мкм до 15 мкм.
Электролитно-плазменное полирование проводили, погружая детали в водный раствор электролита и прикладывая к ним положительное по отношению к электролиту электрическое напряжение, осуществляя следующие варианты: полирование вели до обеспечения шероховатости не ниже Ra=0,08…0,12 мкм; полирование вели при рабочем напряжении 18..490 В; как варианты в качестве электролита использовали: водный раствор сульфата аммония с концентрацией 0,8…3,4; водный раствор, содержащий серную и орто-фосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас. %:
Серная кислота 10-30
Орто-фосфорная кислота 40-80
Блок-сополимер окисей этилена и пропилена 0,05-1,1
Натриевая соль сульфированного бутилолеата 0,01-0,05
Вода Остальное
Как варианты в качестве электролита использовали: водный растворы солей неорганических кислот аммония и щелочных металлов или соли низших карбоновых кислот, а также растворы свободных кислот; электролит, содержащий аммонийную соль неорганической кислоты, аммонийные соли низших карбоновых кислот и органические или неорганические вещества, образующие с металлами сплава комплексные соединения; используют электролит состава, мас. %:
(NH4)2SO4 5
Трилон Б 0,8
Как вариант, в качестве электролита использовали: электролит состава, мас. %:
(NH4)3PO4 5
Н3РО4 0,5
Тартрат К 0,5
Как вариант, в качестве электролита использовали: водные растворы солей натрия; в качестве водного раствора солей натрия используют 3-22%-ный раствор кислого углекислого натрия. В качестве электролита использовали: водные растворы солей аммония; в качестве соли аммония используют аммоний лимоннокислый одно- или двух- или трехзамещенный, или их смеси при следующем соотношении компонентов, мас. %:
Аммоний лимоннокислый одно-, или двух- или трехзамещенный, или их смеси - 2 – 18;
Вода - остальное.
Как вариант, в качестве электролита использовали: водные растворы солей со значением рН 4…9.
Как показали проведенные авторами исследования, нанесение на рабочие поверхности штамповой оснастки многослойных ионно-плазменных покрытий по предлагаемому техническому решению позволяет по сравнению с прототипом приблизительно в 1, 8-2,3 раза повысить стойкость штампов из жаропрочных никелевых сплавов (ЖС6-У, ЖС6-К) за счет снижения адгезионного взаимодействия материалов штампа и штампуемой детали, а также за счет резкого снижения процессов разупрочнение материала поверхностного слоя. Испытания проводились на образцах и натурных штампах в производственных условиях при штамповке лопаток из титановых сплавов.
Результаты исследований процессов износа штамповой оснастки показали, что применение в способе нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава следующих приемов: помещение штампа в вакуумную камеру установки; создание требуемого вакуума; ионную очистку поверхности гравюры штампа с последующим нанесением на нее заданного количества слоев соединений титана с металлами и азотом; нанесение после ионной очистки подслоя из титана или из сплава на основе титана толщиной от 0,3 до 0, 7 мкм; затем: нанесение разнородных слоев соединений титана с металлами и азотом толщиной от 1,0 мкм до 1,8 мкм каждый, при их следующем чередовании: формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 2⋅10-2 Па до 5⋅10-2 Па и формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10-1 Па до 3⋅10-1 Па; для формирования соединений титана с металлами используют соединения титана со следующими металлами: Al, Мо, Zr, V, Si, С или их сочетание, при следующем их соотношении, % вес: либо - Al от 4 до 8%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, V от 1 до 3%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, Мо от 0,5 до 2%, V от 0,5 до 3%, Si до 0,5%, С до 0,3%, остальное - Ti, либо - Al от 4 до 8%, Мо от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, Zr от 1 до 3%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, либо - Al от 4 до 8%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti; а также при использовании следующих дополнительных вариантов: ионную очистку проводят ионами аргона при плотности тока от 130 МкА/см2 до 160 МкА/см2 в течение от 0,3 до 1,0 часа; заданное количество пар слоев покрытия определяется ее общей толщиной, равной от 7 мкм до 15 мкм; перед помещением деталей в вакуумную камеру установки проводят электролитно-плазменное полирование деталей, погружая их в водный раствор электролита и прикладывая к деталям положительное по отношению к электролиту электрическое напряжение, позволяют достичь технического результата заявляемого изобретения - повышения износостойкости штампа за счет решения задачи уменьшения адгезионного взаимодействия между материалом штампа и штампуемой заготовкой

Claims (5)

1. Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава, включающий помещение штампа в вакуумную камеру установки, создание требуемого вакуума, ионную очистку поверхности гравюры штампа с последующим нанесением на нее заданного количества слоев соединений титана с металлами и азотом, отличающийся тем, что после ионной очистки наносят подслой из титана или из сплава на основе титана толщиной от 0,3 до 0,7 мкм, а затем разнородные слои соединений титана с металлами и азотом толщиной от 1,0 мкм до 1,8 мкм каждый, причем чередуют формирование слоя соединений титана с металлами и азотом при давлении в вакуумной камере от 2⋅10-2 Па до 5⋅10-2 Па и формированием слоя соединений титана с металлами и азотом при давлении в вакуумной камере установки от 1⋅10-1 Па до 3⋅10-1 Па, при этом для формирования упомянутых соединений титана с металлами используют следующие металлы,включающие Al, Mo, Zr, V, Si и С, или их сочетание, при следующем их соотношении, % вес: Al от 4 до 8%, остальное - Ti, или Al от 4 до 8%, Zr от 1 до 3%, остальное - Ti, или Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, или Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, остальное - Ti, или Al от 4 до 8%, Zr от 1 до 3%, Мо от 1 до 2%, V от 1 до 3%, остальное - Ti, или Al от 4 до 8%, Zr от 1 до 3%, Мо от 0,5 до 2%, V от 0,5 до 3%, Si до 0,5%, С до 0,3%, остальное - Ti, или Al от 4 до 8%, Мо от 1 до 2%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, или Al от 4 до 8%, Zr от 1 до 3%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti, или Al от 4 до 8%, V от 1 до 3%, Si от 1 до 4%, остальное - Ti.
2. Способ по п. 1, отличающийся тем, что ионную очистку проводят ионами аргона при плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа.
3. Способ по п. 1 или 2, отличающийся тем, что заданное количество пар слоев покрытия определяют в зависимости от общей толщины покрытия, равной от 7 мкм до 15 мкм.
4. Способ по п. 1 или 2, отличающийся тем, что перед помещением деталей в вакуумную камеру проводят электролитно-плазменное полирование деталей путем погружения их в водный раствор электролита и приложения к деталям положительного по отношению к электролиту электрического напряжения.
5. Способ по п. 3, отличающийся тем, что перед помещением деталей в вакуумную камеру проводят электролитно-плазменное полирование деталей путем погружения их в водный раствор электролита и приложения к деталям положительного по отношению к электролиту электрического напряжения.
RU2016113971A 2016-04-11 2016-04-11 Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава RU2631573C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016113971A RU2631573C1 (ru) 2016-04-11 2016-04-11 Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016113971A RU2631573C1 (ru) 2016-04-11 2016-04-11 Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава

Publications (1)

Publication Number Publication Date
RU2631573C1 true RU2631573C1 (ru) 2017-09-25

Family

ID=59931314

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016113971A RU2631573C1 (ru) 2016-04-11 2016-04-11 Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава

Country Status (1)

Country Link
RU (1) RU2631573C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740591C1 (ru) * 2020-05-27 2021-01-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный университет путей сообщения" (ФГБОУ ВО РГУПС) Способ получения многослойных износостойких алмазоподобных покрытий

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2068032C1 (ru) * 1990-07-26 1996-10-20 Сосьете Насьональ Д'Этюд Э Де Констрюксьон Де Мотер Д'Авиасьон "С.Н.Э.К.М.А." Способ нанесения противоизносного покрытия на изделия из титана и его сплавов и изделие, выполненное из титана и его сплавов
RU2096518C1 (ru) * 1992-12-18 1997-11-20 Анатолий Степанович Верещака Многослойное композиционное покрытие на режущий и штамповый инструмент
US6103357A (en) * 1997-04-18 2000-08-15 Sandvik Ab Multilayered coated cutting tool
RU2405060C1 (ru) * 2009-10-15 2010-11-27 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") ИОННО-ПЛАЗМЕННОЕ ПОКРЫТИЕ ДЛЯ РЕЖУЩИХ ИНСТРУМЕНТОВ НА ОСНОВЕ (TixAlyCrz)N
EP2264209A2 (en) * 2004-09-10 2010-12-22 Sandvik Intellectual Property AB Method of making a coated cutting tool
RU2426819C1 (ru) * 2009-11-30 2011-08-20 Общество с ограниченной ответственностью "Производственное предприятие Турбинаспецсервис" Теплозащитное покрытие и способ его получения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2068032C1 (ru) * 1990-07-26 1996-10-20 Сосьете Насьональ Д'Этюд Э Де Констрюксьон Де Мотер Д'Авиасьон "С.Н.Э.К.М.А." Способ нанесения противоизносного покрытия на изделия из титана и его сплавов и изделие, выполненное из титана и его сплавов
RU2096518C1 (ru) * 1992-12-18 1997-11-20 Анатолий Степанович Верещака Многослойное композиционное покрытие на режущий и штамповый инструмент
US6103357A (en) * 1997-04-18 2000-08-15 Sandvik Ab Multilayered coated cutting tool
EP2264209A2 (en) * 2004-09-10 2010-12-22 Sandvik Intellectual Property AB Method of making a coated cutting tool
RU2405060C1 (ru) * 2009-10-15 2010-11-27 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") ИОННО-ПЛАЗМЕННОЕ ПОКРЫТИЕ ДЛЯ РЕЖУЩИХ ИНСТРУМЕНТОВ НА ОСНОВЕ (TixAlyCrz)N
RU2426819C1 (ru) * 2009-11-30 2011-08-20 Общество с ограниченной ответственностью "Производственное предприятие Турбинаспецсервис" Теплозащитное покрытие и способ его получения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740591C1 (ru) * 2020-05-27 2021-01-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный университет путей сообщения" (ФГБОУ ВО РГУПС) Способ получения многослойных износостойких алмазоподобных покрытий

Similar Documents

Publication Publication Date Title
Scherillo Chemical surface finishing of AlSi10Mg components made by additive manufacturing
Bloyce et al. Surface engineering of titanium and titanium alloys
Varela et al. Surface integrity in hard machining of 300 M steel: effect of cutting-edge geometry on machining induced residual stresses
RU2355829C2 (ru) Способ электролитно-плазменного полирования металлических изделий
Li et al. Influence of anodic oxide film structure on adhesive bonding performance of 5754 aluminum alloy
RU2631573C1 (ru) Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава
Chen et al. A newly designed NiP duplex coating on friction stir welding joint of 6061-T6 aluminum
RU2631572C1 (ru) Способ нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали
Sen et al. Study the impact of process parameters and electrode material on wire electric discharge machining performances
Wang et al. Plasma electrolytic polishing for improving the surface quality of zirconium-based bulk metallic glass
RU2478139C2 (ru) Способ ионно-плазменного нанесения покрытия в вакууме на поверхность гравюры штампа из жаропрочного никелевого сплава
RU2533223C1 (ru) Способ обработки лопатки газотурбинного двигателя
Demisse et al. Surface finishing and electroless nickel plating of additively manufactured (am) metal components
Xin et al. Corrosion and wear properties of micro-arc oxidation treated Ti6Al4V alloy prepared by selective electron beam melting
US20170051428A1 (en) Electrolyte solution and electrochemical surface modification methods
US20120125787A1 (en) Electrolyte solution and electrochemical surface modification methods
Zohoor et al. Effect of electrolyte type on electrochemical machining of 304 steel
Schmid et al. Surface treatment and tribological considerations
Kumar et al. Experimental Study of Micro Structural and Anti-Corrosion Behaviorof Ni & Ni-Cr Coating on Mild Steel
KR100602897B1 (ko) 냉간 변형에 의한 금속부재 성형 방법
RU2355828C2 (ru) Способ электролитно-плазменной обработки деталей
RU2456112C2 (ru) Штамп для горячей штамповки деталей из титановых сплавов
RU2380598C2 (ru) Способ изготовления шпинделя из стали для трубопроводной арматуры
Fathi et al. Effect of surface finishing procedures on corrosion resistance of DMLS-AlSi10Mg_200C alloy
TWI755999B (zh) 不銹鋼工件之電解拋光處理方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190412

NF4A Reinstatement of patent

Effective date: 20210317