RU2627782C1 - Скважинный электрический соединитель - Google Patents

Скважинный электрический соединитель Download PDF

Info

Publication number
RU2627782C1
RU2627782C1 RU2015152455A RU2015152455A RU2627782C1 RU 2627782 C1 RU2627782 C1 RU 2627782C1 RU 2015152455 A RU2015152455 A RU 2015152455A RU 2015152455 A RU2015152455 A RU 2015152455A RU 2627782 C1 RU2627782 C1 RU 2627782C1
Authority
RU
Russia
Prior art keywords
longitudinal
electrical
electrical conductor
suspension ring
longitudinal element
Prior art date
Application number
RU2015152455A
Other languages
English (en)
Other versions
RU2015152455A (ru
Inventor
Джим Дарин ТИЛЛИ
Джон Кеннет СНАЙДЕР
Original Assignee
Хэллибертон Энерджи Сервисиз, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хэллибертон Энерджи Сервисиз, Инк. filed Critical Хэллибертон Энерджи Сервисиз, Инк.
Application granted granted Critical
Publication of RU2627782C1 publication Critical patent/RU2627782C1/ru
Publication of RU2015152455A publication Critical patent/RU2015152455A/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/028Electrical or electro-magnetic connections
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/023Arrangements for connecting cables or wirelines to downhole devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/07Telescoping joints for varying drill string lengths; Shock absorbers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/15Pins, blades or sockets having separate spring member for producing or increasing contact pressure
    • H01R13/187Pins, blades or sockets having separate spring member for producing or increasing contact pressure with spring member in the socket
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5219Sealing means between coupling parts, e.g. interfacial seal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/523Dustproof, splashproof, drip-proof, waterproof, or flameproof cases for use under water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/533Bases, cases made for use in extreme conditions, e.g. high temperature, radiation, vibration, corrosive environment, pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Earth Drilling (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Connector Housings Or Holding Contact Members (AREA)
  • Cable Accessories (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

Изобретение относится к средствам для передачи электроэнергии и сигналов вдоль забойного оборудования. Техническим результатом является обеспечение надежной передачи электроэнергии или сигналов при возможном изменении длины кабеля. В частности, предложен узел электрического соединителя, устанавливаемый в стволе скважины и содержащий: верхний продольный элемент, содержащий электрический проводник, нижний продольный элемент, содержащий электрический проводник, телескопический электропроводный узел и электрический контактный элемент, расположенный вокруг концевой части электрического проводника нижнего продольного элемента и выполненный с возможностью подвижного контактирования с ней. При этом телескопический электропроводный узел содержит продольную приемную часть в концевой части электрического проводника верхнего продольного элемента. Причем продольная приемная часть расположена вокруг концевой части электрического проводника нижнего продольного элемента. Указанный контактный элемент выполнен с возможностью подвижного контактирования с внутренней поверхностью продольной приемной части верхнего продольного элемента. 2 н. и 10 з.п. ф-лы, 9 ил.

Description

ПРИТЯЗАНИЕ НА ПРИОРИТЕТ
[0001] Это заявка притязает на приоритет заявки на патент США с номером 61/ 844,058, поданной 9 июля 2013 года, которая полностью включена в данный документ посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ
Данное изобретение относится к скважинному прибору и способу передачи электроэнергии и сигналов вдоль забойного оборудования, которое увеличивается и уменьшается в длине в продольном направлении.
УРОВЕНЬ ТЕХНИКИ
При выполнении операций бурения скважин бурильная колонна постепенно собирается на поверхности из отдельных звеньев бурильной трубы (или групп звеньев, называемых «свечи») и опускается в ствол скважины. Бурильная колонна может содержать эти звенья буровой трубы, соединяемые друг с другом на поверхности, вместе с другим оборудованием, применяемым во время бурения, например забойным оборудованием, располагаемым на дальнем конце присоединяемой буровой трубы. Забойное оборудование (BHA) может содержать инструменты, например телеметрические приборы для каротажа скважины в процессе бурения (LWD) и измерения в процессе бурения (MWD), при этом буровое долото присоединяется к нижнему концу. Кроме того, в состав забойного оборудования над буровым долотом может быть включен динамический демпфер, применяемый для демпфирования колебаний в бурильной колонне и забойном оборудовании. Одним изкоммерческих вариантов осуществления такого гасителя колебаний является противостопорный инструмент, производимый компанией Tomax (инструмент “Tomax AST”), который имеет концентрические наружный и внутренний корпуса, причем внутренний корпус вдвигается и выдвигается по отношению к наружному корпусу для увеличения и уменьшения в размерах забойного оборудования в продольном направлении.
ОПИСАНИЕ ЧЕРТЕЖЕЙ
ФИГ. 1 и 1A представляют собой вид в вертикальном разрезе типовой буровой установки и типового забойного оборудования, позволяющего увеличивать и уменьшать в размерах забойное оборудование в продольном направлении во время бурения ствола скважины.
ФИГ. 2 представляет собой вид сбоку компонентов типового узла скважинного электрического соединителя, применяемого для увеличения и уменьшения в размерах в продольном направлении.
ФИГ. 2A представляет собой увеличенный вид сбоку парциального сечения иллюстративных компонентов типового узла скважинного электрического соединителя по ФИГ. 2.
ФИГ. 2B и 2C представляют собой увеличенные поперечные сечения узла скважинного электрического соединителя по ФИГ. 2.
ФИГ. 3 представляет собой вид сбоку в разрезе узла скважинного электрического соединителя по ФИГ. 2, содержащего телескопический корпус.
ФИГ. 4 представляет собой вид сверху типовой электрической контактной пружины.
ФИГ. 5 представляет собой вид сбоку в разрезе альтернативного узла электрического соединителя, содержащего гибкий проводник, расположенный в телескопическом корпусе.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
В данном документе описаны скважинный прибор и способ передачи электрических сигналов вдоль забойного оборудования (“BHA”) 70, которое может увеличиваться и уменьшаться в длине.
ФИГ. 1 представляет собой вид в вертикальном разрезе типовой буровой установки 10, расположенной на поверхности 12 или над ней. Наземное оборудование 14 буровой установки 10 может вращать бурильную колонну 20, расположенную в стволе 60 скважины, для осуществления бурения одной или нескольких геологических формаций 25 под поверхностью 12. Бурильная колонна 20 содержит звенья бурильной трубы 21 и в представленном варианте реализации силовую секцию 22 скважины (например, скважинный двигатель объемного типа, например двигатель типа Муано). В представленном варианте реализации силовая секция 22 скважины содержит статор 24 и ротор 26, который может вращаться для передачи крутящего момента вниз по скважине на буровое долото 50 или другое внутрискважинное оборудование. Буровой снаряд 40 прикрепляется к продольному выходному валу 45 скважинного двигателя объемного типа. Ствол скважины 60 укрепляется креплением 34 и цементной оболочкой 32 в затрубном пространстве между креплением 34 и буровой скважиной. При осуществлении обычных буровых работ наземное оборудование 14 закачивает буровой раствор 62 (иначе называемый буровой шлам) вниз по бурильной колонне 20, который выходит из отверстий в долоте 50 и затем поднимается по затрубному пространству 64 между бурильной колонной и стенкой ствола буровой скважины и по затрубному пространству 66 по внутренней стенке крепления 34. Ротор 26 забойного двигателя в силовой секции вращается за счет перепада давления перекачиваемого бурового раствора 62 по ротору 26 силовой секции 22 относительно статора. Следует понимать, что в других вариантах реализации наземное оборудование 14 на буровой установке 10 вращает бурильную колонну 20 и силовые секции 22 скважины могут применяться, а могут и не применяться в стволе скважины. В таком варианте реализации крутящий момент для вращения бурового долота 50 создается за счет вращения бурильной колонны наземным оборудованием.
Функциональные возможности скважинных электронных датчиков/преобразователей продолжают расширяться, происходит дальнейшее совершенствование систем контроля поверхности и оценки фактических скважинных условий и рабочих параметров бурения, оборудования для завершения скважин и ремонтного оборудования (например, с помощью оценки данных, получаемых в режиме реального времени и/либо регистрируемых данных, получаемых из скважины). Датчики, измеряющие параметры, например динамико-механические нагрузки, перепады давления и перепады температуры, теперь могут работать в тяжелых условиях в буровых скважинах во время операций бурения, завершения или капитального ремонта скважин. Желательно располагать такие датчики ниже и в пределах места бурения с забойным двигателем и/или оборудования для бурения, завершения и ремонта скважин. Однако стандартные физические формы такого внутрискважинного оборудования с точки зрения геометрии и/или материалов не всегда позволяют передавать электронные сигналы. Предоставление и оценка таких данных создает возможность для оптимизации и обеспечивает преимущества в производительности, надежности и долговечности оборудования.
Поскольку буровое забойное оборудование обычно подвергается сильной вибрации и значительной ударной нагрузке, обычно применяются твердотельные проводники и соединения. Однако, из-за нахождения проводников и/или компонентов проводника непосредственно на пути текучей среды может уменьшаться проходное сечение внутри буровой трубы или снижаться механическая прочность внутренних или наружных компонентов бурильного инструмента.
Кроме того, новое оборудование разрабатывается для автоматизированных поверхностных систем и систем бурения скважины, например закрытых систем мокрого бурения и электрического бурового долота (например, импульсного большой мощности). Для этих систем и оборудования требуется подача электроэнергии в забой скважины к буровому долоту или забойному оборудованию.
В некоторых примерах при работе бурового снаряда 40 могут передаваться вибрации, которые могут распространяться по бурильной колонне 20. Например, бурильная труба 21 может изгибаться и соприкасаться со стволом 60 скважины или стенкой 61 ствола скважины, передавая вибрации по бурильной колонне 20. В другом примере взаимодействие бурового долота 50 с разбуриваемой формацией может вызывать вибрации, которые могут распространяться по бурильной колонне 20. В варианте реализации, проиллюстрированном на ФИГ. 1 и ФИГ. 1A, узел 80 виброгасителя включается в забойное оборудование 70 (“BHA”) для уменьшения вибрации, которая распространяется вдоль бурового снаряда 40.
ФИГ. 1A представляет собой увеличенный вид в вертикальном разрезе типового бурового снаряда 40 по ФИГ. 1. Буровой снаряд 40 может содержать один или более из следующих датчиков/инструментов: датчик 41 наддолотной инклинометрии (ABI); азимутальный наддолотный датчик 42 гамма-излучения (ABG), дистанционный отклоняющий инструмент 43 (Geopilot RSS); сдвоенный детектор 44 гамма-излучения (DGR); датчик 46 направления, датчик 47 сопротивляемости (EWR); датчик 48 азимутального фотоэлектрического плотностного каротажа (ALD) и сбалансированный датчик 49 тепловых нейтронов (CTN). Представленный буровой снаряд 40 является иллюстрацией варианта реализации интеллектуальной системы бурильной трубы с кабелем для передачи сигнала (например, инструментальной системы Halliburton Intellipipe). Однако буровой снаряд 40 может включать множество применяемых в отрасли типовых инструментов и датчиков. В показанном варианте реализации забойное оборудование 70 содержит буровое долото 50, буровой снаряд 40, силовую секцию 200 и узел 100 электрического соединителя. Узел 100 электрического соединителя будет рассмотрен далее в описании по ФИГ. 2, 2A, 3 и 5. Следует понимать, что забойное оборудование 70 может содержать некоторые, все или ни одного из показанных компонентов.
В показанном варианте реализации электроэнергия и/или сигнал (например, в канале обмена данными) передается посредством забойного оборудования 70, содержащего буровой снаряд 40. Буровой снаряд вращается и/или может изменять свою длину при изменении усилия на долото (WOB) и/или давления на динамическом демпфере 80 (например, инструмент Tomax AST).В различных вариантах реализации узел 100 скважинного электрического соединителя может использоваться в качестве канала обмена данными и/или канала электропитания в различных конфигурациях скважинных приборов, бурильных труб и/или утяжеленных бурильных труб и не ограничивается применением только инструмента Tomax. Например, узел скважинного электрического соединителя 100 может быть применен для передачи данных субшины забойного оборудования и/или питания. В другом примере узел 100 скважинного электрического соединителя по этому раскрытию может быть также применен для проводных трубных систем, например, системы Halliburton IntelliPipe и/или может включать инструменты RSS, MWD и LWD, показанные и рассмотренные в отношении ФИГ. 1A.
На ФИГ. 2, 2A, 2B, 2C и 3 боковой вид и поперечное сечение иллюстрируют вариант осуществления узла скважинного электрического соединителя. Узел 100 соединителя содержит верхний продольный элемент 102. Верхний продольный элемент 102 представляет собой трубчатый элемент (например, трубу) с электрическим проводником 103 (например, проводящим металлическим стержнем, металлическим проводом, оптоволоконным кабелем или композитным проводниковым материалом), расположенным внутри трубы. На восходящей части верхнего продольного элемента 102 располагается подвесное кольцо 110, которое подбирается по размеру и выполняется с возможностью приема посадочной полкой 522 верхнего наружного охватывающего корпусного элемента 520. Нисходящая часть узла 100 соединителя содержит нижний продольный элемент 210. Аналогичное подвесное кольцо 112 выполнено с возможностью приема посадочной полкой 512 нижнего наружного охватываемого корпусного элемента 510. Нижний продольный элемент 210 представляет собой трубчатый элемент с электрическим проводником 203, расположенным внутри трубы. Каждое из подвесных колец 110 и 112 содержит множество крепежных отверстий 540. Крепежные болты 542 могут проходить и приниматься резьбовыми отверстиями (например, охватывающими резьбовыми отверстиями под болт) в полках 512 и 522. Для крепления подвесных колец к посадочным полкам могут быть применены и другие типы механических соединителей, известные в данной области техники. Подвесное кольцо 110 и трубка продольного элемента 102 изолированы снаружи от электрического проводника 103, проходящего по трубе. Аналогично, подвесное кольцо 112 и трубка продольного элемента 210 изолированы снаружи от электрического проводника 203, проходящего по трубе. Наружный телескопический корпус 500 содержит верхний наружный охватывающий корпусный элемент 520, внутрь которого входит нижний наружный охватываемый корпусный элемент 510. Узел уплотнения 530 герметизирует охватываемый корпусный элемент 510 по отношению к охватывающему корпусному элементу 520. Нижний охватываемый корпусный элемент 510 подвижен в продольном направлении и может вращаться в наружном охватывающем корпусном элементе 520, что позволяет ему уменьшаться или увеличиваться в длину, при этом длина корпуса 500 уменьшается и увеличивается.
Узел 100 электрического соединителя содержит по меньшей мере один телескопический электропроводный узел 200, который содержит продольную приемную часть 104, расположенную в концевой части электрического проводника 103. Продольная приемная часть 104 может составлять одно целое с продольным проводником 103 или представлять собой отдельный трубчатый элемент, расположенный на электрическом проводнике 103 и подключенный к электрическому проводнику 103. Продольная приемная часть 104 выполнена с возможностью приема ближней концевой части электрического проводника 203. Концевая часть проводника 203 подвижна в продольном направлении и может вращаться в продольной приемной части 104, что позволяет телескопически уменьшать и увеличивать длину выдвижного электропроводного узла 200.
Телескопический узел 200 дополнительно содержит охватывающий продольный удлинитель 120 и сопрягающую секцию 122 верхнего продольного элемента 102. Нижний продольный элемент 210 подвижен в продольном направлении и может вращаться в охватывающем продольном удлинителе 120, что позволяет телескопически уменьшать и увеличивать длину выдвижного электропроводного узла 200. Изолятор 226 расположен между охватывающей частью 104 электрического проводника 103 и продольным элементом 210.
Узел 224 уплотнения предотвращает протекание бурового раствора 62 внутрь корпуса 500 узла 100 электрического соединителя и вокруг электрического проводника 203 со входа телескопического узла 200 и короткое замыкание электрического соединения, находящегося в нем. В некоторых вариантах реализации телескопический электропроводный узел 200 может находиться под давлением, уравновешиваемым с помощью смазочного вещества и отверстий для отбора давления, известных в данной области техники. На наружной поверхности телескопического узла 200 может находиться ребристый (или другой формы) центратор, выполненный из полимерного материала. Внутри телескопического узла расположено множество контактных пружин 230. ФИГ. 4 иллюстрирует вид сверху иллюстративной контактной пружины 230. Контактная пружина 230 позволяет осуществлять продольное и вращательное перемещение электрического проводника 203 внутри продольной приемной части 104 проводника 103, в то же время обеспечивая электрический контакт и передачу электроэнергии и/или электрических сигналов между элементами во время такого перемещения. Пружины 230 также улучшают электропроводность или передачу сигнала при отсутствии перемещения электрических проводников 203 и 103 относительно друг друга.
На восходящей части соединителя 100 расположен электрический соединитель 120 гнездового и штыревого типа. Электрический соединитель 120 штыревого типа прикрепляется к подвесному кольцу 110 и электрически подключается к электрическому проводнику 103, расположенному внутри продольного элемента 102. Штыревой соединитель 120 содержит входной/выходной проводник 104 для передачи энергии или сигнала вверх или вниз относительно забойного оборудования 70. Аналогичным образом, на нисходящей части соединителя 100 расположен соединитель 122 гнездового и штыревого типа. Электрический соединитель 122 штыревого типа прикрепляется к подвесному кольцу 112 и электрически подключается к электрическому проводнику 203, расположенному внутри продольного элемента 210. Штыревой соединитель 122 содержит входной/выходной проводник 214 для передачи энергии или сигнала вверх или вниз относительно забойного оборудования 70. Следует понимать, что для выполнения электрического соединения узла 100 с внутрискважинным оборудованием, расположенным выше и ниже по скважине, могут применяться и другие типы электрических соединителей, известные в данной области техники.
Электрические проводники 103 и 203 могут передавать одно или оба из: электроэнергии и сигнала на компоненты буровых снарядов 40 или забойного оборудования 70 или от них. Сигнал может содержать команду или данные, передаваемые на компоненты буровых снарядов 40 или забойного оборудования 70 или от них. Электроэнергия и/или сигнал из забоя скважины может поступать в узел электрического соединителя 100 от электрического проводника 214 в штыревой соединитель 122, который электрически соединен с проводником 203, расположенным внутри продольного элемента 210. Сигнал и/или электроэнергия затем протекает через контактную пружину 230 к внутренней поверхности продольной приемной части 104 проводника 103, изолированного от продольного элемента 102. Электроэнергия или сигнал протекает по проводнику 103 к электрическому проводнику 104, расположенному в штыревом соединителе 120 и затем за пределы узла 100 электрического соединителя и вверх по стволу скважины.
Как показано на Фиг. 3,входная электроэнергия (ВхЭ) может поступать на соединитель 120 и проходить через узел 100 электрического соединителя, выходная электроэнергия (ВыхЭ) – на нижний концевой соединитель 122. Аналогично, входной сигнал (ВхС) может заводиться через соединитель 112 и проходить через узел 100 электрического соединителя, а выходной сигнал (ВыхС) - через соединитель 120. Следует понимать, что электропитание и сигналы могут проходить и в направлениях, противоположных описанным выше, в зависимости от необходимости для инструментов и датчиков, расположенных в забойном оборудовании выше и ниже узла 100 электрического соединителя.
Узел 100 электрического соединителя и корпус 500 могут располагаться в забойном оборудовании выше или ниже системы измерения в процессе бурения (MWD), и/или зонда для каротажа скважины в процессе бурения (LWD), и/или дистанционной системы наклонного бурения с одновременным измерением его параметров (RSS), но выше долота. Корпус 500, как правило, имеет резьбовые соединения, которые обеспечивают соединение корпуса 500 с вышеупомянутыми инструментами. Способность узла 100 электрического соединителя передавать электроэнергию и данные через центральное отверстие в корпусе узла 100 электрического соединителя обеспечивает надежную передачу относительно большого объема данных, которые регистрируются датчиками скважинных приборов, посредством различных скважинных буровых трубчатых инструментов. Получение, анализ и применение этих данных производится непосредственно для проведения оценки в режиме реального времени или после выполнения работ, что повышает эффективность операций бурения, а также улучшает рабочие характеристики и надежность скважинных буровых инструментов. Узел 100 электрического соединителя способен передавать электроэнергию с поверхности или из места, расположенного выше по бурильной колонне на электрические буровые долота (например, импульсы большой мощности). Узел 100 электрического соединителя применим к любому скважинному забойному оборудованию, приводимому в действие электрическим или электромеханическим способом, используемым в процессе бурения или для капитального ремонта в случаях, когда предполагается относительное вращение и/или изменение длины.
ФИГ. 5 представляет собой вид сбоку поперечного разреза, иллюстрирующий альтернативный узел 800 электрического соединителя, в котором гибкий проводник 802 применяется вместо продольных элементов 102 и 210 телескопического узла 200 и узла 100 электрического соединителя, показанного на ФИГ. 2–3. Электрический проводник 802 является твердотельным и содержит непроводящее наружное покрытие в отличие от элементов 102 и 210, которые выполняются в виде трубы с электрическим проводником внутри. Электропитание и/или сигналы могут передаваться вверх и вниз по стволу скважины по гибкому проводнику 802 на проводники 104 и 214 штыревого и гнездового соединителя 120 и 122 и от него. Гибкий проводник 802 позволяет выполнять продольное и скручивающее перемещение корпуса 500, в котором расположен гибкий проводник 802. Электрический проводник 802 может быть выполнен в виде отдельного проводника, посредством которого передаются как электропитание, так и сигнал. Как известно, вариант реализации узла 800 электрического соединителя может быть применен внутри скважинных ударных ясов, наддолотных расширителей, динамических гасителей 80 колебаний и буровой трубы 21, вместо или и/или в дополнение к применению в корпусе 500 электрического соединителя.
Применение терминологии, например, «верхний», «нижний», «выше» и «ниже» в описании и формуле изобретения предназначено для объяснения относительного положения различных компонентов системы и других элементов, описываемых в данном документе. Если в явной форме не указано иное, применение такой терминологии не подразумевает конкретное положение или ориентацию системы или любых других компонентов относительно направления силы земного тяготения или земной поверхности или другое конкретное положение или ориентацию, в которых могут располагаться другие элементы системы в ходе эксплуатации, обработки и транспортировки.
Подробное описание одного или более чем одного из вариантов осуществления изобретения изложены на прилагаемых чертежах и в нижеприведенном описании. Другие признаки, цели и преимущества изобретения станут очевидными из описания и чертежей, а также из формулы изобретения.

Claims (36)

1. Узел электрического соединителя, устанавливаемый в стволе скважины и содержащий: верхний продольный элемент, содержащий электрический проводник, расположенный по меньшей мере частично внутри него;
нижний продольный элемент, содержащий электрический проводник, расположенный по меньшей мере частично внутри него;
телескопический электропроводный узел, содержащий продольную приемную часть в концевой части электрического проводника верхнего продольного элемента, причем продольная приемная часть расположена вокруг концевой части электрического проводника нижнего продольного элемента; и
электрический контактный элемент, расположенный вокруг концевой части электрического проводника нижнего продольного элемента и выполненный с возможностью подвижного контактирования с ней, причем указанный контактный элемент выполнен с возможностью подвижного контактирования с внутренней поверхностью продольной приемной части верхнего продольного элемента.
2. Узел по п. 1, в котором телескопический электропроводный узел дополнительно содержит охватывающий продольный удлинитель верхнего продольного элемента, а концевая часть нижнего продольного элемента выполнена с возможностью ее приема охватывающим продольным удлинителем верхнего продольного элемента.
3. Узел по п. 1 или 2, дополнительно содержащий наружный корпус, содержащий телескопическую часть наружного корпуса, расположенную между первым концом и вторым концом наружного корпуса, причем указанная телескопическая часть содержит наружный охватываемый корпусный элемент, выполненный с возможностью его приема со скольжением и вращением наружным охватывающим корпусным элементом.
4. Узел по п. 3, дополнительно содержащий:
первое подвесное кольцо, расположенное на конце верхнего продольного элемента;
посадочную полку первого подвесного кольца в наружном корпусе;
второе подвесное кольцо, расположенное на конце нижнего продольного элемента; и
посадочную полку второго подвесного кольца в наружном корпусе;
5. Узел по п. 4, в котором охватывающий наружный корпусный элемент содержит посадочную полку первого подвесного кольца, выполненную с возможностью приема первого подвесного кольца, а охватываемый наружный корпусный элемент содержит посадочную полку второго подвесного кольца, выполненную с возможностью приема второго подвесного кольца.
6. Узел по п. 1 или 2, в котором верхний продольный элемент содержит первую пустотелую трубу и электрический проводник содержит стержень, расположенный по меньшей мере частично внутри первой пустотелой трубы, причем нижний продольный элемент содержит вторую пустотелую трубу, а электрический проводник содержит стержень, расположенный по меньшей мере частично внутри второй пустотелой трубы.
7. Узел по п. 4, дополнительно содержащий:
первый соединитель гнездового и штыревого типа, расположенный на первом подвесном кольце и электрически соединенный с электрическим проводником верхнего продольного элемента; и
второй соединитель гнездового и штыревого типа, расположенный на втором подвесном кольце и электрически соединенный с электрическим проводником нижнего продольного элемента.
8. Узел по п. 1 или 2, в котором электрический контактный элемент является контактной пружиной.
9. Способ передачи электроэнергии или сигнала в ствол скважины, содержащий:
обеспечение наличия узла электрического соединителя, содержащего:
верхний продольный элемент, содержащий электрический проводник, расположенный по меньшей мере частично внутри него;
нижний продольный элемент, содержащий электрический проводник, расположенный по меньшей мере частично внутри него;
телескопический электропроводный узел, содержащий продольную приемную часть в концевой части электрического проводника верхнего продольного элемента, причем продольная приемная часть располагается вокруг части электрического проводника нижнего продольного элемента; и
электрический контактный элемент, располагаемый вокруг по меньшей мере части электрического проводника нижнего продольного элемента и подвижно контактирующий с ней, а упомянутый контактный элемент подвижно контактирует с внутренней поверхностью продольной приемной части разъема верхнего продольного элемента;
установку узла электрического соединителя в забойное оборудование,
установку электрического соединителя и забойного оборудования в ствол скважины;
проведение операций бурения в стволе скважины, которое содержит телескопическое уменьшение и увеличение продольной длины узла электрического соединителя;
подачу электроэнергии или сигнала на вход узла электрического соединителя; и
передачу электроэнергии или сигнала через электрический проводник, расположенный в верхнем продольном элементе, через контактный элемент и через электрический проводник, расположенный в нижнем продольном элементе, и за пределы узла электрического соединителя.
10. Способ по п. 9, дополнительно содержащий:
установку охватывающего продольного удлинителя верхнего продольного элемента вокруг концевой части нижнего продольного элемента.
11. Способ по п. 9, дополнительно содержащий:
применение наружного корпуса, содержащего телескопическую часть наружного корпуса, расположенную между первым концом и вторым концом наружного корпуса; и
прием со скольжением и вращением нижнего наружного охватываемого корпусного элемента наружным охватывающим корпусным элементом.
12. Способ по п. 11, дополнительно содержащий:
установку первого подвесного кольца, расположенного на верхнем продольном элементе, в посадочную полку первого подвесного кольца, расположенную внутри верхнего наружного охватывающего корпусного элемента; и
установку второго подвесного кольца, расположенного на нижнем продольном элементе, в посадочную полку второго подвесного кольца, расположенную внутри нижнего наружного охватываемого корпусного элемента.
RU2015152455A 2013-07-09 2014-07-08 Скважинный электрический соединитель RU2627782C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361844058P 2013-07-09 2013-07-09
US61/844,058 2013-07-09
PCT/US2014/045724 WO2015006310A1 (en) 2013-07-09 2014-07-08 Downhole electrical connector

Publications (2)

Publication Number Publication Date
RU2627782C1 true RU2627782C1 (ru) 2017-08-11
RU2015152455A RU2015152455A (ru) 2017-08-14

Family

ID=52280516

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015152455A RU2627782C1 (ru) 2013-07-09 2014-07-08 Скважинный электрический соединитель

Country Status (11)

Country Link
US (2) US9695645B2 (ru)
CN (2) CN105247164B (ru)
AU (1) AU2014287413B2 (ru)
BR (1) BR112015030572B1 (ru)
CA (2) CA2985423C (ru)
DE (1) DE112014003216T5 (ru)
GB (1) GB2530920B (ru)
MX (2) MX367790B (ru)
NO (2) NO347130B1 (ru)
RU (1) RU2627782C1 (ru)
WO (1) WO2015006310A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752197C1 (ru) * 2020-11-25 2021-07-23 Общество С Ограниченной Ответственностью "Русские Универсальные Системы" Конструкция соединителя телескопического

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO347130B1 (en) 2013-07-09 2023-05-30 Halliburton Energy Services Inc An electrical connector assembly and a method of transmitting power or a signal in a wellbore.
US10280694B2 (en) * 2014-03-19 2019-05-07 Schlumberger Technology Corporation Contraction joint with multiple telescoping sections
US11293736B2 (en) 2015-03-18 2022-04-05 DynaEnergetics Europe GmbH Electrical connector
US10465481B2 (en) * 2016-02-08 2019-11-05 Halliburton Energy Services, Inc. Electrical conveyance for downhole tools
US10184301B2 (en) * 2016-05-12 2019-01-22 Aps Technology, Inc. Downhole drilling tools and connection system for same
CN107221792B (zh) * 2017-06-27 2018-11-13 西南石油大学 一种用于智能分层注水的管柱内置测调电缆井下自动连接装置及方法
CN109921232B (zh) * 2017-12-13 2020-05-08 中国科学院沈阳自动化研究所 一种水下插拔机构
US11661824B2 (en) 2018-05-31 2023-05-30 DynaEnergetics Europe GmbH Autonomous perforating drone
CN110416835A (zh) * 2019-08-02 2019-11-05 重庆梦马致新科技有限公司 一种电缆湿接头的公头
US11346214B2 (en) * 2019-09-13 2022-05-31 Baker Hughes Oilfield Operations Llc Monitoring of downhole components during deployment
US11299937B2 (en) 2019-09-30 2022-04-12 Halliburton Energy Services, Inc. High pressure dual electrical collet assembly for oil and gas applications
CN112392410B (zh) * 2020-11-18 2023-03-24 万晓跃 一种柔性电连接钻柱
US11713625B2 (en) 2021-03-03 2023-08-01 DynaEnergetics Europe GmbH Bulkhead

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU221606A1 (ru) * И. К. Саркисов , С. Г. Комаров УСТРОЙСТВО дл КАРОТАЖА СКВАЖИН В ПРОЦЕССЕБУРЕНИЯ
US5323853A (en) * 1993-04-21 1994-06-28 Camco International Inc. Emergency downhole disconnect tool
RU2111352C1 (ru) * 1996-08-02 1998-05-20 Закрытое акционерное общество "НТ-Курс" Линия связи для забойных телеметрических систем контроля в процессе бурения
RU17197U1 (ru) * 2000-10-30 2001-03-20 Закрытое акционерное общество Научно-производственная фирма "Самарские Горизонты" Кабельная секция
RU2190272C2 (ru) * 2000-10-23 2002-09-27 Закрытое акционерное общество Научно-производственная фирма "Самарские Горизонты" Кабель соединительный
RU2401932C2 (ru) * 2005-06-15 2010-10-20 Шлюмбергер Текнолоджи Бв Соединитель и способ соединения вспомогательных проточных каналов и электрических шин
RU2423609C1 (ru) * 2009-12-14 2011-07-10 Владимир Даниилович Москвичев Линия связи для забойных телеметрических систем контроля параметров бурения

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2706616A (en) * 1951-01-12 1955-04-19 Dean W Osmun Conductor line jar
GB1571677A (en) * 1978-04-07 1980-07-16 Shell Int Research Pipe section for use in a borehole
US4416494A (en) * 1980-10-06 1983-11-22 Exxon Production Research Co. Apparatus for maintaining a coiled electric conductor in a drill string
US4806928A (en) * 1987-07-16 1989-02-21 Schlumberger Technology Corporation Apparatus for electromagnetically coupling power and data signals between well bore apparatus and the surface
FR2632680B1 (fr) * 1988-06-09 1991-10-31 Inst Francais Du Petrole Dispositif de montage d'un outil specialise d'intervention a une extremite d'un train de tiges
US6712146B2 (en) 2001-11-30 2004-03-30 Halliburton Energy Services, Inc. Downhole assembly releasable connection
US7188674B2 (en) * 2002-09-05 2007-03-13 Weatherford/Lamb, Inc. Downhole milling machine and method of use
GB2396167B (en) 2002-11-15 2005-06-08 Kvaerner Oilfield Products Ltd Connector assembly
WO2004090278A1 (en) 2003-04-14 2004-10-21 Per Olav Haughom Dynamic damper for use in a drill string
US6780037B1 (en) * 2003-10-07 2004-08-24 Baker Hughes Incorporated Debris seal for electrical connectors of pump motors
US20090101328A1 (en) * 2004-09-28 2009-04-23 Advanced Composite Products & Technology, Inc. Composite drill pipe and method of forming same
US7535377B2 (en) 2005-05-21 2009-05-19 Hall David R Wired tool string component
US7980306B2 (en) * 2005-09-01 2011-07-19 Schlumberger Technology Corporation Methods, systems and apparatus for coiled tubing testing
US7901240B2 (en) * 2007-01-12 2011-03-08 Power Feed-Thru Systems & Connectors, Llc Apparatus and method for electrical connector with flat cable adapter
CA2688348C (en) * 2007-06-14 2015-10-06 Western Well Tool, Inc. Electrically powered tractor
CA2710187C (en) 2008-01-03 2012-05-22 Western Well Tool, Inc. Spring-operated anti-stall tool
CN201173113Y (zh) 2008-01-18 2008-12-31 大港油田集团有限责任公司 随钻测量***井下仪器连接装置
CN201221352Y (zh) 2008-06-11 2009-04-15 中国石油集团钻井工程技术研究院 一种感应式井下数据连接装置
CN202578665U (zh) 2011-12-29 2012-12-05 中天启明石油技术有限公司 一种适用于钻铤连接可调距离的井下仪器连接器
EP2964871A4 (en) 2013-05-08 2017-03-08 Halliburton Energy Services, Inc. Insulated conductor for downhole drilling
NO347130B1 (en) 2013-07-09 2023-05-30 Halliburton Energy Services Inc An electrical connector assembly and a method of transmitting power or a signal in a wellbore.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU221606A1 (ru) * И. К. Саркисов , С. Г. Комаров УСТРОЙСТВО дл КАРОТАЖА СКВАЖИН В ПРОЦЕССЕБУРЕНИЯ
US5323853A (en) * 1993-04-21 1994-06-28 Camco International Inc. Emergency downhole disconnect tool
RU2111352C1 (ru) * 1996-08-02 1998-05-20 Закрытое акционерное общество "НТ-Курс" Линия связи для забойных телеметрических систем контроля в процессе бурения
RU2190272C2 (ru) * 2000-10-23 2002-09-27 Закрытое акционерное общество Научно-производственная фирма "Самарские Горизонты" Кабель соединительный
RU17197U1 (ru) * 2000-10-30 2001-03-20 Закрытое акционерное общество Научно-производственная фирма "Самарские Горизонты" Кабельная секция
RU2401932C2 (ru) * 2005-06-15 2010-10-20 Шлюмбергер Текнолоджи Бв Соединитель и способ соединения вспомогательных проточных каналов и электрических шин
RU2423609C1 (ru) * 2009-12-14 2011-07-10 Владимир Даниилович Москвичев Линия связи для забойных телеметрических систем контроля параметров бурения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752197C1 (ru) * 2020-11-25 2021-07-23 Общество С Ограниченной Ответственностью "Русские Универсальные Системы" Конструкция соединителя телескопического

Also Published As

Publication number Publication date
CN105247164B (zh) 2017-10-20
AU2014287413B2 (en) 2016-07-14
RU2015152455A (ru) 2017-08-14
MX2015016026A (es) 2016-03-21
BR112015030572B1 (pt) 2022-02-22
US20170145755A1 (en) 2017-05-25
NO20151554A1 (en) 2015-11-13
CN105247164A (zh) 2016-01-13
US9695645B2 (en) 2017-07-04
AU2014287413A1 (en) 2016-01-07
GB2530920A (en) 2016-04-06
US20160230477A1 (en) 2016-08-11
GB2530920B (en) 2020-09-09
MX367790B (es) 2019-09-06
CA2912956A1 (en) 2015-01-15
MX2019007056A (es) 2019-08-29
NO347130B1 (en) 2023-05-30
GB201519530D0 (en) 2015-12-23
CN107654198B (zh) 2020-06-02
CA2912956C (en) 2018-01-02
DE112014003216T5 (de) 2016-04-28
CN107654198A (zh) 2018-02-02
CA2985423A1 (en) 2015-01-15
CA2985423C (en) 2019-11-12
NO20230407A1 (en) 2015-11-13
WO2015006310A1 (en) 2015-01-15
BR112015030572A2 (pt) 2017-07-25
US10100586B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
RU2627782C1 (ru) Скважинный электрический соединитель
US9634473B2 (en) Redundant wired pipe-in-pipe telemetry system
US11236606B2 (en) Wireless communication between downhole components and surface systems
US20180179828A1 (en) Oil and gas well drill pipe electrical and communication assembly
US10385683B1 (en) Deepset receiver for drilling application
US11149536B2 (en) Measurement of torque with shear stress sensors
US11840893B2 (en) Direct contact telemetry system for wired drill pipe
CA2886323C (en) Enhanced interconnect for downhole tools
RU60619U1 (ru) Телеметрическая система для контроля проводки наклонной и горизонтальной скважины
WO2014046674A1 (en) Pipe-in-pipe wired telemetry system
US11066927B2 (en) Wired drill pipe connector and sensor system
RU84063U1 (ru) Линия связи для контроля параметров бурения
BR112019018449B1 (pt) Sistema de comunicação e método de comunicação entre uma coluna de tubulação com fio em um poço e uma localização na superfície

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200709