RU2627431C1 - Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства - Google Patents

Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства Download PDF

Info

Publication number
RU2627431C1
RU2627431C1 RU2016126573A RU2016126573A RU2627431C1 RU 2627431 C1 RU2627431 C1 RU 2627431C1 RU 2016126573 A RU2016126573 A RU 2016126573A RU 2016126573 A RU2016126573 A RU 2016126573A RU 2627431 C1 RU2627431 C1 RU 2627431C1
Authority
RU
Russia
Prior art keywords
solution
fluorocarbon
fluorine
calcium fluoride
treatment
Prior art date
Application number
RU2016126573A
Other languages
English (en)
Inventor
Валерий Владимирович Волянский
Александр Александрович Гавриленко
Людмила Владимировна Гавриленко
Павел Анатольевич Якушевич
Вячеслав Викторович Аникин
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority to RU2016126573A priority Critical patent/RU2627431C1/ru
Application granted granted Critical
Publication of RU2627431C1 publication Critical patent/RU2627431C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/22Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/08Fluorides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/02Fluorides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение может быть использовано в химической технологии. Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства включает обработку фторсодержащих растворов гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция, который промывают водой. В качестве фторсодержащего раствора используют раствор, полученный путем выщелачивания твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия - шламов газоочистки, пыли электрофильтров и отработанной угольной футеровки. Фторуглеродсодержащие отходы подают на обработку в соотношении Т:Ж=:(10-11) по отношению к 2-2,5% раствору гидроксида натрия. Обработку ведут при температуре выщелачиваемого раствора 65-85°С. Изобретение позволяет получить фторид кальция из твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия с содержанием фтора в твердой фазе от 12 до 25%. 1 з.п. ф-лы, 4 табл.

Description

Область техники, к которой относится изобретение
Изобретение относится к химической технологии, в частности к способам извлечения фтора из фторуглеродсодержащих отходов, образующихся в процессе получения первичного алюминия электролизом криолит-глиноземного расплава, с последующим получением товарного продукта в виде фторида кальция.
Уровень техники
В настоящее время электролизное производство алюминия сопровождается образованием значительного количества фторуглеродсодержащих отходов, в том числе, отходов, которые образуются в процессах газоочистки - шлама газоочистки и пыли электрофильтров, а также отходов, образующихся в процессе капитального ремонта электролизеров - угольной футеровки, которые затем размещаются на шламовых полях и полигонах промышленных отходов. При этом содержащиеся в них фтор и углерод безвозвратно теряются, требуются значительные затраты на хранение отходов, реконструкцию или строительство новых шламовых полей, происходит ухудшение экологической ситуации.
Для снижения безвозвратных потерь ценных компонентов и повышения экологической безопасности целесообразна дополнительная переработка данных отходов.
Сравнение предлагаемого технического решения с другими известными решениями в данной области показывает следующее.
Известен способ получения фтористого кальция из фторсодержащих газов суперфосфатных заводов или кремнефтористоводородной кислоты, в котором фторсодержащие газы или кремнефтористоводородную кислоту обрабатывают раствором аммиака или едкой, или карбонатной щелочи, затем полученный щелочной фторид после отделения кремнекислоты приводят во взаимодействие с известью или известковым молоком, или карбонатом кальция (SU №101115, МПК C01F 11/22, опубликовано 01.01.1955 г.).
В предлагаемом решении используют другой исходный материал для получения фторсодержащего раствора - твердые мелкодисперсные фторуглеродсодержащие отходы электролитического производства алюминия, иные режимы обработки материалов.
Известен способ получения фтористого кальция путем взаимодействия раствора фтористого калия с гидроокисью кальция, отделением влажного остатка фильтрацией, сушкой последнего, брикетированием и прокалкой, в котором гидроокись кальция берут в избытке 0,5-7% от стехиометрии, а брикетирование ведут в присутствии влажного осадка в соотношении 1:(3-5) (SU №709537, МПК C01F 11/22, опубликовано 15.01.1980 г.).
В предлагаемом решении используют другой раствор, иные режимы обработки раствора и последующей обработки материала.
Известен способ получения фторида кальция из фторсодержащих газов производства минеральных удобрений, включающий абсорбцию газов оборотным раствором, нейтрализацию щелочным реагентом, обработку фторсодержащего раствора карбонатом кальция с последующим отделением, промывкой и сушкой продукта, в котором в качестве щелочного реагента используют раствор фторида калия, после нейтрализации осадок кремнефторида калия отделяют от плавиковой кислоты и обрабатывают раствором поташа, отделяют двуокись кремния от фторсодержащего раствора и подают его в количестве 33-36% на стадию нейтрализации, а плавиковую кислоту направляют на промывку продукта (SU №882930, МПК C01F 11/22, опубликовано 23.11.1981 г.).
В предлагаемом решении используют другой исходный материал для получения раствора, иные режимы обработки раствора и последующей обработки материала.
Известен способ переработки содосульфатного раствора, получаемого после очистки газа электролизных корпусов при производстве алюминия, включающий очистку газа от серных окислов и фтористых соединений путем их орошения содосульфатным раствором в мокрых скрубберах, выделение из раствора после газоочистки основного количества фтористого натрия в виде криолита, в котором содосульфатный раствор, очищенный от криолита, дополнительно очищают от фтористого натрия путем его обработки при t=95-105°C в течение 1,5-2 ч известковым молоком, вводимым в содосульфатный раствор из расчета стехиометрического связывания фтора, содержащегося в растворе, в CaF2, после чего очищенный от фтора содосульфатный раствор далее подвергают концентрирующей выпарке до достижения плотности упаренного раствора до 1,37±0,02 г/л и выделяют из него в осадок сульфат натрия в виде безводной беркеитовой соли путем введения в упаренный раствор карбонатной соды до достижения концентрации титруемой щелочи в маточном растворе 215-230 г/л Na2O и плотности раствора в суспензии до 1,35±0,02 г/л и перемешивания суспензии при температуре 95-100°С в течение 30-40 минут (RU №2254293, МПК C01D 5/00, C01F 7/54, опубликовано 20.06.2005 г.).
В известном решении дополнительным переделом переработки содосульфатного раствора, очищенного от криолита, является очистка от фтористого натрия путем его обработки при температуре 95-105°С в течение 1,5-2 ч известковым молоком, вводимым в содосульфатный раствор из расчета стехиометрического связывания фтора, содержащегося в растворе, в CaF2.
В предлагаемом решении в качестве фторсодержащего раствора используют раствор, полученный путем выщелачивания твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия, фторуглеродсодержащие отходы подают на обработку в соотношении 1:(9-11) по отношению к раствору гидроксида натрия с 2-2,5% концентрацией, обработку ведут при температуре выщелачиваемого раствора 75-85°С, а полученный фторсодержащий раствор направляют на обработку гидроокисью кальция.
Известен способ переработки твердых фторуглеродсодержащих отходов электролитического производства алюминия, включающий обработку отходов водным раствором гидроксида натрия с разделением продукта на осадок и раствор с последующей подачей раствора в производство фтористых солей, в котором обработку отходов ведут водным раствором гидроксида натрия с концентрацией 25-35 г/л при температуре 60-90°С, осадок после выщелачивания обрабатывают водным 1,0-1,5%-ным раствором органической кислоты при температуре 60-80°С, разделяют продукт на осадок и раствор, раствор подают в производство фтористых солей, углеродистый осадок направляют на производство углеродсодержащей продукции. При этом при обработке отходов раствором гидроксида натрия поддерживают соотношение Ж:Т, равным 10:1, а в качестве органической кислоты используют щавелевую кислоту (RU №2429198, МПК C01F 7/54, С22В 7/00, опубликовано 20.09.2011 г.).
В предлагаемом решении при выщелачивании твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия отходы подают на обработку в соотношении 1:(9-11) по отношению к раствору гидроксида натрия с 2-2,5% концентрацией, обработку ведут при температуре выщелачиваемого раствора 75-85°С, а полученный фторсодержащий раствор направляют на обработку гидроокисью кальция.
Известен способ извлечения фтора в виде фторида кальция из фторсодержащих растворов (SU №1498711, МПК C01F 11/22, опубликовано 07.08.1989 г.), включающий обработку фторсодержащих растворов гидроокисью кальция с последующим отделением продукта, в котором исходные растворы используют в количестве, обеспечивающем отношение ионов кальция к ионам фтора, равным (6-8):1. При этом содержание фтор-иона в исходном растворе могут поддерживать равным 0,015-3,0 г/л и обработку ведут при комнатной температуре, а при содержании фтор-иона 0,015-0,15 г/л - при 60-90°С. Основной недостаток известного решения - значительный расход реагента, низкая производительность процесса.
Известен способ получения фторида кальция (SU №1747385, МПК C01F 11/22, C01F 7/54, опубликовано 15.07.1992 г.), согласно которому с целью повышения содержания фторида кальция в продукте процесс нейтрализации фторсодержащих растворов проводят гидроокисью кальция в две стадии. На первой стадии фторсодержащий раствор обрабатывают раствором гидроокиси кальция при соотношении ионов кальция и фтора, равном (2-4):1. Из полученной пульпы выделяют твердую часть крупностью 10-600 мкм, которую доизмельчают до крупности 5-15 мкм. На второй стадии доизмельченный продукт повторно обрабатывают фторсодержащим раствором.
Недостатком известного способа являются высокие эксплуатационные затраты, вызванные сложностью и многостадийностью процесса, а также двухстадийной нейтрализацией с отделением осадка и выделением из него материала крупностью 10-600 мкм, его доизмельчением и повторной нейтрализацией.
Известен способ получения фторида кальция (RU №2487082, МПК C01F 11/22, опубликовано 10.07.2013 г.), включающий обработку фторсодержащих растворов гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция, в котором в качестве фторсодержащего раствора используют осветленный раствор газоочистки электролитического производства алюминия, при этом гидроокись кальция подают на обработку в соотношении (1,8-2,1):1 по отношению к содержанию фтора в растворе, и при температуре обрабатываемого фторсодержащего раствора 40-55°С, а после обработки полученный фторид кальция промывают водой при температуре 80-90°С в течение 20-40 минут.
Недостатком известного способа является использование фторсодержащих растворов газоочистки электролизного производства алюминия, которые являются сырьем для производства регенерационного криолита. Кроме того, использование для производства вторичных фтористых продуктов фторсодержащих отходов с незначительным содержанием остаточного фтора малоэффективно и не позволяет получать вторичные продукты высокого качества, что требует дополнительных затрат при их применении в основном производстве.
Также известен патент (RU 2572988 «Способ получения фторида кальция из фторсодержащих растворов», МПК C01F 11/22, опубл. 20.01.2016 г.), который заключается в получении фторида кальция из фторсодержащих растворов после выщелачивания хвостов флотации угольной пены, включающий обработку хвостов флотации угольной пены в соотношении 1:(6-10) по отношению к раствору гидроксида натрия с 2-2,5% концентрацией, обработку ведут при температуре выщелачиваемого раствора 75-80°С, затем полученный фторсодержащий раствор обрабатывают гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция, при этом гидроокись кальция подают на обработку в соотношении (1,8-2,1):1 по отношению к содержанию фтора в растворе, и при температуре обрабатываемого фторсодержащего раствора 40-55°С, а после обработки полученный фторид кальция промывают водой при температуре 80-90°С в течение 20-40 минут.
Недостатком данного способа является то, что концентрация фторида натрия во фторсодержащем растворе после обработки хвостов флотации угольной пены раствором гидроксида натрия составляет около 9,5 г/л, что говорит о необходимости донасыщения фторсодержащего раствора до концентрации фторида натрия в нем 15 г/л для эффективного ведения процесса кристаллизации фторида кальция.
По назначению, по технической сущности, по наличию сходных признаков данное решение принято в качестве ближайшего аналога.
Раскрытие изобретения
Задачей предлагаемого технического решения является повышение технико-экономических показателей процесса регенерации фтора из техногенных фторуглеродсодержащих отходов электролизного производства алюминия и возвращение в технологический процесс в виде качественного востребованного продукта - фторида кальция, а также возможное использование других побочных продуктов предлагаемой технологической обработки.
Техническим результатом является получение качественного, востребованного в основном производстве продукта - фторида кальция, произведенного из твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия с содержанием фтора в твердой фазе от 12 до 25%, возможное практическое использование побочных продуктов, получаемых по предлагаемой технологии.
Технический результат достигается тем, что в способе получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства, включающем обработку фторсодержащих растворов гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция, который затем промывают водой, в качестве фторсодержащего раствора используют раствор, полученный путем выщелачивания твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия в виде шламов газоочистки, пыли электрофильтров и отработанной угольной футеровки, при этом фторуглеродсодержащие отходы подают на обработку в соотношении Т:Ж1:(10-11) по отношению к 2-2,5% раствору гидроксида натрия, обработку ведут при температуре выщелачиваемого раствора 65-85°С.
Фторсодержащий раствор после обработки гидроокисью кальция могут, обработав раствором гидроксида натрия, направить на рециркуляцию и использовать в процессе выщелачивания следующей партии фторуглеродсодержащих отходов.
Сравнение предлагаемого технического решения с решением по ближайшему аналогу показывает следующее.
Предлагаемое решение отличается от ближайшего аналога следующими признаками:
- в качестве фторсодержащего раствора используют раствор, полученный путем выщелачивания твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия в виде шламов газоочистки, пыли электрофильтров и угольной футеровки;
- фторуглеродсодержащие отходы подают на обработку в соотношении 1:(10-11) по отношению к 2-2,5% раствору гидроксида натрия.
Техническая сущность предлагаемого решения заключается в следующем.
При электролитическом производстве алюминия образуются значительные количества фторуглеродсодержащих отходов. Часть отходов перерабатывается на вспомогательных производствах алюминиевого завода. При этом различными способами из отходов извлекаются ценные компоненты, в основном фторсодержащие, которые в виде вторичных фтористых соединений (вторичного криолита) возвращаются в основное производство. Однако большая часть фторсодержащих отходов, даже после их переработки с получением вторичных фтористых продуктов, размещается на шламовых полях или полигонах промышленных отходов. Ценные компоненты, содержащиеся в данных отходах, такие как фтор и углерод, уходят в безвозвратные потери. При этом в силу высокой химической активности фтора, его реакционной и миграционной способности, длительное хранение токсичных фторсодержащих материалов в местах локального размещения может формировать техногенные модули загрязнения почв и грунтовых вод, что ухудшает экологическую ситуацию.
Предлагаемое техническое решение направлено на извлечение фтора из твердых мелкодисперсных фторуглеродсодержащих отходов, образующихся в процессе получения первичного алюминия электролизом криолит-глиноземного расплава, с последующим получением вторичного продукта-фторида кальция, который может быть использован в электролитическом производстве алюминия взамен поставляемого свежего сырья. Таким образом, появляются возможности снижения безвозвратных потерь ценных компонентов и повышения технико-экономических показателей электролитического производства алюминия за счет возвращения в процесс ценных компонентов и улучшения экологической ситуации.
Данные результаты достигаются тем, что твердые мелкодисперсные фторуглеродсодержащие отходы электролитического производства алюминия обрабатывают раствором гидроксида натрия, а полученный при таком выщелачивании фторсодержащий раствор дополнительно обрабатывают гидроокисью кальция.
Исследования дисперсного состава шламов газоочистки и пыли электрофильтров показали, что средний диаметр частиц в пробах варьируется в пределах от 7 мкм до 25 мкм. Дисперсный состав угольной футеровки после дробления в щековой мельнице колеблется от 6 до 20 мм.
Малые размеры частиц исходного материала способствуют эффективности обработки фторуглеродсодержащих отходов, в том числе и выщелачиванием. Кроме того, фторуглеродсодержащие материалы, представленные шламами газоочистки и пылью электрофильтров, не требуют предварительной подготовки перед использованием, что повышает технико-экономическую эффективность их переработки.
В зависимости от состава перерабатываемых по предлагаемой технологии твердых мелкодисперсных фторуглеродсодержащих отходов варьируются технологические параметры обработки.
Технологические параметры обработки выщелачиванием мелкодисперсных фторуглеродсодержащих отходов в виде шламов газоочистки, пыли электрофильтров и угольной футеровки отработаны экспериментально. Результаты обработки представлены в таблице 1.
Твердые мелкодисперсные фторуглеродсодержащие отходы подают на обработку в соотношении 1:(10-11) к раствору гидроксида натрия с 2-2,5% концентрацией, обработку ведут при температуре выщелачиваемого раствора 65-85°С.
Поддержание соотношения Ж:Т менее 10:1, т.е. раствора гидроксида натрия к фторуглеродсодержащим отходам, нецелесообразно, так как снижается эффективность обработки пульпы, затрудняется технологическая обработка, в то же время, при поддержании соотношении раствора гидроксида натрия более 11:1 к фторуглеродсодержащим отходам снижается производительность переработки отходов.
Обработка фторуглеродсодержащих отходов при температуре выщелачиваемого раствора менее 65°С неэффективна, поскольку снижается извлечение фтора во фторсодержащий раствор. В то же время, обработка при температуре выщелачиваемого раствора более 85°С нецелесообразна, так как повышаются энергетические затраты на обработку без существенного повышения извлечения фтора во фторсодержащий раствор.
Обработку раствора, полученного при таком выщелачивании твердых мелкодисперсных фторуглеродсодержащих отходов, гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция производят по отработанной ранее технологии в соответствии с временной технологической инструкцией на опытно-промышленной установке.
Результаты по получению вторичного фторида кальция по предлагаемой технологии представлены в таблицах 1, 2, 3, 4.
В предлагаемом техническом решении в качестве исходного фторсодержащего раствора используют не технологический раствор - осветленный раствор газоочистки электролитического производства алюминия, а раствор, полученный в результате выщелачивания твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия в виде шламов газоочистки, пыли электрофильтров и угольной футеровки. Это позволяет расширить технологические возможности технологии получения фторида кальция из фторсодержащего раствора, получаемого из маловостребованных отходов электролитического производства алюминия, также появляется возможность использования фторуглеродсодержащих отходов с содержанием фтора от 15 до 25% в виде пыли электрофильтров и шламов газоочистки, переработка которых методом флотации низкоэффективна. Возможно практическое использование получаемых побочных продуктов реализации предлагаемой технологии: фторсодержащий раствор, полученный после обработки фторуглеродсодержащих отходов гидроксидом натрия, обрабатывают раствором гидроокиси кальция и направляют на процесс извлечения фтора из фторуглеродсодержащих отходов, а углеродистый осадок после выщелачивания фторуглеродсодержащих отходов и фильтрации может быть направлен на переработку с последующим использованием полученного материала. Таким образом, использование предлагаемой технологии позволяет полностью утилизировать твердые мелкодисперсные фторуглеродсодержащие отходы электролитического производства алюминия с получением основного продукта - фторида кальция - востребованного в основном производстве, и побочных продуктов, реализация которых также технически и экономически целесообразна.
Осуществление изобретения
Выщелачивание фторуглеродсодержащих отходов проводилось в термостойком стеклянном стакане емкостью 400 мл при постоянном перемешивании с помощью механической мешалки. В нагретый до температуры 65-85°С щелочной реагент (NaOH) с 2-2,5% концентрацией помещалась навеска фторуглеродсодержащего материала массой 40 г в соотношении Ж:Т=(10-11):1. Одним из главных условий проведения процесса выщелачивания - поддерживание пульпы во взвешенном состоянии, т.е. число оборотов подбиралось каждый раз так, чтобы не допустить осаждения твердых фторуглеродсодержащих частиц. Отбор проб объемом 50 мл проводился через 15, 30, 40 и 60 минут. После выщелачивания пульпа фильтровалась через бумажный фильтр «синяя лента». Отфильтрованный раствор анализировался на содержание фтора.
Условия эксперимента: температура процесса - 65-85°С, общее время выщелачивания - 60 минут, отношение Ж:Т=(10-11):1.
Результаты обработки представлены в таблице 1.
Figure 00000001
В таблице 2 приведен состав осадка после выщелачивания фтора из фторуглеродсодержащих отходов электролизного производства алюминия раствором гидроксида натрия с 2-2,5% концентрацией.
Figure 00000002
Основным сырьем фторида кальция является гашеная известь и раствор, полученный после выщелачивания фторуглеродсодержащих отходов. Состав используемой извести приведен в таблице 3.
Figure 00000003
Расчет количества Са(ОН)2 и объем осветленного раствора, направленного в процесс кристаллизации CaF2, осуществляли следующим образом.
1. Исходные данные:
5:1 - соотношение (Ж:Т) жидкой фазы к твердой в пульпе Са(ОН)2;
19, 40 - атомн. вес F, Са соответственно;
42, 74, 78 - молекул, вес NaF, Са(ОН)2, CaF2;
СF - концентрация F в осветленном р-ре, кг/м3;
CNaF - концентрация NaF в осветленном р-ре, кг/м3;
2. Химизм процесса:
NaF+Са(ОН)2=CaF2+2NaOH - реакция кристаллизации
3. Расчет:
QF=CNaF*19/42=0,452*CNaF, кг/м3
По реакции кристаллизации определяем количество Са, необходимое для связывания F:
2F - Са
2*19-40
QF - QCa
QCa=QF*40/38=1,053*QF кг/м3 Са
Определяем количество Са(ОН)2:
Са - Са(ОН)2
48 - 78
1,053*QF QCa(OH)2
QCa(OH)2=1,053*QF*78/40=2,053*QF, кг/м3
Определяем суммарный расход Са(ОН)2 на заданный объем раствора:
Qобщ Са(ОН)2=QСа(OH)2*V/1000, т на заданный объем р-ра.
Гашеная известь взвешивалась на электронных весах и загружалась в емкость, куда подавалась теплая вода объемом в 5 раз больше веса загруженной извести при постоянной работе мешалки. Перемешивание известкового молочка длилось в течение 1 часа.
В эту же емкость подавали раствор после выщелачивания шламов газоочистки, пыли электрофильтров и угольной футеровки до отметки рабочего уровня. Температура раствора поддерживалась на уровне 65-85°С. Процесс кристаллизации фторида кальция проводился в течение 60 минут, при непрерывном перемешивании. Полученная пульпа фторида кальция фильтровалась.
Высушенный фторид кальция можно смешивать с флотокриолитом, камерным насосом транспортировать в бункер готовой продукции и отгружать в электролизное производство.
В таблице 4 приведен химический состав фторида кальция, полученного в результате химической реакции фторсодобикарбонатного раствора газоочистки с гашеной известью по технологии согласно данному способу.
Figure 00000004
Результаты отработки технологических параметров по выщелачиванию твердых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия, результаты обработки полученного раствора на опытно-промышленной установке гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция и промывки продукта водой подтверждают технико-экономическую эффективность предлагаемой технологии.
Использование предлагаемой технологии позволяет практически полностью утилизировать фторуглеродсодержащие отходы электролитического производства алюминия, в том числе с незначительным содержанием остаточного фтора, с получением основного продукта - фторида кальция - востребованного в основном производстве и возможностью реализации побочных продуктов: углеродистый осадок после выщелачивания фторуглеродсодержащих отходов и фильтрации - на производство углеродистых топливных брикетов, а раствор, полученный после обработки фторуглеродсодержащих отходов раствором гидроксида натрия и обработки раствором гидроокиси кальция направлять на процесс извлечения фтора из фторуглеродсодержащих отходов.

Claims (2)

1. Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства, включающий обработку фторсодержащих растворов гидроокисью кальция с последующим разделением осветленного раствора и пульпы и выделением фторида кальция, который затем промывают водой, отличающийся тем, что в качестве фторсодержащего раствора используют раствор, полученный путем выщелачивания твёрдых мелкодисперсных фторуглеродсодержащих отходов электролитического производства алюминия - шламов газоочистки, пыли электрофильтров и отработанной угольной футеровки, при соотношении Т:Ж=1:(10-11) по отношению к 2-2,5% раствору гидроксида натрия при температуре выщелачиваемого раствора 65-85°C.
2. Способ по п. 1, отличающийся тем, что фторсодержащий раствор после обработки гидроокисью кальция обрабатывают раствором гидроксида натрия, направляют на циркуляцию и используют в процессе выщелачивания следующей партии фторуглеродсодержащих отходов.
RU2016126573A 2016-07-01 2016-07-01 Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства RU2627431C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016126573A RU2627431C1 (ru) 2016-07-01 2016-07-01 Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016126573A RU2627431C1 (ru) 2016-07-01 2016-07-01 Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства

Publications (1)

Publication Number Publication Date
RU2627431C1 true RU2627431C1 (ru) 2017-08-08

Family

ID=59632498

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016126573A RU2627431C1 (ru) 2016-07-01 2016-07-01 Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства

Country Status (1)

Country Link
RU (1) RU2627431C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357126A (zh) * 2019-08-23 2019-10-22 中国恩菲工程技术有限公司 含氟熔盐电解渣的回收方法
CN115465877A (zh) * 2022-10-27 2022-12-13 云南云铝润鑫铝业有限公司 电解铝大修渣协同脱硫石膏制备氟化钙的方法及其用途
RU2814124C1 (ru) * 2023-05-25 2024-02-22 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ переработки натрий-фтор-углеродсодержащих отходов электролитического производства алюминия

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2029731C1 (ru) * 1992-07-06 1995-02-27 Научно-исследовательский и проектный институт химической промышленности Способ получения фторида кальция
RU2030486C1 (ru) * 1992-12-29 1995-03-10 Московский институт стали и сплавов Способ регенерации фтора из электролизных газов алюминиевого производства
US5470559A (en) * 1993-02-26 1995-11-28 Alcan International Limited Recycling of spent pot linings
RU2572988C1 (ru) * 2014-11-10 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный иследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Способ получения фторида кальция из фторсодержащих растворов
RU2574256C1 (ru) * 2014-06-26 2016-02-10 Общество с ограниченной ответственностью "ЛУКОЙЛ-Нижегороднефтеоргсинтез" (ООО ЛУКОЙЛ-Нижегороднефтеоргсинтез) Способ получения фторида кальция

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2029731C1 (ru) * 1992-07-06 1995-02-27 Научно-исследовательский и проектный институт химической промышленности Способ получения фторида кальция
RU2030486C1 (ru) * 1992-12-29 1995-03-10 Московский институт стали и сплавов Способ регенерации фтора из электролизных газов алюминиевого производства
US5470559A (en) * 1993-02-26 1995-11-28 Alcan International Limited Recycling of spent pot linings
RU2574256C1 (ru) * 2014-06-26 2016-02-10 Общество с ограниченной ответственностью "ЛУКОЙЛ-Нижегороднефтеоргсинтез" (ООО ЛУКОЙЛ-Нижегороднефтеоргсинтез) Способ получения фторида кальция
RU2572988C1 (ru) * 2014-11-10 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный иследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Способ получения фторида кальция из фторсодержащих растворов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357126A (zh) * 2019-08-23 2019-10-22 中国恩菲工程技术有限公司 含氟熔盐电解渣的回收方法
CN115465877A (zh) * 2022-10-27 2022-12-13 云南云铝润鑫铝业有限公司 电解铝大修渣协同脱硫石膏制备氟化钙的方法及其用途
RU2814124C1 (ru) * 2023-05-25 2024-02-22 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ переработки натрий-фтор-углеродсодержащих отходов электролитического производства алюминия
RU2816485C1 (ru) * 2023-07-11 2024-04-01 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ получения синтетического флюорита и раствора каустической соды

Similar Documents

Publication Publication Date Title
US9255011B2 (en) Method for producing lithium carbonate
RU2633579C2 (ru) Способы обработки летучей золы
US4444740A (en) Method for the recovery of fluorides from spent aluminum potlining and the production of an environmentally safe waste residue
US3525675A (en) Desalination distillation using barium carbonate as descaling agent
US6143260A (en) Method for removing magnesium from brine to yield lithium carbonate
CN111348669B (zh) 一种六氟铝酸钠的制备方法
WO2014078908A1 (en) Process for recovering lithium from a brine with reagent regeneration and low cost process for purifying lithium
EP0134530A2 (en) A process for removing mineral inpurities from coals and oil shales
KR20220131519A (ko) 알루미나 및 리튬염을 생산하는 방법
RU2462418C1 (ru) Способ получения фтористого алюминия
CZ296292B6 (cs) Zpusob výroby cesné soli
CN106277005B (zh) 一种从氟化钙污泥资源中回收冰晶石、碳酸钙和硫酸钠的方法
CN107344725A (zh) 硫酸直浸法提取锂矿石中锂元素的制备工艺
US7041268B2 (en) Process for recovery of sulphate of potash
RU2627431C1 (ru) Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства
RU2720313C2 (ru) Способ получения фторида кальция из фторкремниевой кислоты
CN102328947B (zh) 一种回收锶渣的方法
CN109694092A (zh) 一种含氯固废的综合治理方法
CN105819415B (zh) 一种盐酸制取饲料磷酸氢钙的磷矿全资源利用的生产方法
US2714053A (en) Process for the recovery of cryolite from the carbon bottoms of fusion electrolysis cells
RU2429198C1 (ru) Способ переработки твердых фторуглеродсодержащих отходов электролитического производства алюминия
RU2572988C1 (ru) Способ получения фторида кальция из фторсодержащих растворов
JPS58151303A (ja) 次亜塩素酸カルシウムの製法
CN113697834B (zh) 提钛渣制备弗里德尔盐的方法和弗里德尔盐
RU2617398C1 (ru) Способ переработки отработанного бифторида калия