RU2626407C1 - Способ радиолокационного обзора - Google Patents

Способ радиолокационного обзора Download PDF

Info

Publication number
RU2626407C1
RU2626407C1 RU2016117842A RU2016117842A RU2626407C1 RU 2626407 C1 RU2626407 C1 RU 2626407C1 RU 2016117842 A RU2016117842 A RU 2016117842A RU 2016117842 A RU2016117842 A RU 2016117842A RU 2626407 C1 RU2626407 C1 RU 2626407C1
Authority
RU
Russia
Prior art keywords
elevation angle
viewing
period
zone
viewing area
Prior art date
Application number
RU2016117842A
Other languages
English (en)
Inventor
Валентин Иванович Кисляков
Сергей Назарович Лужных
Original Assignee
Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК") filed Critical Акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (АО "НПО НИИИП-НЗиК")
Priority to RU2016117842A priority Critical patent/RU2626407C1/ru
Application granted granted Critical
Publication of RU2626407C1 publication Critical patent/RU2626407C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к области радиолокации и может быть использовано при радиолокационном обзоре заданной зоны с помощью мобильных радиолокационных станций кругового обзора с антенной в виде одномерной фазированной антенной решетки с электронным управлением лучом по углу места и механическим вращением по азимуту. Достигаемый технический результат - уменьшение затрат временных и энергетических ресурсов на осмотр области зоны обзора с большими углами места при сохранении обнаружения целей и сопровождения их траекторий в этой области. Указанный результат достигается за счет того, что заданную зону обзора по азимуту делят на азимутальные сектора с постоянными границами, в каждом из которых независимо от других секторов осуществляют осмотр одной из двух частей зоны обзора, которые рассчитывают частично перекрывающимися в плоскости дальность - угол места, в каждом азимутальном секторе текущего периода обзора осуществляют выбор части зоны обзора для осмотра этого азимутального сектора на следующем периоде обзора в зависимости от положения сопровождаемых траекторий целей. 5 ил.

Description

Изобретение относится к области радиолокации и может быть использовано при радиолокационном обзоре заданной зоны с помощью мобильной радиолокационной станции (РЛС) кругового обзора с антенной в виде одномерной фазированной антенной решетки (ФАР) с электронным управлением лучом по углу места и механическим вращением по азимуту.
Известен способ радиолокационного обзора заданной зоны с помощью РЛС кругового обзора (Фарина А., Студер Ф. Цифровая обработка радиолокационной информации. Сопровождение целей. - М.: Радио и связь, 1993, с. 26-28).
К зоне обзора и периоду ее осмотра предъявляются противоречивые требования - для обнаружения целей и сопровождения их траектории в широком диапазоне высот и дальностей зона обзора она должна иметь достаточно большие размеры по углу места и по дальности, для сопровождения траекторий целей с высокой точностью период осмотра зоны обзора должен быть достаточно мал. В связи с этим выбор указанных параметров всегда является результатом компромисса, который приводит к определенным ухудшения тактико-технических характеристик РЛС. Это является недостатком известного способа.
Наиболее близкий способ радиолокационного обзора с помощью мобильной РЛС кругового обзора с антенной в виде одномерной ФАР с электронным управлением лучом по углу места и механическим вращением по азимуту включает осмотр на каждом периоде обзора одной из двух частей зоны обзора, на которые в координатах дальность - угол места делят заданную зону обзора, обнаружение целей и сопровождение траекторий целей (патент РФ №2345380).
Наиболее близкий способ основан на двухвитковом обзоре, при котором зону обзора в координатах дальность - угол места делят на две части (фиг. 1, части №1 и №2), поочередно осматриваемые на двух последовательных оборотах (витках) антенны. Вся заданная зона осматривается за период обзора (два оборота антенны).
В наиболее близком способе на каждом периоде обзора регулярно осматривается одна и та же зона. В области зоны обзора с большими углами места цели появляются относительно редко, поэтому затраты временных и энергетических ресурсов на обнаружение целей и сопровождение их траекторий в этих областях часто оказываются излишними. Это является недостатком известного способа.
Решаемой задачей (техническим результатом), таким образом, является уменьшение затрат временных и энергетических ресурсов на осмотр области зоны обзора с большими углами места при сохранении обнаружения целей и сопровождения их траекторий в этой области.
Указанный результат достигается тем, что в способе радиолокационного обзора с помощью мобильной радиолокационной станции кругового обзора с антенной в виде одномерной фазированной антенной решетки с электронным управлением лучом по углу места и механическим вращением по азимуту, включающем осмотр на каждом периоде обзора одной из двух частей зоны обзора, на которые в координатах дальность - угол места делят заданную зону обзора, обнаружение целей и сопровождение траекторий целей, согласно изобретению заданную зону обзора по азимуту заранее делят на азимутальные сектора с постоянными границами, в каждом из которых независимо от других секторов осуществляют упомянутый осмотр одной из двух частей зоны обзора, указанные части зоны обзора заранее рассчитывают частично перекрывающимися в плоскости дальность - угол места, для чего нижние границы по углу места обеих частей зоны устанавливают совпадающими с нижней границей по углу места заданной зоны обзора, верхнюю границу по углу места части зоны обзора с большим углом места устанавливают совпадающей с верхней границей по углу места заданной зоны обзора, в каждом азимутальном секторе текущего периода обзора осуществляют выбор части зоны обзора для осмотра этого азимутального сектора на следующем периоде обзора в зависимости от положения сопровождаемых траекторий целей следующим образом:
- если при осмотре части зоны обзора с меньшим углом места в азимутальном секторе текущего периода обзора координаты хотя бы одной сопровождаемой траектории цели, экстраполированные на следующий период обзора, попадают в неперекрывающуюся по углу места область части зоны с большим углом места, то в этом азимутальном секторе на следующем периоде обзора переходят к осмотру части зоны обзора с большим углом места,
- если при осмотре части зоны обзора с большим углом места в азимутальном секторе текущего периода обзора нет ни одной обнаруженной цели или сопровождаемой траектории цели, координаты которой, экстраполированные на следующий период обзора, попадают в неперекрывающуюся по углу места область этой зоны, то в этом азимутальном секторе на следующем периоде обзора переходят к осмотру части зоны обзора с меньшим углом места.
Суть заявляемого способа заключается в следующем.
В заявляемом способе при осмотре заданной зоны обзора используется одна из двух заранее рассчитанных частей зоны обзора, отличающихся размерами по углу места и дальности (фиг. 2 - фиг. 4). Одна часть зоны обзора (обозначим ее часть №1) имеет меньший размер по углу места, а по дальности - полностью или частично (обычно в нижних положениях луча) обеспечивает заданную зону. Другая часть зоны обзора (обозначим ее часть №2) обеспечивает заданную зону по углу места, но имеет меньшую (обычно в верхних положениях луча) дальность. Нижние границы по углу места обеих указанных частей зоны совпадают с нижней границей по углу места заданной зоны обзора.
Всю заданную зону обзора по азимуту делят на азимутальные сектора. Границы азимутальных секторов задают постоянными. Азимутальных секторов может быть установлено, например, 12 (по 30° каждый). Осматриваемую часть зоны обзора в каждом азимутальном секторе выбирают независимо от других азимутальных секторов и таким образом обеспечивают гибкость в выборе параметров зоны обзора в изменяющейся по пространству радиолокационной обстановке.
В процессе работы РЛС в каждом азимутальном секторе на текущем периоде обзора выбирают одну из двух указанных частей зоны обзора для осмотра этого сектора на следующем периоде обзора. Выбор осуществляют в зависимости от положения сопровождаемых траекторий целей следующим образом:
- если при осмотре части зоны обзора с меньшим углом места (части №1 зоны обзора) в азимутальном секторе на текущем обзоре координаты хотя бы одной сопровождаемой траектории цели, экстраполированные на следующий обзор, попадают в неперекрывающуюся по углу места область части зоны с бóльшим углом места (область части №2), то в этом азимутальном секторе на следующем обзоре переходят к осмотру части зоны обзора с большим углом места (части №2),
- если при осмотре части зоны обзора с большим углом места (части №2 зоны обзора) в азимутальном секторе на текущем обзоре нет ни одной обнаруженной цели или сопровождаемой траектории цели, координаты которой, экстраполированные на следующий обзор, попадают в неперекрывающуюся по углу места область этой зоны (область части №2), то в этом азимутальном секторе на следующем обзоре переходят к осмотру части зоны обзора с меньшим углом места (части №1).
Выбор между двумя указанными частями зоны обзора в зависимости от наличия сопровождаемых целей в неперекрывающейся по углу места области части №2 зоны обзора позволяет более рационально использовать временные и энергетические ресурсы РЛС. Так, поскольку в неперекрывающейся по углу места области части №2 зоны обзора цели появляются относительно редко, то при осмотре зоны обзора чаще всего применяется часть №1, обеспечивающая большую дальность обнаружения целей и сопровождения их траекторий при меньших углах места. Таким образом, в заявляемом техническом решении за счет изменения конфигурации зоны обзора в зависимости от положения сопровождаемых траекторий целей достигается уменьшение временных и энергетических затрат на осмотр области зоны обзора с большими углами места при сохранении обнаружения целей и сопровождения их траекторий в этой области, то есть достигается заявляемый технический результат.
Изобретение иллюстрируется следующими чертежами.
Фиг. 1 - зона обзора и ее части в наиболее близком способе.
Фиг. 2 - 4 - примеры зон обзора и их частей.
Фиг. 5 - блок-схема РЛС, реализующей заявляемый способ.
РЛС, реализующая заявляемый способ (фиг. 5), содержит антенну 1, устройство управления лучом 2, выход которого соединен с управляющим входом антенны 1, последовательно соединенные передатчик 3, антенный переключатель 4, приемник 5 и вычислитель 6, выполняющий операции сопровождения траекторий целей, выбор части зоны обзора, вычисления параметров траекторий целей, первый выход которого является выходом РЛС, а также синхронизатор 7, при этом сигнальный вход/выход антенны 1 соединен с входом/выходом антенного переключателя 4, а координатный ее выход - со вторым входом вычислителя 6, второй и четвертый выходы вычислителя 6 соединены соответственно с первым входом устройства управления лучом 2 и вторым входом передатчика 3, выходы с первого по четвертый синхронизаторов 7 соединены соответственно со вторым входом устройства управления лучом 2, первым входом передатчика 3, вторым входом приемника 5 и с третьим входом вычислителя 6.
РЛС может быть выполнена с использованием следующих функциональных элементов.
Антенна 1 - одномерная ФАР с электронным управлением лучом по углу места и механическим вращением по азимуту (Справочник по радиолокации. Под ред. М. Сколника, т. 2. - М.: Сов. радио, 1977, с. 138).
Устройство управления лучом 2 - цифровой вычислитель, реализующий известный алгоритм расчета распределения состояний фазовращателей в полотне ФАР и формирования луча в заданном направлении по углу места (Справочник по радиолокации. Под ред. М. Сколника, т. 2. - М.: Сов. радио, 1977, с. 141-143).
Передатчик 3 - многокаскадный импульсный передатчик на клистроне (A.M. Педак и др. Справочник по основам радиолокационной техники. Под редакцией В.В. Дружинина. - М.: Военное издательство МО, 1967, с. 278-279, рис. 7.2).
Антенный переключатель 4 - балансный антенный переключатель на базе циркулятора (A.M. Педак и др. Справочник по основам радиолокационной техники. Под редакцией В.В. Дружинина. - М.: Военное издательство МО, 1967, с. 166-168).
Приемник 5 - супергетеродинный приемник (A.M. Педак и др. Справочник по основам радиолокационной техники. Под редакцией В.В. Дружинина. - М.: Военное издательство МО, 1967, с. 343-344, рис. 8.1).
Вычислитель 6 - цифровой вычислитель. Реализуются операции известного алгоритма сопровождения траектории цели (Кузьмин С.З. Основы теории цифровой обработки радиолокационной информации. - М.: Сов. радио, 1974, с. 285-287). На основании анализа сопровождаемых траекторий целей в каждом азимутальном секторе осуществляется выбор части зоны обзора для осмотра на следующем обзоре.
Синхронизатор 7 выполнен на основе задающего генератора и последовательно соединенной с ним цепочки делителей частоты (Радиолокационные устройства (теория и принципы построения). Под ред. В.В. Григорина-Рябова. - М.: Сов. радио, 1970, с. 602-603).
Рассмотрим работу РЛС, реализующей заявляемый способ (фиг. 5).
При включении РЛС осмотр зоны обзора может начинаться с любой ее части. Пусть он начинается, например, с части №1 (фиг. 2 - фиг. 4). Перемещение луча РЛС при этом осуществляется в соответствие с программой, записанной в памяти вычислителя 6. Программой определяются параметры обзора, включающие размеры части зоны обзора, ширину луча по азимуту и углу места, шаг перемещения луча. Соответствующие команды со второго выхода вычислителя 6 поступают на первый вход устройства управления лучом 2. По сигналам этого устройства осуществляется электронное перемещение луча антенны 1 по углу места в пределах назначенной части зоны обзора. Тип излучаемого зондирующего сигнала задается командой, поступающей на второй вход передатчика 3 с четвертого выхода вычислителя 6.
На первый вход передатчика 3 со второго выхода синхронизатора 7 поступают импульсы запуска, обеспечивающие излучение зондирующих сигналов в заданные моменты времени обзора зоны.
Синхронизатор 7 обеспечивает согласованную работу всех устройств путем выдачи соответствующих синхроимпульсов.
Отраженный от цели сигнал, принятый с помощью антенны 1, через антенный переключатель 4 поступает в приемник 5, где преобразуется на промежуточную частоту, фильтруется, усиливается и подается на первый вход вычислителя 6. На второй вход вычислителя 6 с координатного выхода антенны 1 поступают координаты луча антенны. В вычислителе 6 принятый сигнал сравнивается с порогом обнаружения, при превышении которого принимается решение об обнаружении цели. Одновременно с излучением зондирующего сигнала с четвертого выхода синхронизатора 7 на третий вход вычислителя 6 подается сигнал, от которого отсчитывается величина задержки зондирующего сигнала, отраженного от цели, и по известным формулам (Теоретические основы радиолокации. Под ред. Я.Д. Ширмана. - М.: Сов. Радио, 1970, с. 221) определяется дальность до цели.
Параметры траекторий сопровождаемых целей определяются в вычислителе 6 в соответствие с известными алгоритмами (Кузьмин С.З. Основы теории цифровой обработки радиолокационной информации. - М.: Сов. радио, 1974, с. 285-287). Параметры траекторий целей с первого выхода вычислителя 6 выдаются потребителю радиолокационной информации.
В каждом азимутальном секторе на каждом обзоре осуществляется экстраполяция параметров траектории (там же, с. 229-236).
Если в процессе осмотра части №1 зоны обзора в азимутальном секторе на текущем обзоре координаты хотя бы одной сопровождаемой траектории цели, экстраполированные на следующий обзор, попадают в неперекрывающуюся по углу места область части №2 зоны, то формируется признак, по которому на следующем обзоре в этом азимутальном секторе переходят к осмотру части №2 зоны обзора.
Если в процессе осмотра части №2 зоны обзора в азимутальном секторе на текущем обзоре нет ни одной обнаруженной цели или сопровождаемой траектории цели, координаты которой, экстраполированные на следующий обзор, попадают в неперекрывающуюся по углу места область этой зоны, то формируется признак, по которому в этом азимутальном секторе на следующем обзоре переходят к осмотру части №1 зоны обзора.
Таким образом, в РЛС, реализующей заявляемый способ, достигается уменьшение затрат временных и энергетических ресурсов на осмотр области зоны обзора с большими углами места при сохранении обнаружения целей и сопровождения их траекторий в этой области, то есть достигается заявляемый технический результат.

Claims (3)

  1. Способ радиолокационного обзора с помощью мобильной радиолокационной станции кругового обзора с антенной в виде одномерной фазированной антенной решетки с электронным управлением лучом по углу места и механическим вращением по азимуту, включающий осмотр на каждом периоде обзора одной из двух частей зоны обзора, на которые в координатах дальность - угол места делят заданную зону обзора, обнаружение целей и сопровождение траекторий целей, отличающийся тем, что заданную зону обзора по азимуту заранее делят на азимутальные сектора с постоянными границами, в каждом из которых независимо от других секторов осуществляют упомянутый осмотр одной из двух частей зоны обзора, указанные части зоны обзора заранее рассчитывают частично перекрывающимися в плоскости дальность - угол места, для чего нижние границы по углу места обеих частей зоны устанавливают совпадающими с нижней границей по углу места заданной зоны обзора, верхнюю границу по углу места части зоны обзора с большим углом места устанавливают совпадающей с верхней границей по углу места заданной зоны обзора, в каждом азимутальном секторе текущего периода обзора осуществляют выбор части зоны обзора для осмотра этого азимутального сектора на следующем периоде обзора в зависимости от положения сопровождаемых траекторий целей следующим образом:
  2. - если при осмотре части зоны обзора с меньшим углом места в азимутальном секторе текущего периода обзора координаты хотя бы одной сопровождаемой траектории цели, экстраполированные на следующий период обзора, попадают в неперекрывающуюся по углу места область части зоны с большим углом места, то в этом азимутальном секторе на следующем периоде обзора переходят к осмотру части зоны обзора с большим углом места,
  3. - если при осмотре части зоны обзора с большим углом места в азимутальном секторе текущего периода обзора нет ни одной обнаруженной цели или сопровождаемой траектории цели, координаты которой, экстраполированные на следующий период обзора, попадают в неперекрывающуюся по углу места область этой зоны, то в этом азимутальном секторе на следующем периоде обзора переходят к осмотру части зоны обзора с меньшим углом места.
RU2016117842A 2016-05-04 2016-05-04 Способ радиолокационного обзора RU2626407C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016117842A RU2626407C1 (ru) 2016-05-04 2016-05-04 Способ радиолокационного обзора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016117842A RU2626407C1 (ru) 2016-05-04 2016-05-04 Способ радиолокационного обзора

Publications (1)

Publication Number Publication Date
RU2626407C1 true RU2626407C1 (ru) 2017-07-27

Family

ID=59495714

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016117842A RU2626407C1 (ru) 2016-05-04 2016-05-04 Способ радиолокационного обзора

Country Status (1)

Country Link
RU (1) RU2626407C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2794466C1 (ru) * 2022-06-02 2023-04-19 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзора воздушного пространства импульсно-доплеровской радиолокационной станцией с активной фазированной антенной решеткой

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410563A2 (en) * 1989-05-31 1991-01-30 Nec Corporation Pulse compressing apparatus for a radar system using a long pulse
US7071868B2 (en) * 2000-08-16 2006-07-04 Raytheon Company Radar detection method and apparatus
US7336219B1 (en) * 2005-12-30 2008-02-26 Valeo Raytheon Systems, Inc. System and method for generating a radar detection threshold
RU2345380C1 (ru) * 2007-06-13 2009-01-27 Открытое Акционерное Общество "Научно-Исследовательский Институт Измерительных Приборов" /Оао "Нииип"/ Способ осмотра зоны обзора и радиолокационная станция для его реализации
RU2346291C2 (ru) * 2007-04-02 2009-02-10 Федеральное Государственное Унитарное Предприятие "Нижегородский Научно-Исследовательский Институт Радиотехники" Многодиапазонный радиолокационный комплекс
JP2009250925A (ja) * 2008-04-10 2009-10-29 Mitsubishi Electric Corp レーダ信号処理装置
RU2546999C1 (ru) * 2014-04-04 2015-04-10 Закрытое акционерное общество "АЭРО-КОСМИЧЕСКИЕ ТЕХНОЛОГИИ" Короткоимпульсный радиолокатор с электронным сканированием в двух плоскостях и с высокоточным измерением координат и скорости объектов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410563A2 (en) * 1989-05-31 1991-01-30 Nec Corporation Pulse compressing apparatus for a radar system using a long pulse
US7071868B2 (en) * 2000-08-16 2006-07-04 Raytheon Company Radar detection method and apparatus
US7336219B1 (en) * 2005-12-30 2008-02-26 Valeo Raytheon Systems, Inc. System and method for generating a radar detection threshold
RU2346291C2 (ru) * 2007-04-02 2009-02-10 Федеральное Государственное Унитарное Предприятие "Нижегородский Научно-Исследовательский Институт Радиотехники" Многодиапазонный радиолокационный комплекс
RU2345380C1 (ru) * 2007-06-13 2009-01-27 Открытое Акционерное Общество "Научно-Исследовательский Институт Измерительных Приборов" /Оао "Нииип"/ Способ осмотра зоны обзора и радиолокационная станция для его реализации
JP2009250925A (ja) * 2008-04-10 2009-10-29 Mitsubishi Electric Corp レーダ信号処理装置
RU2546999C1 (ru) * 2014-04-04 2015-04-10 Закрытое акционерное общество "АЭРО-КОСМИЧЕСКИЕ ТЕХНОЛОГИИ" Короткоимпульсный радиолокатор с электронным сканированием в двух плоскостях и с высокоточным измерением координат и скорости объектов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2794466C1 (ru) * 2022-06-02 2023-04-19 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзора воздушного пространства импульсно-доплеровской радиолокационной станцией с активной фазированной антенной решеткой

Similar Documents

Publication Publication Date Title
RU2478981C2 (ru) Способ радиолокационного обзора пространства
JP6430215B2 (ja) レーダシステム及びそのレーダ信号処理方法
JP2016217976A (ja) レーダシステム及びレーダ信号処理方法
RU2546999C1 (ru) Короткоимпульсный радиолокатор с электронным сканированием в двух плоскостях и с высокоточным измерением координат и скорости объектов
RU2315332C1 (ru) Радиолокационная станция
RU2402034C1 (ru) Радиолокационный способ определения углового положения цели и устройство для его реализации
RU2345380C1 (ru) Способ осмотра зоны обзора и радиолокационная станция для его реализации
RU2626407C1 (ru) Способ радиолокационного обзора
RU2541504C1 (ru) Устройство селекции движущихся целей для режима перестройки частоты от импульса к импульсу
RU2304789C1 (ru) Способ радиолокационного сопровождения траектории объекта
RU2408028C1 (ru) Способ обзора зоны радиолокационной станции
RU2298805C2 (ru) Способ определения координат источника радиоизлучения (варианты) и радиолокационная станция для его реализации
RU2316021C2 (ru) Многоканальная радиолокационная система летательного аппарата
RU2611434C1 (ru) Способ радиолокационного обзора пространства
US3392387A (en) Clutter attenuation radar
RU2610833C1 (ru) Способ обзора пространства
RU2463622C1 (ru) Способ сопровождения траектории цели
RU2009109375A (ru) Способ зондирования контролируемого пространства радиолокационной системой с фазированной антенной решеткой
RU95860U1 (ru) Радиолокационный модуль
RU2708371C1 (ru) Способ обзора воздушного пространства радиолокационной станцией с активной фазированной антенной решеткой
RU2403589C1 (ru) Способ защиты обзорной радиолокационной станции от пассивных помех в виде отражений от земной поверхности и радиолокационная станция для его реализации
RU2666763C1 (ru) Способ обзора пространства
RU2292563C2 (ru) Способ обнаружения и сопровождения траектории объекта и обзорная радиолокационная станция для его реализации
RU2428710C1 (ru) Способ защиты обзорной радиолокационной станции от помех
JP2005062058A (ja) 捜索レーダ装置

Legal Events

Date Code Title Description
QA4A Patent open for licensing

Effective date: 20180130