RU2626194C1 - Эталон для калибровки оптических приборов - Google Patents

Эталон для калибровки оптических приборов Download PDF

Info

Publication number
RU2626194C1
RU2626194C1 RU2016115575A RU2016115575A RU2626194C1 RU 2626194 C1 RU2626194 C1 RU 2626194C1 RU 2016115575 A RU2016115575 A RU 2016115575A RU 2016115575 A RU2016115575 A RU 2016115575A RU 2626194 C1 RU2626194 C1 RU 2626194C1
Authority
RU
Russia
Prior art keywords
electrodes
voltage source
elements
voltage
piezoelectric material
Prior art date
Application number
RU2016115575A
Other languages
English (en)
Inventor
Владимир Александрович Жаботинский
Петр Николаевич Лускинович
Сергей Александрович Максимов
Original Assignee
Владимир Александрович Жаботинский
Петр Николаевич Лускинович
Сергей Александрович Максимов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Александрович Жаботинский, Петр Николаевич Лускинович, Сергей Александрович Максимов filed Critical Владимир Александрович Жаботинский
Priority to RU2016115575A priority Critical patent/RU2626194C1/ru
Application granted granted Critical
Publication of RU2626194C1 publication Critical patent/RU2626194C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

Использование: для определения перемещений и линейных размеров объектов в нанометровом диапазоне и для калибровки конфокальных микроскопов и оптических интерферометров. Сущность изобретения заключается в том, что эталон для калибровки оптических приборов содержит размещенный на основании элемент из пьезоэлектрического материала с обратным пьезоэффектом с малым гистерезисом с нанесенными на две его противоположные стороны электродами, подключенными к источнику напряжения, и дополнен вторым идентичным элементом из пьезоэлектрического материала с нанесенными на две его противоположные стороны электродами, также подключенными к источнику напряжения, при этом элементы соединены между собой поверхностями с нанесенными электродами с образованием общего центрального электрода и подключены к источнику напряжения так, что внешние электроды полученной сборки заземлены, а элементы выполнены так, что при подаче управляющего напряжения на электроды происходит одновременная однонаправленная относительно основания деформация обоих элементов. Технический результат: обеспечение возможности повышения точности калибровки. 2 з.п. ф-лы, 4 ил.

Description

Изобретение относится к области точного приборостроения и может быть использовано в качестве эталона для определения перемещений и линейных размеров объектов в нанометровом диапазоне и для калибровки конфокальных микроскопов и оптических интерферометров.
Известно устройство для прецизионных перемещений, позволяющее обеспечивать линейное смещение в нанометровом диапазоне (US 4787148). Известное устройство по своей сущности является усовершенствованием известного микрометра, снабженного двухступенчатым механическим редуктором с соответствующим передаточным числом.
Недостатком известного устройства является относительно невысокая точность задаваемого смещения и невысокая воспроизводимость результатов, что присуще любому механизму, имеющему подвижные узлы и детали.
Известно эталонное устройство, которое используется для тестирования профилометров и сканирующих зондовых микроскопов. Устройство представляет собой монокристаллическую пластину, в которой методами микроэлектронных технологий выполнены ступенчатые углубления с одинаковой фиксированной высотой каждой из ступеней (US 6028008).
Передача линейного размера с помощью такого устройства может производиться только при проведении многократных измерений в различных областях поверхности и с последующей математической обработкой результатов измерений.
Этому устройству присущи определенные недостатки. С помощью него можно измерять линейные смещения только в одном направлении - в глубину. Кроме того, поскольку для изготовления используется метод травления, то точность изготовления высоты ступени может составить несколько атомных слоев, а учитывая, что параметр кристаллической решетки для кремния равен 5,43
Figure 00000001
то точность высоты ступеней будет отличаться одна от другой на 5-7 нм, что для ряда применений является недопустимым.
Известно фотоэлектрическое устройство для определения смещения (GB 1063060). Устройство содержит источник коллимированного светового пучка, фотоприемник и расположенные между источником и фотоприемником две дифракционные решетки с различными периодами и коэффициентами заполнения. При смещении одной решетки относительно другой происходит периодическое перекрытие (или открытие) поперечного сечения светового пучка, что фиксируется фотоприемником.
Недостатком известного устройства является то, что измеряется смещение одного объекта относительно другого, и каждый из них должен быть снабжен дифракционной решеткой, изготовление которой всегда осуществляется с некоторой погрешностью.
Известно устройство для прецизионного измерения расстояний, которое включает два секционированных электрода, размещенных оппозитно один к другому с возможностью перемещения в направлении изменения площади их взаимного перекрытия при сохранении постоянства зазора между взаимообращенными поверхностями секций упомянутых электродов. Секции в первом и втором секционированных электродах выполнены одинаковой длины, при этом секции первого из электродов электрически связаны между собой и соединены с первым выходом генератора переменного напряжения. Второй секционированный электрод выполнен с электрически изолированными одна от другой секциями, каждая из которых соединена с соответствующим ей входом системы определения момента перехода разности токов через ноль в цепях двух смежных секций этого секционированного электрода. Еще один вход упомянутой системы соединен со вторым выходом генератора переменного напряжения, а длина любой из секций первого секционированного электрода выполнена отличной от длины любой из секций второго секционированного электрода на величину, равную заданной разрешающей способности устройства. Технический результат - повышение разрешающей способности устройства до нанометрового диапазона при технологически допустимых ограничениях на выполнение секций электродов по длине (RU 2221217).
Недостатком известного устройства является сложность конструкции и технологии изготовления, поскольку требуется высокая точность (до одного нанометра) изготовления электродов. Кроме того, из-за необходимости определения момента перехода разности токов через ноль в цепях двух смежных секций секционированного электрода возрастают требования к регистрирующей аппаратуре, которая будет вносить недопустимые погрешности в измерениях.
Наиболее близким к заявляемому является устройство для прецизионных перемещений, которое может быть использовано в качестве эталона для определения перемещений и линейных размеров объектов в нанометровом диапазоне и включает пластину из пьезоэлектрического материала с нанесенными на две ее противоположные стороны электродами, подключенными к источнику напряжения (RU 2284464). Устройство позволяет управляемо перемещать отсчетную поверхность с пространственной разрешающей способностью в доли нанометров. Однако при таких величинах перемещений существенным становится влияние внешних электромагнитных полей на точность перемещений.
Заявляемое устройство направлено на повышение точности калибровки современных, используемых в промышленности конфокальных микроскопов и оптических интерферометров.
Указанный результат достигается тем, что эталон для калибровки оптических приборов содержит размещенный на основании элемент из пьезоэлектрического материала с обратным пьезоэффектом с малым гистерезисом с нанесенными на две его противоположные стороны электродами, подключенными к источнику напряжения, и дополнен вторым идентичным элементом из пьезоэлектрического материала с нанесенными на две его противоположные стороны электродами, также подключенными к источнику напряжения, при этом элементы соединены между собой поверхностями с нанесенными электродами с образованием общего центрального электрода и подключены к источнику напряжения так, что внешние электроды полученной сборки заземлены, а элементы выполнены так, что при подаче управляющего напряжения на электроды происходит одновременная однонаправленная относительно основания деформация обоих элементов.
Указанный результат достигается тем, что центральный электрод подключен к источнику напряжения через комплексное сопротивление, а внешние электроды и центральный электрод соединены между собой через комплексное сопротивление параллельно комплексному сопротивлению элементов из пьезоэлектрического материала.
Указанный результат достигается тем, что электроды выполнены пористыми. Отличительными признаками предлагаемого устройства являются:
- дополнение устройства вторым элементом из пьезоэлектрического материала с нанесенными на две ее противоположные стороны электродами, подключенными к источнику напряжения;
- элементы соединены с образованием общего для обоих элементов центрального электрода;
- внешние электроды полученной сборки заземлены;
- элементы выполнены так, что при подаче управляющего напряжения векторы их деформации направлены в одну сторону;
- центральный электрод подключен к источнику напряжения через комплексное сопротивление, а внешние электроды и центральный электрод соединены между собой через комплексное сопротивление параллельно комплексному сопротивлению элементов из пьезоэлектрического материала;
- электроды выполнены пористыми.
Если в качестве эталона использовать два элемента из пьезоэлектрического материала, установленных один на другом с образованием общего для обоих элементов электрода и с заземлением внешних электродов полученной сборки, то, с одной стороны, снижается влияние внешних электромагнитных полей на величину и точность перемещений, а с другой стороны, для получения требуемой величины перемещения необходимо прикладывать в два раза меньшее напряжение по сравнению с прототипом, что также влияет на точность. Элементы выполняют так, что при подаче управляющего напряжения векторы их деформации направлены в одну сторону.
В зависимости от требуемого направления перемещения пластину выполняют с ориентацией кристаллографических осей (в случае использования монокристаллического материала) или вектора поляризации (в случае использования поляризованной пьезокерамики), обеспечивающей при подаче напряжения на электроды одновременное сонаправленное изменение размеров пластины в направлении, параллельном плоскости электродов, или пластину выполняют с ориентацией кристаллографических осей, обеспечивающей при подаче напряжения на электроды одновременное расширение или сжатие размеров пластины в направлении, перпендикулярном плоскости электродов.
Наиболее оптимальным является подключение элементов к источнику напряжения так, что центральный электрод подключен к источнику напряжения через комплексное сопротивление, а внешние электроды и центральный электрод соединены между собой через комплексное сопротивление параллельно комплексному сопротивлению элементов из пьезоэлектрического материала. Поскольку источник напряжения находится вне калибрующей установки, то при передаче сигнала от источника напряжения до элементов пьезоэлектрического материала форма сигнала искажается. Для уменьшения искажений используется корректирующая цепочка, состоящая из последовательно и параллельно соединенных комплексных сопротивлений, корректирующая временные искажения при передаче управляющего напряжения. Величина последовательно соединенного комплексного сопротивления, соединяющего центральный электрод и источник напряжения, выбирается прямо пропорциональной величине комплексного сопротивления, состоящего из параллельно соединенных элементов из пьезоэлектрического материала и параллельно соединенного с ними второго комплексного сопротивления. В результате выполнения данного соотношения искажения формы электрических сигналов, подаваемых от источника напряжения, минимальны по сравнению с формой электрического сигнала на элементах из пьезоэлектрического материала.
Электроды выполняют пористыми для уменьшения механических напряжений из-за различия температурных коэффициентов расширения электродов и пьезоэлектрического материала элементов. Таким образом происходит уменьшение жесткости электродной конструкции в горизонтальном направлении, что увеличивает величину и точность перемещения эталона.
Сущность предлагаемого устройства поясняется примерами реализации и чертежами. На фиг. 1 представлен схематично вариант реализации устройства, обеспечивающий одновременное сжатие или одновременное растяжение в направлении, перпендикулярном плоскости электродов (стрелками показано направление деформации при приложении напряжения). На фиг. 2 представлен схематично вариант реализации устройства, обеспечивающий одновременное сонаправленное перемещение в направлении, параллельном плоскости электродов.
На фиг. 3 и 4 представлены схематично предпочтительные варианты реализации устройства с оптимальными схемами подключения к источнику напряжения.
Устройство содержит устанавливаемую на основание 1 сборку, состоящую из двух одинаковых элементов 2 и 3 из пьезоэлектрического материала с обратным пьезоэффектом с нанесенными на две их противоположные стороны электродами 4, подключенными к источнику напряжения 5. Внешние электроды полученной сборки заземлены.
В предпочтительных вариантах реализации устройства с оптимальными схемами подключения к источнику напряжения центральный электрод сборки соединен с источником напряжения 5 через комплексное сопротивление 6. Пьезоэлектрические элементы 2 и 3, являющиеся компонентами электрической схемы их подключения к источнику напряжения, представлены комплексным сопротивлением 7, параллельно которому подключено комплексное сопротивление 8, соединяющее между собой центральный электрод сборки и один из внешних электродов.
Устройство используется следующим образом.
Сначала измеряют зависимость суммарного изменения размеров пьезоэлектрических элементов 2 и 3 от прикладываемого к электродам 4 напряжения, т.е. строят градуировочный график. Построение градуировочного графика производится путем подачи на электроды устройства фиксированного напряжения и измерения соответствующего перемещения верхней поверхности.
Измерение перемещения производится известными методами с помощью эталонной 3D лазерной интерферометрической системы измерения наноперемещений (на основе атомно-силового микроскопа и 3-х лазерных интерферометров).
Для измерения перемещения перпендикулярно поверхности электродов размещают устройство, обеспечивающее перемещение в направлении, перпендикулярном плоскости электродов в системе измерения наноперемещений, подводят к поверхности устройства зонд микроскопа на расстояние, при котором работает система стабилизации зазора, подают напряжение на устройство и измеряют расстояние, на которое переместилась поверхность устройства при подаче напряжения. Далее изменяют величину подаваемого напряжения и снова производят измерение величины перемещения поверхности устройства.
В результате многократных измерений перемещений, выполненных при различных значениях напряжения, составляется таблица результатов экспериментальных измерений, на основе которой строится градуировочный график зависимости величины перемещения поверхности устройства в направлении, перпендикулярном плоскости электродов, от величины приложенного напряжения.
Величину смещения в горизонтальной плоскости можно определять, привязавшись к какому-либо дефекту на поверхности, которая подвергается смещению при подаче напряжения на электроды, поскольку любая поверхность имеет дефекты, размер которых может колебаться от одного атома до нескольких сот нанометров. Для удобства использования можно поместить на смещаемой поверхности контрастную, легко обнаруживаемую метку. Например, это может быть посаженный с помощью зондового микроскопа атом вещества, отличного от вещества электрода, и вещества кристалла или группа атомов. Метка может быть напылена через маску или может быть нанесена линейка меток, расположенных на равном или различном расстоянии друг от друга (например, линейная или логарифмическая шкалы), и их размер может достигать нескольких сот нанометров.
При измерении перемещения параллельно плоскости электродов измерения производятся путем размещения эталона, обеспечивающего перемещение в направлении, параллельном плоскости электродов, подвода зонда микроскопа на расстояние, при котором работает система стабилизации зазора, к поверхности метки, сканирования поверхности в области расположения метки, подачи напряжения на устройство, повторного сканирования поверхности в том же режиме и измерения расстояния, на которое переместилась метка при подаче напряжения. Далее изменяют величину подаваемого напряжения и снова производят измерение величины перемещения метки на поверхности устройства. В результате многократных измерений перемещений, выполненных при различных значениях напряжения, составляется таблица результатов экспериментальных измерений, на основе которой строится градуировочный график зависимости величины перемещения метки на поверхности устройства в направлении, параллельном плоскости электродов, от величины приложенного напряжения.
С помощью предлагаемого устройства, используемого в качестве эталона, можно градуировать различную измерительную аппаратуру, которая должна обеспечивать измерения в двух взаимно перпендикулярных направлениях.
Для градуировки какого-либо прибора (например, зондового микроскопа) по нормали или горизонтали к исследуемой поверхности предлагаемое устройство (обеспечивающее перемещение по нормали или по горизонтали к плоскости электродов соответственно) размещается в нем. Например, если нужно проградуировать сканирующий зондовый микроскоп, то устройство размещают на предметном столике сканирующего зондового микроскопа и подводят к поверхности устройства с меткой зонд на расстояние зазора (порядка 0.5 нм) между вершиной зонда и поверхностью устройства, при котором работает система стабилизации. Стабилизация зазора может осуществляться путем стабилизации туннельного тока (при работе в режиме туннельной микроскопии) или путем стабилизации величины силы, воздействующей на зонд (при работе в режиме атомно-силовой микроскопии). Стабилизация зазора осуществляется электронной системой управления, осуществляющей сравнение сигналов с измерительных устройств с заданными величинами и вырабатывающей управляющие сигналы на исполнительные устройства.
При градуировке тестируемого измерительного устройства по вертикали, на устройство для прецизионных перемещений, обеспечивающее перемещение по вертикали, на электроды подается фиксированное напряжение. При этом поверхность устройства перемещается на расстояние, величина которого определяется по градуировочной таблице. Система стабилизации зазора обеспечивает соответствующее перемещение зонда на то же расстояние, на которое перемещается поверхность образца. Величина перемещения зонда измеряется измерительными устройствами зондового микроскопа. Таким способом величине показаний измерительных приборов зондового микроскопа, измеряющих расстояние, на которое перемещается зонд, ставится в соответствие величина расстояния, известная из градуировочной кривой, на которое перемещается поверхность устройства. Далее напряжение, подаваемое на устройство, изменяется, и процесс измерения повторяется. В результате проведения ряда измерений при различных значениях напряжения составляется таблица соответствия величины перемещения устройства и показаний устройств зондового микроскопа, измеряющих перемещение зонда.
При градуировке измеряемого устройства по горизонтали в плоскости, параллельной плоскости электродов, зонд микроскопа подводится к метке, производится сканирование поверхности в области расположения метки, и на устройство для прецизионных перемещений, обеспечивающее перемещение по горизонтали к плоскости электродов, подается фиксированное напряжение. При этом поверхность устройства перемещается на расстояние, величина которого определяется по градуировочной таблице.
Повторное сканирование зондом микроскопа по поверхности устройства с меткой и сравнение результатов повторного сканирования с предыдущими позволяют произвести измерение ее перемещения измерительными приборами зондового микроскопа.
Таким способом величине показаний измерительных приборов зондового микроскопа, измеряющих расстояние, на которое переместилась метка, ставится в соответствие величина перемещения метки, известная из градуировочной кривой. Далее напряжение, подаваемое на устройство, изменяется, и процесс измерения повторяется. В результате проведения ряда измерений при различных значениях напряжения составляется таблица соответствия величины перемещения метки и показаний приборов зондового микроскопа, измеряющих ее перемещение.

Claims (3)

1. Эталон для калибровки оптических приборов, содержащий размещенный на основании элемент из пьезоэлектрического материала с обратным пьезоэффектом с малым гистерезисом с нанесенными на две его противоположные стороны электродами, подключенными к источнику напряжения, отличающийся тем, что он дополнен вторым идентичным элементом из пьезоэлектрического материала с нанесенными на две его противоположные стороны электродами, также подключенными к источнику напряжения, при этом элементы соединены между собой поверхностями с нанесенными электродами с образованием общего центрального электрода и подключены к источнику напряжения так, что внешние электроды полученной сборки заземлены, а элементы выполнены так, что при подаче управляющего напряжения на электроды происходит одновременная однонаправленная относительно основания деформация обоих элементов.
2. Эталон по п. 1, отличающийся тем, что центральный электрод подключен к источнику напряжения через комплексное сопротивление, а внешние электроды и центральный электрод соединены между собой через комплексное сопротивление параллельно комплексному сопротивлению элементов из пьезоэлектрического материала.
3. Эталон по п. 1, отличающийся тем, что электроды выполнены пористыми.
RU2016115575A 2016-04-21 2016-04-21 Эталон для калибровки оптических приборов RU2626194C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016115575A RU2626194C1 (ru) 2016-04-21 2016-04-21 Эталон для калибровки оптических приборов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016115575A RU2626194C1 (ru) 2016-04-21 2016-04-21 Эталон для калибровки оптических приборов

Publications (1)

Publication Number Publication Date
RU2626194C1 true RU2626194C1 (ru) 2017-07-24

Family

ID=59495824

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016115575A RU2626194C1 (ru) 2016-04-21 2016-04-21 Эталон для калибровки оптических приборов

Country Status (1)

Country Link
RU (1) RU2626194C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU244633A1 (ru) * И. Ш. Эцин Фотоэлектрическое устройство для измерения малых перемещений
US5223713A (en) * 1991-01-11 1993-06-29 Jeol Ltd. Scanner for scanning tunneling microscope
RU2284464C2 (ru) * 2004-12-28 2006-09-27 Алексей Леонидович Максимов Устройство для прецизионных перемещений
EP2696163A1 (en) * 2011-04-08 2014-02-12 Murata Manufacturing Co., Ltd. Displacement sensor, displacement detecting apparatus, and operation device
US20140152151A1 (en) * 2011-06-01 2014-06-05 Alexander Potemkin Device for Precision Displacement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU244633A1 (ru) * И. Ш. Эцин Фотоэлектрическое устройство для измерения малых перемещений
US5223713A (en) * 1991-01-11 1993-06-29 Jeol Ltd. Scanner for scanning tunneling microscope
RU2284464C2 (ru) * 2004-12-28 2006-09-27 Алексей Леонидович Максимов Устройство для прецизионных перемещений
EP2696163A1 (en) * 2011-04-08 2014-02-12 Murata Manufacturing Co., Ltd. Displacement sensor, displacement detecting apparatus, and operation device
US20140152151A1 (en) * 2011-06-01 2014-06-05 Alexander Potemkin Device for Precision Displacement

Similar Documents

Publication Publication Date Title
Liu et al. A new capacitive displacement sensor with nanometer accuracy and long range
Missoffe et al. New simple optical sensor: From nanometer resolution to centimeter displacement range
CN108680093B (zh) 一种光学调焦机构中调焦距离测量装置及测量方法
US20170236992A1 (en) Device for Precision Displacement
RU2626194C1 (ru) Эталон для калибровки оптических приборов
RU164856U1 (ru) Эталон прецизионных перемещений
RU2626024C1 (ru) Устройство для прецизионных перемещений
WO2006083191A1 (en) Accurately displacing device
Deck et al. Using the instrument transfer function to evaluate Fizeau interferometer performance
Peiner et al. Force calibration of stylus instruments using silicon microcantilevers
Talantsev et al. Magnetic tunnel junction platforms for linear positioning and nanoscale displacement sensing
RU163173U1 (ru) Устройство для калибровки оптических приборов
Feige et al. Calibration of a scanning probe microscope by the use of an interference–holographic position measurement system
Yoon et al. An accuracy improvement method for the topology measurement of an atomic force microscope using a 2D wavelet transform
Dorozhovets et al. Development of the interferometrical scanning probe microscope
Dorozhovets et al. Application of the metrological scanning probe microscope for high-precision, long-range, traceable measurements
Danzebrink et al. Dimensional nanometrology at PTB
de Boer et al. Integrated platform for testing MEMS mechanical properties at the wafer scale by the IMaP methodology
Lin et al. Calibration of standards for precision pitch measurement in the nanometre region by combined scanning tunnelling microscopy and x-ray interferometry
Colchero et al. Comparison of strain gage and interferometric detection for measurement and control of piezoelectric actuators
Chen et al. Atomic force microscope cantilever as an encoding sensor for real-time displacement measurement
Asundi et al. Phase-shifting AFM moire method
Darznek et al. Nanoscale displacement measurement
RU2277695C1 (ru) Устройство для измерения малых линейных перемещений
Haenssler et al. Test standard for light, electron and microwave microscopy to enable robotic processes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190422