RU2624189C1 - Method for obtaining fibrous material containing oxide nanoparticles from thermoplast melt - Google Patents

Method for obtaining fibrous material containing oxide nanoparticles from thermoplast melt Download PDF

Info

Publication number
RU2624189C1
RU2624189C1 RU2016107224A RU2016107224A RU2624189C1 RU 2624189 C1 RU2624189 C1 RU 2624189C1 RU 2016107224 A RU2016107224 A RU 2016107224A RU 2016107224 A RU2016107224 A RU 2016107224A RU 2624189 C1 RU2624189 C1 RU 2624189C1
Authority
RU
Russia
Prior art keywords
melt
nanoparticles
oxide nanoparticles
stream
gas
Prior art date
Application number
RU2016107224A
Other languages
Russian (ru)
Inventor
Илья Александрович Лысак
Галина Владиленовна Лысак
Татьяна Дмитриевна Малиновская
Валентина Владимировна Жек
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority to RU2016107224A priority Critical patent/RU2624189C1/en
Application granted granted Critical
Publication of RU2624189C1 publication Critical patent/RU2624189C1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods

Abstract

FIELD: chemistry.
SUBSTANCE: method, like the prototype, involves forming a fibrous material by laminating a melt of a thermoplastic polymer by the action of a gas stream containing solid particles. Particles penetrate into the surface layer of the softened material, and particle consolidation occurs, when the material passes into a solid aggregate state. New is that the formation of fibers occurs under the influence of an unheated gas stream containing oxide nanoparticles or small droplets of liquid, in which such nanoparticles having an ambient temperature are dispersed. Gas ejection is provided, in which an additional flow of unheated gas is generated around the jet of molten polymer fed. The particle size is less than 100 nm.
EFFECT: production of fibrous material with oxide nanoparticles fixed on its surface with one or, at least, two kinds, with minimal energy costs and simplification of the technological process.
2 dwg

Description

Изобретение относится к производству волокнистых синтетических материалов из термопластичных веществ, обладающих каталитическими, антистатическими и теплоизоляционными свойствами, и может быть использовано для получения пористых теплоизоляционных материалов, фильтрующих и каталитических элементов в процессах очистки жидких и газовых сред, а также при изготовлении защитной одежды, используемой в промышленности.The invention relates to the production of fibrous synthetic materials from thermoplastic substances with catalytic, antistatic and heat-insulating properties, and can be used to obtain porous heat-insulating materials, filtering and catalytic elements in the cleaning processes of liquid and gas environments, as well as in the manufacture of protective clothing used in industry.

Известен способ получения фильтрующего материала (патент РФ №2401153). Способ получения заключается в нанесении и закреплении на основе из полимерного волокнистого материала металлосодержащих наночастиц. В качестве металлосодержащих наночастиц использованы наноразмерные частицы диоксида олова, которые закреплены на поверхности основы с помощью микроволнового нагрева, при этом наноразмерные частицы диоксида олова сформированы во время нагрева из частиц гидроксида олова, полученных гидролизом солей олова (II) из водных растворов, а в качестве основы использован нетканый полимерный волокнистый материал, полученный методом раздува из расплава термопластичных полимеров. Основой способа является получение и одновременное закрепление полупроводниковых наноразмерных частиц, таких как диоксид олова, на поверхности каркаса (основы) из полимерного тонковолокнистого материала при минимальных временных и энергетических затратах. Недостатком данного способа получения волокнистых синтетических материалов с нанесенными оксидными наночастицами является ограниченный выбор оксидов, трудоемкость гидролизного процесса и применение дорогостоящего специального оборудования.A known method of obtaining filter material (RF patent No. 2401153). The production method consists in applying and fixing metal-containing nanoparticles based on a polymer fibrous material. Nanosized particles of tin dioxide are used as metal-containing nanoparticles, which are fixed on the surface of the substrate using microwave heating, while nanosized particles of tin dioxide are formed during heating from tin hydroxide particles obtained by hydrolysis of tin (II) salts from aqueous solutions, and as the basis non-woven polymeric fibrous material obtained by melt blowing of thermoplastic polymers was used. The basis of the method is the preparation and simultaneous fixing of semiconductor nanosized particles, such as tin dioxide, on the surface of the frame (base) of a polymer fine-fibrous material with minimal time and energy costs. The disadvantage of this method of producing fibrous synthetic materials coated with oxide nanoparticles is the limited choice of oxides, the complexity of the hydrolysis process and the use of expensive special equipment.

Известен способ получения полимерного волокнистого материала (патент Японии № 2008-095266), содержащего наночастицы серебра, путем электроформования. Полимерный раствор смолы содержит наночастицы самодиспергирующегося серебра в количестве 0,1-1,0 мас.% в пересчете на массу полимерной смолы. Наночастицы серебра вводятся в расплав полимера до этапа формирования волокнистого материала. Получаемый данным способом волокнистый материал содержит достаточно большое количество наночастиц серебра (0,1-1 мас.% от массы полимера), которые закреплены не только на поверхности материала, но и распределены во всем его объеме, что приводит к дополнительному расходу дорогостоящего компонента. A known method of producing a polymeric fibrous material (Japan patent No. 2008-095266) containing silver nanoparticles by electrospinning. The polymer resin solution contains self-dispersing silver nanoparticles in an amount of 0.1-1.0 wt.%, Calculated on the weight of the polymer resin. Silver nanoparticles are introduced into the polymer melt until the stage of formation of the fibrous material. The fibrous material obtained by this method contains a sufficiently large number of silver nanoparticles (0.1-1 wt.% By weight of the polymer), which are fixed not only on the surface of the material, but also distributed in its entire volume, which leads to additional consumption of an expensive component.

Также известен способ (заявка JP 05204, D01D 1/02) получения из расплава полиэфирных волокон, содержащих 0,4% диоксида титана и Bactekiller (цеолит типа А). Частицы диоксида титана и цеолита смешиваются с гранулами полиэтилентерефталата в двухшнековом экструдере Vent-типа с получением расплава, из которого формируются волокна, обладающие антибактериальными свойствами. Недостатком этих способов является то, что частицы, которые вводятся на этапе получения расплава или непосредственно в расплав, агломерируются и неравномерно распределяются в объеме волокнистых материалов, концентрируясь, в основном, к центру волокон, вследствие чего происходит утрата их функциональных свойств. Кроме того, данный способ требует применения специального экструзионного оборудования.Also known is a method (application JP 05204, D01D 1/02) for producing from a melt polyester fibers containing 0.4% titanium dioxide and Bactekiller (type A zeolite). The particles of titanium dioxide and zeolite are mixed with granules of polyethylene terephthalate in a twin-screw extruder of the Vent type to form a melt, from which fibers with antibacterial properties are formed. The disadvantage of these methods is that particles that are introduced at the stage of obtaining the melt or directly into the melt are agglomerated and unevenly distributed in the volume of fibrous materials, concentrating mainly to the center of the fibers, as a result of which their functional properties are lost. In addition, this method requires the use of special extrusion equipment.

При получении волокнистого материала, содержащего наночастицы, как правило, желательно получить значительную открытую площадь поверхности частиц, доступную для взаимодействия с любой средой, воздействию которой волокно может быть подвержено.In preparing a fibrous material containing nanoparticles, it is generally desirable to obtain a significant open surface area of the particles available for interaction with any medium to which the fiber may be exposed.

Наиболее близким по технической сущности к заявляемому способу (прототипом) является способ получения волокнистого материала, содержащего частицы, по патенту США № 6494974. Способ включает экструдирование расплава термопластичных полимеров через отверстия фильер экструзионной головки с последующим его распылением сходящимися потоками нагретого рабочего газа (обычно воздуха), под воздействием которых формирующиеся волокна вытягиваются и утончаются. Термостабильные частицы нагревают до температуры, близкой к температуре экструзии расплава полимера. Поток рабочего (волокнообразующего) воздуха, содержащий незатвердевшие волокна, соединяют с высокоскоростным нагретым воздушным потоком, содержащим частицы. Подогретые частицы проникают в поверхностный слой размягченного материала полимерных волокон. Затем волокнистый материал затвердевает в потоках окружающего воздуха и частицы закрепляются на нем. Полученный данным способом волокнистый материал содержит частицы размером от 5 до 300 мкм, которые включены в полимер на глубину, большую, чем просто точечный контакт, без добавления дорогостоящих адгезионных клеевых полимеров. Большая часть поверхности частиц остается открытой для взаимодействия с окружающей средой, придавая получаемому материалу новые функциональные свойства, например, сорбционные. Closest to the technical nature of the claimed method (prototype) is a method of producing a fibrous material containing particles, according to US patent No. 6494974. The method includes extruding a melt of thermoplastic polymers through the holes of the die of the extrusion head with its subsequent spraying with converging flows of heated working gas (usually air) under the influence of which the forming fibers stretch and thin. Thermostable particles are heated to a temperature close to the extrusion temperature of the polymer melt. A stream of working (fiber-forming) air containing unhardened fibers is connected to a high-speed heated air stream containing particles. The heated particles penetrate the surface layer of the softened material of the polymer fibers. Then the fibrous material hardens in the streams of ambient air and particles are fixed on it. The fibrous material obtained by this method contains particles ranging in size from 5 to 300 microns, which are incorporated into the polymer to a depth greater than just point contact without the addition of expensive adhesive adhesive polymers. Most of the surface of the particles remains open for interaction with the environment, giving the resulting material new functional properties, for example, sorption.

Однако данным способом невозможно получить материал, содержащий наночастицы оксидов металлов и их соединений, так как они нестабильны из-за присущей им высокой поверхностной энергии, их нагрев приводит к термодинамическому выгодному процессу агрегации, при котором образуются микроразмерные агломераты, и утрачивается большинство функциональных свойств, которые присущи наноразмерным частицам металлов и их оксидов. Также невозможно напыление разнородных частиц, например, оловосурьмяных и индийоловянных оксидных материалов, поскольку механическое смешение разнородных наноразмерных частиц является трудноосуществимым процессом.However, using this method, it is impossible to obtain a material containing nanoparticles of metal oxides and their compounds, since they are unstable due to their inherent high surface energy, their heating leads to a thermodynamic beneficial aggregation process, in which micro-sized agglomerates are formed, and most of the functional properties that inherent in nanoscale particles of metals and their oxides. It is also impossible to spray dissimilar particles, for example, antimony and indium tin oxide materials, since mechanical mixing of dissimilar nanosized particles is a difficult process.

Кроме того, как следует из описания, для производства материала необходим нагрев как потоков воздуха, под воздействием которых формируются волокна, так и потока, содержащего термостабильные частицы, до температуры примерно 265-296°С, а также самих частиц от 50 до 200°С, в зависимости от вида используемого полимера. Таким образом, данный способ отличается сложностью, связан со значительными энергетическими затратами и не позволяет получать волокнистый материал, содержащий наноразмерные частицы оксидов металлов.In addition, as follows from the description, the production of material requires heating both air flows, under the influence of which fibers are formed, and a stream containing thermostable particles to a temperature of about 265-296 ° C, and also the particles themselves from 50 to 200 ° C , depending on the type of polymer used. Thus, this method is complex, associated with significant energy costs and does not allow to obtain a fibrous material containing nanoscale particles of metal oxides.

Технической задачей предлагаемого изобретения является уменьшение энергетических затрат и сложности технологического процесса получения волокнистого материала, содержащего оксидные наночастицы, из расплава термопластов. The technical task of the invention is to reduce energy costs and the complexity of the process for producing a fibrous material containing oxide nanoparticles from molten thermoplastics.

Поставленная задача решается тем, что осуществляют формирование волокон материала путем расслоения расплава термопластичного полимера потоком рабочего газа, затем воздействуют на волокна потоком газа, содержащим твердые частицы, и закрепляют частицы в материале за счет перехода термопластичного материала в твердое агрегатное состояние. При этом струю расплава полимера подают в патрубок большего диаметра, обеспечивая кольцевой зазор между струей и патрубком, под углом к струе полимера подают под давлением ненагретый газ, содержащий ненагретые оксидные наночастицы размером менее 100 нм или мелкие капли жидкости, содержащей такие наночастицы, обеспечивая эжекцию ненагретого газа через кольцевой зазор между струей расплава и патрубком, при этом в эжектируемый газ вводят оксидные наночастицы, такие же, как в потоке рабочего газа, или наночастицы оксида другого металла размером менее 100 нм, имеющие температуру окружающей среды. Термин «ненагретые» означает, что и газ, и частицы имеют приблизительно комнатную температуру, например, 20°С.The problem is solved in that the fibers of the material are formed by delaminating the melt of the thermoplastic polymer with a working gas stream, then they are exposed to the fiber by a gas stream containing solid particles, and the particles are fixed in the material due to the transition of the thermoplastic material to a solid state of aggregation. In this case, the polymer melt stream is fed into a larger diameter pipe, providing an annular gap between the stream and the pipe, unheated gas containing unheated oxide nanoparticles less than 100 nm in size or small drops of liquid containing such nanoparticles is supplied under pressure at an angle to the polymer stream, providing ejection of unheated gas through the annular gap between the melt stream and the nozzle, while oxide nanoparticles, the same as in the flow of the working gas, or nanoparticles of oxide of another metal, are introduced into the ejected gas rum less than 100 nm having an ambient temperature. The term "unheated" means that both the gas and the particles have approximately room temperature, for example, 20 ° C.

Заявленный способ получения волокнистого материала, содержащего оксидные наночастицы, из расплава термопластов, как и прототип, включает формирование волокнистого материала расслоением расплава термопластичного полимера воздействием потока газа, содержащего твердые частицы, при этом частицы проникают в поверхностный слой размягченного материала, а закрепление частиц происходит при переходе материала в твердое агрегатное состояние.The claimed method for producing a fibrous material containing oxide nanoparticles from a melt of thermoplastics, as well as a prototype, involves the formation of a fibrous material by delamination of a melt of a thermoplastic polymer by the action of a gas stream containing solid particles, the particles penetrate the surface layer of the softened material, and the particles are fixed during the transition material in a solid state of aggregation.

Новым является то, что формирование волокон происходит под воздействием ненагретого потока газа, содержащего оксидные наночастицы, или мелкие капли жидкости, в которой диспергированы такие наночастицы, имеющие температуру окружающей среды, причем обеспечивают эжекцию газа, при которой вокруг подаваемой струи расплавленного полимера возникает дополнительный поток ненагретого газа, при этом размер частиц менее 100 нм, преимущественно от 25 до 80 нм. What is new is that the formation of fibers occurs under the influence of an unheated gas stream containing oxide nanoparticles, or small liquid droplets in which such nanoparticles are dispersed at ambient temperature, and provide gas ejection, in which an additional unheated stream arises around the supplied stream of molten polymer gas, while the particle size is less than 100 nm, mainly from 25 to 80 nm.

Термопластичный полимер подают в зону расслоения через патрубок большего диаметра, чем диаметр струи расплава, образуя кольцевой зазор между струей и патрубком, и распыляют потоком ненагретого рабочего газа, содержащим оксидные наночастицы размером менее 100 нм, который направляют под углом к струе расплава полимера так, что транспортируемые наночастицы приобретают радиальную составляющую скорости. При этом обеспечивают эжекцию газа, при которой в кольцевом зазоре создается разрежение и возникает дополнительный поток ненагретого газа. В эжектируемый газ также добавляют наночастицы размером менее 100 нм и смешивают двухфазные потоки в зоне расслоения. Наночастицы размером менее 100 нм обладают незначительной массой, их присутствие в потоке газа не нарушает процесс волокнообразования. Это позволяет осуществить формирование волокнистого материала из расплава полимера ненагретым потоком газа с одновременным созданием эжектируемого потока ненагретого газа в присутствии оксидных наночастиц или мелких капель жидкости, в которой наночастицы диспергированы, причем частицы в потоке рабочего газа и в эжектируемом газе могут быть разных видов и имеют температуру окружающей среды. Отсутствие контакта расплава с патрубком исключает преждевременное охлаждение расплава и повышение его вязкости. Таким образом, нет необходимости в нагреве наночастиц и газовой среды до высокой температуры плавления полимера, что упрощает технологический процесс и существенно снижает энергетические затраты. The thermoplastic polymer is fed into the delamination zone through a nozzle of a larger diameter than the diameter of the melt jet, forming an annular gap between the jet and nozzle, and sprayed with a stream of unheated working gas containing oxide nanoparticles smaller than 100 nm, which is directed at an angle to the polymer melt jet so that transported nanoparticles acquire a radial velocity component. At the same time, gas ejection is provided in which a vacuum is created in the annular gap and an additional flow of unheated gas occurs. Nanoparticles less than 100 nm in size are also added to the ejected gas and two-phase flows in the separation zone are mixed. Nanoparticles less than 100 nm in size have a small mass, their presence in the gas stream does not violate the process of fiber formation. This allows the formation of fibrous material from the polymer melt by an unheated gas stream with the simultaneous creation of an ejected stream of unheated gas in the presence of oxide nanoparticles or small droplets of liquid in which the nanoparticles are dispersed, and the particles in the working gas stream and in the ejected gas can be of different types and have a temperature the environment. The absence of contact of the melt with the nozzle eliminates premature cooling of the melt and an increase in its viscosity. Thus, there is no need to heat the nanoparticles and the gaseous medium to a high melting point of the polymer, which simplifies the process and significantly reduces energy costs.

При реализации заявляемого способа твердые наночастицы или мелкие капли жидкости, в которой наночастицы диспергированы, равномерно распределены в несущей газовой фазе за счет турбулизации потока, и могут быть транспортированы в зону расслоения либо потоком рабочего газа, либо эжектируемым потоком газа, либо обоими потоками одновременно. При этом не исключен вариант, при котором в эжектируемый газ дополнительно под давлением вдувается газ с частицами. При расслоении расплава полимера поток рабочего газа направлен под углом к струе расплава, так что наночастицы обладают скоростью, вектор которой направлен к струе расплава, и соответствующей кинетической энергией. Кроме того, в процессе транспортирования оксидные наночастицы электризуются. Под действием сил инерции и электростатических сил оксидные наночастицы притягиваются к расплаву и осаждаются на его поверхности. Равномерность покрытия волокон обеспечивается турбулентным характером течения транспортирующего газа. В процессе затвердевания полимера наночастицы прочно закрепляются на поверхности сформированных волокон. Вследствие неглубокого проникновения в расплав, обусловленного незначительной массой наночастиц, большая часть поверхности частиц остается открытой, что важно для технических приложений.When implementing the proposed method, solid nanoparticles or small droplets of liquid in which the nanoparticles are dispersed are evenly distributed in the carrier gas phase due to turbulence of the flow, and can be transported to the separation zone either by the flow of the working gas, or by the ejected gas stream, or both at the same time. In this case, an option is not excluded in which a gas with particles is additionally injected into the ejected gas under pressure. When the polymer melt is stratified, the flow of the working gas is directed at an angle to the melt jet, so that the nanoparticles have a velocity whose vector is directed to the melt jet and the corresponding kinetic energy. In addition, during transportation, the oxide nanoparticles are electrified. Under the action of inertia and electrostatic forces, oxide nanoparticles are attracted to the melt and deposited on its surface. The uniformity of the fiber coating is provided by the turbulent nature of the flow of the conveying gas. In the process of polymer solidification, the nanoparticles are firmly fixed on the surface of the formed fibers. Due to the shallow penetration into the melt due to the small mass of nanoparticles, most of the surface of the particles remains open, which is important for technical applications.

Заявителю не известны способы получения волокнистых материалов из расплавов термопластов ненагретым потоком газа, позволяющие равномерно осаждать на волокно разнородные оксидные наночастицы, поэтому заявленное решение отвечает критерию новизна. Получаемый технический результат не очевиден. При оценке соответствия нового способа получения волокнистых материалов, содержащих оксидные наночастицы, критерию "изобретательский уровень" в доступных заявителю информационных источниках не удалось обнаружить технических решений, в которых агрегирующие при нагревании наночастицы транспортируются к полимеру ненагретым эжекционным потоком и внедряются в полимерные волокна с помощью ненагретого рабочего газа, направленного под углом к образующимся полимерным волокнам.The applicant does not know how to obtain fibrous materials from molten thermoplastics with an unheated gas stream, which allows uniformly deposited heterogeneous oxide nanoparticles on the fiber, so the claimed solution meets the criterion of novelty. The resulting technical result is not obvious. In assessing the compliance of the new method for producing fibrous materials containing oxide nanoparticles with the criterion of "inventive step" in the information sources available to the applicant, technical solutions were not found in which nanoparticles aggregating during heating are transported to the polymer by an unheated ejection stream and introduced into the polymer fibers using an unheated working gas directed at an angle to the resulting polymer fibers.

Заявляемый способ поясняется с помощью графических материалов. The inventive method is illustrated using graphic materials.

На фиг. 1 приведена схема осуществления заявляемого способа, где 1 - струя расплава термопластичного волокнообразующего полимера, 2 – патрубок, 3 – зона расслоения, в которой происходит волокнообразование, 4 - поток ненагретого газа под давлением, 5 - элементарные волокна, 6 - спутный эжектируемый поток газа, препятствующий контакту струи с патрубком.In FIG. 1 is a diagram of the implementation of the proposed method, where 1 is a melt stream of a thermoplastic fiber-forming polymer, 2 is a pipe, 3 is a separation zone in which fiber formation occurs, 4 is a stream of unheated gas under pressure, 5 is an elementary fiber, 6 is a satellite ejected gas stream, preventing contact of the jet with the nozzle.

На фиг. 2 представлен фрагмент волокна с поверхностью, покрытой оксидными наночастицами. In FIG. Figure 2 shows a fiber fragment with a surface coated with oxide nanoparticles.

Для осуществления заявляемого способа может быть использовано простое устройство, в котором струя расплава термопластичного волокнообразующего полимера 1 экструдируется через патрубок 2 в зону расслоения 3. Диаметр патрубка 2 должен превышать диаметр струи полимера 1 так, чтобы гарантированно отсутствовал их взаимный контакт. Одновременно в зону расслоения 3 под углом к струе 1, подается под давлением поток ненагретого газа 4, который дробит струю расплава 1 на элементарные волокна 5, а также формирует в зазоре между струей расплава и патрубком спутный эжектируемый поток газа 6. В поток рабочего газа и в спутный эжектируемый поток известными способами добавляют оксидные наночастицы размером менее 100 нм.To implement the inventive method, a simple device can be used in which the melt stream of a thermoplastic fiber-forming polymer 1 is extruded through a nozzle 2 into a separation zone 3. The diameter of the nozzle 2 must exceed the diameter of the jet of polymer 1 so that their mutual contact is guaranteed to be absent. At the same time, an unheated gas stream 4 is supplied under pressure to the stratification zone 3 at an angle to the jet 1, which crushes the melt stream 1 into elementary fibers 5 and also forms a tangential ejected gas stream 6. in the gap between the melt stream and the nozzle 6. Into the working gas stream and oxide nanoparticles with a size of less than 100 nm are added to the satellite ejected stream by known methods.

Возможно несколько вариантов реализации способа получения волокнистого материала, содержащего оксидные наночастицы, из расплава термопластов. Варианты отличаются способами подачи оксидных наночастиц.There are several possible implementations of the method for producing a fibrous material containing oxide nanoparticles from molten thermoplastics. Options differ in the methods of feeding oxide nanoparticles.

По основному варианту оксидные наночастицы вводятся и в ненагретый поток рабочего газа 4, подаваемый под давлением в зону расслоения 3, и вводятся одновременно в эжектируемый поток газа 6, причем наночастицы могут быть разных видов. В зоне 3 под действием потока газа происходит расслоение расплава полимера и образование волокнистого материала 5 в присутствии оксидных наночастиц, которые осаждаются на поверхности волокон. Затем волокнистый материал затвердевает в потоках окружающего газа и частицы прочно закрепляются на волокнах.In the main embodiment, oxide nanoparticles are introduced into the unheated working gas stream 4, which is supplied under pressure to the separation zone 3, and simultaneously introduced into the ejected gas stream 6, and the nanoparticles can be of different types. In zone 3, under the action of a gas stream, the polymer melt is separated and the fibrous material 5 is formed in the presence of oxide nanoparticles, which are deposited on the surface of the fibers. Then the fibrous material solidifies in the streams of the surrounding gas and the particles are firmly fixed to the fibers.

В других вариантах частицы вводятся только в один из потоков газа, либо в рабочий газ, либо в эжектируемый. Наконец, в поток эжектируемого газа может быть подан дополнительно газ под давлением, содержащий оксидные наночастицы. Во всех случаях частицы не нагревают и имеют температуру окружающей среды. Технологические режимы процесса варьируются в зависимости от типов исходного сырья (вида полимера и видов наночастиц) и от предполагаемого целевого использования получаемых волокнистых материалов. In other embodiments, particles are introduced into only one of the gas streams, either into the working gas or into the ejected one. Finally, an additional pressurized gas containing oxide nanoparticles can be added to the ejected gas stream. In all cases, the particles do not heat up and have an ambient temperature. Technological modes of the process vary depending on the types of feedstock (type of polymer and types of nanoparticles) and on the intended intended use of the resulting fibrous materials.

Пример получения волокнистого материала, содержащего оксидные наночастицы, из расплава термопласта по заявленному способу. An example of obtaining a fibrous material containing oxide nanoparticles from molten thermoplastic according to the claimed method.

В качестве сырья использовались: As raw materials were used:

- полимер – товарный полипропилен марки 21080-16, выпущенный согласно ТУ 2211-016-05796653-95, изм. 3;- polymer - commercial polypropylene grade 21080-16, produced according to TU 2211-016-05796653-95, rev. 3;

- наночастицы – оловосурьмяные, индийоловянные и висмутоловянные оксидные материалы (ATO, ITO и BTO, соответственно), изготовленные методом твердофазного синтеза в интервале температур 300-1473 K, в высокодисперсном состоянии со средним размером частиц от 25 до 80 нм.- nanoparticles - antimony, indole and bismuth oxide materials (ATO, ITO and BTO, respectively), manufactured by solid-phase synthesis in the temperature range 300-1473 K, in a highly dispersed state with an average particle size of 25 to 80 nm.

Гранулы полипропилена (марки 21080) нагревались до температуры 265°С, соответствующей гомогенизации расплава. Затем расплав 1 подавался в патрубок 2 со скоростью 16,2°кг/ч. Одновременно поток газа 4, содержащий наночастицы ATO, при температуре газа и частиц около 20°С подавался под давлением 2 атм через кольцевое конвергентное сопло с площадью сечения 31 мм2 в зону расслоения 3. При этом в кольцевом зазоре между струей полимера и патрубком 2 создавалось разрежение, и возникал эжектируемый поток газа 6, содержащий наночастицы ITO или BTO, при температуре газа и частиц около 20°С. Далее в зоне 3 происходило расслоение расплава и образование волокнистого материала 5 в присутствии оксидных наночастиц, которые осаждались на поверхности расплава. Затем волокнистый материал затвердевал в потоках окружающего газа, наночастицы ATO и наночастицы ITO или BTO равномерно и прочно закреплялись на нем.Polypropylene granules (grade 21080) were heated to a temperature of 265 ° C, corresponding to the homogenization of the melt. Then the melt 1 was fed into the pipe 2 at a speed of 16.2 ° kg / h. At the same time, a gas stream 4 containing ATO nanoparticles was supplied at a pressure of 2 atm at a gas and particle temperature of about 20 atm through an annular convergent nozzle with a cross-sectional area of 31 mm 2 to the separation zone 3. In this case, an annular gap between the polymer stream and nozzle 2 was created rarefaction, and an ejected gas stream 6 containing ITO or BTO nanoparticles arose at a gas and particle temperature of about 20 ° C. Further, in zone 3, the melt was stratified and the fibrous material 5 was formed in the presence of oxide nanoparticles, which were deposited on the surface of the melt. Then, the fibrous material solidified in the flows of the surrounding gas, ATO nanoparticles and ITO or BTO nanoparticles were uniformly and firmly fixed on it.

Полученный таким способом волокнистый материал имеет на своей поверхности наночастицы размером 25-80 нм, которые покрывают от 10 до 25 % площади поверхности волокон. Снимки волокон получены с использованием просвечивающей электронной микроскопии с помощью электронного микроскопа JEM-100CXII (фиг. 2). Прочное закрепление наночастиц ATO, ITO, BTO на волокнистом материале подтверждено результатами атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой на спектрометре ICAP 6300 Duo Thermo. Данным методом показано, что содержание входящего в состав наночастиц олова на полипропиленовом волокне не изменяется после интенсивной промывки его проточной водой. The fibrous material obtained in this way has on its surface nanoparticles with a size of 25-80 nm, which cover from 10 to 25% of the surface area of the fibers. Pictures of the fibers were obtained using transmission electron microscopy using a JEM-100CXII electron microscope (Fig. 2). The strong attachment of ATO, ITO, BTO nanoparticles to the fibrous material was confirmed by the results of atomic emission spectrometry with inductively coupled plasma on an ICAP 6300 Duo Thermo spectrometer. This method showed that the content of the tin contained in the nanoparticles on the polypropylene fiber does not change after intensive washing with running water.

Использование оксидных наночастиц с размером менее 100 нм, значительная часть каждой из которых выступает из полимера, позволяет придавать волокнистому материалу новые функциональные свойства, например, каталитические, антистатические, теплоизоляционные, так как известно, что оксидные наночастицы обладают низким удельным сопротивлением, оптической прозрачностью в видимой области электромагнитного спектра, высокой отражающей способностью для инфракрасного излучения, а также высокой химической активностью. The use of oxide nanoparticles with a size of less than 100 nm, a significant part of each of which protrudes from the polymer, makes it possible to impart new functional properties to the fibrous material, for example, catalytic, antistatic, and thermal insulation, since it is known that oxide nanoparticles have low resistivity and optical transparency in visible areas of the electromagnetic spectrum, high reflectivity for infrared radiation, as well as high chemical activity.

Техническим результатом является получение волокнистого материала с закрепленными на его поверхности оксидными наночастицами одного или по крайней мере двух видов, при минимальных энергетических затратах и упрощении технологического процесса.The technical result is to obtain a fibrous material with oxide nanoparticles of one or at least two types fixed on its surface, with minimal energy costs and simplifying the process.

Способ по изобретению может быть использован для получения волокнистых материалов с заданными свойствами из расплава термопластов как промышленного, так и вторичного сырья, а также из их смесей, отличающихся показателем текучести и обладающих, например, каталитическими, антистатическими и/или теплоизоляционными свойствами.The method according to the invention can be used to obtain fibrous materials with desired properties from a melt of thermoplastics of both industrial and secondary raw materials, as well as from mixtures thereof, which differ in flow rate and have, for example, catalytic, antistatic and / or thermal insulation properties.

Источники информации Information sources

1. Патент РФ № 2401153, МПК B01D39/16, МПК B82B3/00, опубл. 10.10.2010.1. RF patent No. 2401153, IPC B01D39 / 16, IPC B82B3 / 00, publ. 10/10/2010.

2. Патент JP2008-095266, опубл. 24.04.2008.2. Patent JP2008-095266, publ. 04/24/2008.

3. Заявка JP 05204, D01D 1/02, опубл. 1993.3. Application JP 05204, D01D 1/02, publ. 1993.

4. Pinchuk, L. S., Goldade, V. A., Makarevich, A. V., & Kestelman, V. N. Melt Blowing: Equipment, Technology, and Polymer Fibrous Materials. Springer Science & Business Media, (2012).4. Pinchuk, L. S., Goldade, V. A., Makarevich, A. V., & Kestelman, V. N. Melt Blowing: Equipment, Technology, and Polymer Fibrous Materials. Springer Science & Business Media, (2012).

5. Патент US6494974 B2, опубл. 17.11.2002 (прототип).5. Patent US6494974 B2, publ. 11/17/2002 (prototype).

Claims (1)

Способ получения волокнистого материала, содержащего оксидные наночастицы, из расплава термопластов, включающий формирование волокон материала путем расслоения расплава термопластичного полимера потоком рабочего газа, воздействие на волокна потоком газа, содержащим твердые частицы, и закрепление частиц в материале за счет перехода термопластичного материала в твердое агрегатное состояние, отличающийся тем, что струю расплава полимера подают в патрубок большего диаметра, обеспечивая кольцевой зазор между струей и патрубком, под углом к струе полимера подают под давлением ненагретый газ, содержащий ненагретые оксидные наночастицы размером менее 100 нм, преимущественно от 25 до 80 нм, или мелкие капли жидкости, содержащей такие наночастицы, обеспечивая эжекцию ненагретого газа через кольцевой зазор между струей расплава и патрубком, при этом в эжектируемый газ вводят оксидные наночастицы, такие же, как в потоке рабочего газа, или наночастицы оксида другого металла размером менее 100 нм, имеющие температуру окружающей среды. A method of producing a fibrous material containing oxide nanoparticles from a melt of thermoplastics, including the formation of fibers of a material by delaminating a melt of a thermoplastic polymer with a working gas stream, exposing the fibers to a gas stream containing solid particles, and fixing the particles in the material due to the transition of the thermoplastic material to a solid state of aggregation characterized in that the polymer melt stream is fed into a pipe of a larger diameter, providing an annular gap between the stream and the pipe, at an angle ohm, an unheated gas containing unheated oxide nanoparticles with a size of less than 100 nm, preferably from 25 to 80 nm, or small drops of a liquid containing such nanoparticles, providing ejection of unheated gas through the annular gap between the melt stream and the nozzle, are supplied under pressure to the polymer stream under pressure oxide nanoparticles, the same as in the working gas stream, or other metal oxide nanoparticles with a size less than 100 nm, having an ambient temperature, are introduced into the ejected gas.
RU2016107224A 2016-03-01 2016-03-01 Method for obtaining fibrous material containing oxide nanoparticles from thermoplast melt RU2624189C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016107224A RU2624189C1 (en) 2016-03-01 2016-03-01 Method for obtaining fibrous material containing oxide nanoparticles from thermoplast melt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016107224A RU2624189C1 (en) 2016-03-01 2016-03-01 Method for obtaining fibrous material containing oxide nanoparticles from thermoplast melt

Publications (1)

Publication Number Publication Date
RU2624189C1 true RU2624189C1 (en) 2017-06-30

Family

ID=59312491

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016107224A RU2624189C1 (en) 2016-03-01 2016-03-01 Method for obtaining fibrous material containing oxide nanoparticles from thermoplast melt

Country Status (1)

Country Link
RU (1) RU2624189C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645759A (en) * 2018-05-07 2018-10-12 大连海事大学 A kind of metallic particles fixing device and method for electromagnetic detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020017354A1 (en) * 1999-10-15 2002-02-14 Riddell Wilfred Eugene Method of forming meltblown webs containing particles
US7198745B2 (en) * 1999-08-16 2007-04-03 The Board Of Regents Of The University Of Oklahoma Method for forming a fibers/composite material having an anisotropic structure
RU2008143241A (en) * 2006-03-31 2010-05-10 Аргонайд Корпорейшн (Us) NONWOVEN MATERIAL, INCLUDING ULTRA SMALL OR NANOSIZED POWDERS
US8808594B1 (en) * 2013-03-16 2014-08-19 Verdex Technologies, Inc. Coform fibrous materials and method for making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198745B2 (en) * 1999-08-16 2007-04-03 The Board Of Regents Of The University Of Oklahoma Method for forming a fibers/composite material having an anisotropic structure
US20020017354A1 (en) * 1999-10-15 2002-02-14 Riddell Wilfred Eugene Method of forming meltblown webs containing particles
RU2008143241A (en) * 2006-03-31 2010-05-10 Аргонайд Корпорейшн (Us) NONWOVEN MATERIAL, INCLUDING ULTRA SMALL OR NANOSIZED POWDERS
US8808594B1 (en) * 2013-03-16 2014-08-19 Verdex Technologies, Inc. Coform fibrous materials and method for making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645759A (en) * 2018-05-07 2018-10-12 大连海事大学 A kind of metallic particles fixing device and method for electromagnetic detection

Similar Documents

Publication Publication Date Title
Pinchuk Melt Blowing: equipment, technology, and polymer fibrous materials
CN110193893B (en) Preparation method of polymer-based spherical powder
CN101985777B (en) Trumpet-shaped high-efficiency electrostatic spinning nozzle
JP6587703B2 (en) Fine fiber manufacturing method and fine fiber manufacturing apparatus
CN105778334B (en) A kind of glass fiber thermoplastic plastic granule and preparation method thereof
Wang et al. Electrospun poly (methyl methacrylate) nanofibers and microparticles
CN106521805A (en) Production method of conductive-toughening melt-blown composite nonwoven fabric
CN106245234B (en) A kind of double dielectric polymer blending meltblown fibers electret non-woven materials
RU2624189C1 (en) Method for obtaining fibrous material containing oxide nanoparticles from thermoplast melt
US11860618B2 (en) Apparatus, system and method of forming polymer microspheres for use in additive manufacturing
Wang et al. Droplet-assisted fabrication of colloidal crystals from flower-shaped porphyrin Janus particles
JP2004270695A (en) Method for manufacturing melt-blown filter medium used for air filter of internal combustion engine
CN106832399B (en) Graphene composite polyvinyl alcohol master batch and preparation method thereof, application, fibrous material
US20120101215A1 (en) Method of manufacturing polytetrafluoroethylene particle aggregate and method of manufacturing polytetrafluoroethylene product
CN105297176B (en) A kind of shaggy super-fine fiber material and preparation method thereof
CN108407299A (en) A kind of method of irregular polymer powder sphering
KR20090063199A (en) The foam coating method of textile of function characteristic
KR20150017796A (en) Method for preparation of liquid micro-capsule containing nano-particles
CN108014986A (en) A kind of internal coat technique of Polywoven Bag
CN107954596A (en) A kind of preparation method of high length-diameter ratio sepiolite treated basalt fiber composite material
US20150064458A1 (en) Functionalizing injection molded parts using nanofibers
JP5656297B2 (en) Centrifugal spinning apparatus and centrifugal spinning method
US20160108511A1 (en) Spray-coating method
Sinha-Ray Spray in Polymer Processing
CN105542201A (en) Method for preparing micron-scale polymer particles