RU2624159C1 - Устройство для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях - Google Patents

Устройство для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях Download PDF

Info

Publication number
RU2624159C1
RU2624159C1 RU2016140482A RU2016140482A RU2624159C1 RU 2624159 C1 RU2624159 C1 RU 2624159C1 RU 2016140482 A RU2016140482 A RU 2016140482A RU 2016140482 A RU2016140482 A RU 2016140482A RU 2624159 C1 RU2624159 C1 RU 2624159C1
Authority
RU
Russia
Prior art keywords
air
gas turbine
nozzle
sampler
valve
Prior art date
Application number
RU2016140482A
Other languages
English (en)
Inventor
Валерий Павлович Могильников
Алексей Владимирович Ионов
Людмила Вениаминовна Фролкина
Original Assignee
Акционерное общество "Лётно-исследовательский институт имени М.М. Громова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" filed Critical Акционерное общество "Лётно-исследовательский институт имени М.М. Громова"
Priority to RU2016140482A priority Critical patent/RU2624159C1/ru
Application granted granted Critical
Publication of RU2624159C1 publication Critical patent/RU2624159C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

Изобретение относится к технике отбора образцов проб воздуха, отбираемых от компрессора авиационных газотурбинных двигателей (ГТД) для исследования степени загрязнения воздуха продуктами, поступающими вместе с воздухом в систему кондиционирования воздуха (СКВ), а также определения состава вредных примесей, опасных концентраций в воздухе газов и паров. Устройство содержит диффузор с внутренним соплом, ориентированным по направлению потока отбираемого от газотурбинного двигателя воздуха, тройник, электромагнитные клапаны, пробоотборники с встроенными концентраторами и вакуумированные емкости. Сопло диффузора выполнено с одним внутренним выходом, соединенным с плоским тройником, находящимся в одной плоскости с диффузором. Электромагнитные клапаны установлены непосредственно на входные патрубки пробоотборников таким образом, что входной патрубок соответствующего пробоотборника для уменьшения потерь компонентов пробы ввинчен в переходник, закрепленный в корпусе электромагнитного клапана и зафиксирован на выходе к корпусу клапана контргайкой. Внутренний выход переходника выполнен переходящим в седловину для установки электромагнитного клапана непосредственно на входной патрубок соответствующего пробоотборника, а вход контактирует с поршнем клапана, взаимосвязанным с электромагнитом. Корпус электромагнитного клапана выполнен в виде расширительной камеры, в торцах которой установлены подводящее отбираемый воздух от двигателя расширительное сопло и в противоположной стороне корпуса выходной патрубок для сброса избытка воздуха через жиклер. При этом его проходное сечение выполнено с возможностью регулирования температуры внутри расширительной камеры во избежание конденсации примесей в ней. Электромагнитный клапан, установленный на поверхности расширительной камеры, выполнен с возможностью открывать во время отбора воздуха и перекрывать поршнем с резиновым клапаном пробоотборник после отбора воздуха при летных испытаниях авиационных газотурбинных двигателей. Обеспечивается уменьшение габаритов устройства без ухудшения его метрологических характеристик для возможности установки на летающую лабораторию и снижение погрешности измерения концентраций примесей в воздухе ГТД, отбираемого на нужды СКВ летательного аппарата, за счет уменьшения фонового загрязнения. 1 ил.

Description

Изобретение относится к технике отбора образцов проб воздуха, отбираемых от компрессора авиационных газотурбинных двигателей (ГТД) для исследования степени загрязнения воздуха продуктами, поступающими вместе с воздухом в систему кондиционирования воздуха (СКВ), а также определения состава вредных примесей, опасных концентраций в воздухе газов и паров, с целью повышения чувствительности и точности определения оценки степени загрязнения воздуха.
Основной источник загрязнения воздуха кабин летательных аппаратов - унос смазочного масла из передних опор двигателей с его последующим полным или частичным разложением в тракте компрессора газотурбинного двигателя (ГТД) на разных режимах его работы. Сложная смесь, содержащая пары и аэрозоли смазочного масла, пары углеводородов, акролеина, формальдегида, фенола и других продуктов разложения масла, поступает из системы кондиционирования воздуха в кабину ЛА.
Предлагаемое устройство может быть использовано при заводских и сертификационных испытаниях ГТД на летающих лабораториях (ЛЛ) на соответствие требованиям §831 АП-250 § 66 и §75 АП-33 (2). АП-25, (Авиационные правила. Часть 25. Нормы летной годности самолетов транспортной категории. 2008 г.), АП-33 (Авиационные правила. Часть 33. Нормы летной годности двигателей воздушных судов. 2012 г.). Данный вид испытаний на ЛЛ проводится на современных ГТД в дополнении к стендовым, так условия работы двигателя на стенде и в условиях реального полета сильно отличаются, что может приводить к ошибке в оценке маслозащищенности системы кондиционирования самолета от попадания масла двигателя.
Известен стенд для испытания ГТД, который содержит устройство для отбора образцов проб газа и может быть использован при снятии экологических характеристик ГТД. Устройство для отбора образцов проб газа содержит прибор-анализатор, пробоотборники, размещенные на выходе двигателя, и трубопроводы с быстродействующими запорами и регулирующими органами, трубопровод, соединяющий прибор-анализатор с быстродействующими запорными органами, имеет обогреваемый участок, выполненный в виде теплообменника «труба в трубе», где для установки требуемой температуры пробы отобранного газа, непосредственно перед отбором пробы газа вход в прибор-анализатор открывает регулирующий орган, а затем закрывают быстродействующим запорным и регулирующим органом, снабженные датчиком температуры, подключенным к регистрирующему прибору (Пат. на полезную модель RU 44820 U1, G01M 15/00, 2004 г.).
Однако из-за особенностей технической компоновки, данный стенд может быть использован преимущественно для отбора эмиссионных газов.
Известны устройства для отбора проб воздуха ГТД в виде длинного трубопровода (выходит за пределы бокса, где проходят испытания ГТД) и устройства для концентрирования примесей в виде поглотительных сосудов или патронов с адсорбентом, которые затем идут на проведение анализа (Методика по проверке чистоты воздуха, отбираемого для нужд ЛА (№ Н28Ин161 ФГУП «Завод им. В.Я. Климова», 2005 г.).
Так как сброс давления и температуры воздуха здесь происходит в трубопроводе (это приводит к оседанию здесь большей части примесей воздуха и, соответственно, к ошибке анализа), то к конструкции устройств для концентрирования (пробоотборников) особых требований не предъявляется. Такие устройства до последнего времени использовались на большинстве предприятий авиационного двигателестроения.
Недостаток таких устройств - оседание примесей в трубопроводе до поглотительных патронов, длительное время отбора и необходимость перезарядки их свежей порцией сорбента, требующего специальной подготовки.
Известно устройство для отбора проб аэрозолей масла от ГТД, описанное в патенте США на способ определения утечек масла из ГТД № US 6,957,569 В1, 25.10.2005 г. В описанном способе поток воздуха от компрессора ГТД поступает в металлическую камеру, где в режиме реального времени осуществляется счет аэрозольных частиц масла спектральным способом. Речь идет только об аэрозоле масла и собственно дискретного пробоотбора не производится. Нас же согласно Авиационным правилам интересует гораздо более широкий перечень загрязняющих воздух веществ, да и масло находится в воздухе как в виде аэрозоля, так и в виде паров, которые в настоящем способе вообще не определяются.
Наиболее близким по технической сущности к предлагаемому изобретению является устройство, описанное в МУ 1.1.258-99 (введены 01.07.2000 НИИСУ), выполненное в виде системы отбора проб воздуха авиационных ГТД (СОП), включающей диффузор, тройники с жиклерами, пробоотборники с концентраторами, электромагнитные клапаны, вакуумированные емкости с датчиками давления, вакуумный насос и соединительные трубки. Воздух, отбираемый от ГТД, попадает на вход пробоотборников через передаточные устройства минимальных размеров и лишь незначительно снижает температуру до входа в концентратор. После отбора пробоотборники разбираются, концентраторы без разборки идут на хроматографический анализ методом десорбции примесей в испаритель хроматографа, после чего они снова пригодны для отбора без специальной очистки.
Недостатком этого устройства является достаточно громоздкая конструкция (вес более 50 кг) с большим количеством элементов, которые в условиях полета необходимо жестко фиксировать. В условиях полета ее также сложно использовать, так как электромагнитные клапаны находятся сзади пробоотборников, а их вход постоянно соединен с трубопроводом от диффузора, что при постоянном изменении давления на входе в пробоотборник (условия полета) и в трубке между клапаном и пробоотборником приведет к дополнительной маятниковой прокачке некоторых нефиксируемых объемов воздуха от ГТД через концентратор пробоотборника. При длительных полетах такое загрязнение будет очень существенно, т.к. снять пробоотборники во время полета невозможно. Это искажает результаты последующего газохроматографического анализа в сторону их значительного завышения, что может быть ошибочным основанием для браковки ГТД (согласно §75 АП-33 превышения ПДК приведенных во введении примесей в воздухе, отбираемом от ГТД, рассматривается как отказ двигателя). Кроме того, одни и те же емкости в СОП обслуживают разные пробоотборники, что требует установку в системе вакуумного насоса для их периодического вакуумирования, а воздух самих емкостей после пробоотбора и измерения давления не идет на анализ, что сокращает перечень компонентов, на которые возможен контроль отбираемого воздуха. Существует и более усложненный вариант данного устройства, описанный в патенте РФ № RU 2 494 366 С2, с добавлением добавочных вакуумированных емкостей с датчиками, что еще более утяжеляет конструкцию и увеличивает ее габариты, а отличия не принципиальны, и здесь поэтому как прототип не рассматиривается.
Технический результат, на достижение которого направлено заявляемое изобретение, заключается в уменьшении габаритов устройства без ухудшения его метрологических характеристик для возможности установки на летающую лабораторию и снижение погрешности измерения концентраций примесей в воздухе ГТД, отбираемого на нужды СКВ летательного аппарата, за счет уменьшения фонового загрязнения.
Для достижения этого технического результата в устройстве для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях, содержащем диффузор с внутренним соплом, ориентированным по направлению потока, отбираемого от газотурбинного двигателя воздуха, тройник, электромагнитные клапаны, пробоотборники с встроенными концентраторами и вакуумированные емкости, сопло диффузора выполнено только с одним внутренним выходом, соединенным с плоским тройником, находящимся в одной плоскости с диффузором, а электромагнитные клапаны установлены непосредственно на входные патрубки пробоотборников таким образом, что входной патрубок соответствующего пробоотборника для уменьшения потерь компонентов пробы ввинчен в переходник в корпусе электромагнитного клапана и фиксируется на выходе к корпусу клапана контргайкой. Внутренний выход переходника выполнен переходящим в седловину для установки электромагнитного клапана непосредственно на входной патрубок соответствующего пробоотборника, а вход контактирует с поршнем клапана, взаимосвязанным с электромагнитом. Корпус электромагнитного клапана выполнен в виде расширительной камеры, в торцах которой установлены подводящее отбираемый воздух от двигателя расширительное сопло и в противоположной стороне корпуса выходной патрубок для сброса избытка воздуха через жиклер. При этом его проходное сечение выполнено с возможностью регулирования температуры внутри расширительной камеры во избежание конденсации примесей в ней. Электромагнитный клапан, установленный на поверхности расширительной камеры, выполнен с возможностью открывать во время отбора воздуха и перекрывать поршнем с резиновым клапаном пробоотборник после отбора воздуха в летных испытаниях авиационных газотурбинных двигателей.
Воздух, отбираемый от ГТД, в этом случае непрерывно обдувает переходник с привинченным входом пробоотборника. До отбора он прикрывается резиновым клапаном, перемещающимся под воздействием электромагнита клапана, а избыток воздуха сбрасывается в жиклер, диаметром проходного сечения которого регулируется температура внутри расширительной камеры, что обеспечивает невозможность конденсации компонентов пробы до пробоотборника и их попадания внутрь пробоотборника при закрытом клапане. Это позволяет избежать фоновых (не учитываемых) загрязнений пробоотборника и за счет этого позволяет уменьшить потребный объем вакуумированных емкостей, а следовательно и их габариты, что особенно важно для летных испытаний авиационных двигателей.
На фиг. 1 представлена схема предлагаемого устройства для отбора проб воздуха авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях.
Устройство содержит: 1 - диффузор, 2 - сопло, 3 - плоский тройник, 4 - расширительное сопло, 5 - расширительную камеру, 6 - электромагнитные клапаны, 7 - выходной патрубок (жиклер), 8 - электромагнит, 9 - поршень клапана, 10 - переходник, 11 - контргайку, 12 - пробоотборник, 13 - вакуумированную емкость, 14 - резиновый вакуумный шланг, 15 - заглушку.
Предлагаемое устройство содержит диффузор 1 с внутренним соплом 2, ориентированным по потоку воздуха, отбираемого от ГТД, воздух от которого через плоский тройник поступает через расширительное сопло 4 в расширительную камеру 5 электромагнитного клапана 6, сбрасывается через жиклер 7 выходного патрубка. Открывающийся электромагнитом 8 поршень клапана 9 открывает доступ воздуха (отбор пробы) в переходник 10, который с помощью контргайки 11 фиксируется на корпусе клапана и подает через входной патрубок воздух в пробоотборник 12, который соединен с вакуумированной емкостью 13, на выходе из которой крепится вакуумный резиновый шланг 14 с заглушкой 15.
Работа устройства
Устройство монтируется в пилоне или проставке испытуемого двигателя на летающей лаборатории. Воздух от фланца отбора ГТД поступает в диффузор 1 и сбрасывается за борт. Часть его через сопло 2 и тройник 3 поступает на вход расширительного сопла 4 и далее в расширительную камеру 5 электромагнитного клапана 6. Избыток воздуха сбрасывается через жиклер 7 за борт. Проходным сечением жиклера регулируется температура внутри расширительной камеры во избежание конденсации примесей в ней. Отбор пробы происходит при срабатывании электромагнита 8, который втягивает поршень с резиновым клапаном 9, освобождая доступ воздуха к седловине, которой является заостренная часть переходника 10. Переходник с помощью контргайки 11 крепится на корпусе клапана. Воздух при срабатывании клапана поступает далее в пробоотборник 12, внутри которого размещен концентратор с сорбентом для поглощения органических примесей (масла, топлива и продуктов их разложения), а воздух с неорганическими примесями (окислы углерода) поступает в вакуумируемые емкости (вакуумирование до начала полета). После полета все устройство, кроме диффузора и тройника, демонтируется с самолета и отправляется в лабораторию. В лаборатории через резиновый шланг 14 при удаленной заглушке измеряют давление в емкостях 13 для определения величины отобранной пробы воздуха. Часть его отбирается в шприцы для анализа на содержание неорганических соединений. Из пробоотборников извлекаются концентраторы, и далее согласно МУ 1.1.258-99 проводится их газохроматографический анализ на содержание органических примесей.
Таким образом, даже при выполнении длительного полета удается избежать дополнительной маятниковой прокачки нефиксируемых объемов воздуха от ГТД через концентратор пробоотборника за счет того, что вход в пробоотборник постоянно перекрыт (кроме времени самого отбора), при этом благодаря особой конструкции электромагнитного клапана не происходит загрязнение отбираемой пробы конденсатом до входа в пробоотборник.

Claims (1)

  1. Устройство для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях, содержащее диффузор с внутренним соплом, ориентированным по направлению потока отбираемого от газотурбинного двигателя воздуха, тройник, электромагнитные клапаны, пробоотборники с встроенными концентраторами и вакуумированные емкости, отличающееся тем, что сопло диффузора выполнено с одним внутренним выходом, соединенным с плоским тройником, находящимся в одной плоскости с диффузором, а электромагнитные клапаны установлены непосредственно на входные патрубки пробоотборников таким образом, что входной патрубок соответствующего пробоотборника для уменьшения потерь компонентов пробы ввинчен в переходник, закрепленный в корпусе электромагнитного клапана и зафиксированный на выходе к корпусу клапана контргайкой, внутренний выход переходника выполнен переходящим в седловину для установки электромагнитного клапана непосредственно на входной патрубок соответствующего пробоотборника, а вход контактирует с поршнем клапана, взаимосвязанным с электромагнитом, корпус электромагнитного клапана выполнен в виде расширительной камеры, в торцах которой установлены подводящее отбираемый воздух от двигателя расширительное сопло и в противоположной стороне корпуса выходной патрубок для сброса избытка воздуха через жиклер, при этом его проходное сечение выполнено с возможностью регулирования температуры внутри расширительной камеры во избежание конденсации примесей в ней, электромагнитный клапан, установленный на поверхности расширительной камеры, выполнен с возможностью открывать во время отбора воздуха и перекрывать поршнем с резиновым клапаном пробоотборник после отбора воздуха в летных испытаний авиационных газотурбинных двигателей.
RU2016140482A 2016-10-14 2016-10-14 Устройство для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях RU2624159C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016140482A RU2624159C1 (ru) 2016-10-14 2016-10-14 Устройство для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016140482A RU2624159C1 (ru) 2016-10-14 2016-10-14 Устройство для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях

Publications (1)

Publication Number Publication Date
RU2624159C1 true RU2624159C1 (ru) 2017-06-30

Family

ID=59312481

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016140482A RU2624159C1 (ru) 2016-10-14 2016-10-14 Устройство для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях

Country Status (1)

Country Link
RU (1) RU2624159C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662763C1 (ru) * 2017-09-12 2018-07-30 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Способ оценки средних за полёт концентраций токсичных примесей в воздухе гермокабин летательных аппаратов и в воздухе, поступающем от компрессоров газотурбинных двигателей, и устройство для его осуществления
CN108732308A (zh) * 2018-05-11 2018-11-02 南京信息工程大学 一种基于八旋翼无人机的气体测量装置
RU2681192C1 (ru) * 2018-06-09 2019-03-04 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Устройство для отбора средней за полёт пробы воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях
RU2717458C1 (ru) * 2019-06-27 2020-03-23 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Устройство автоматического отбора проб воздуха для последующего анализа на содержание слабоадсорбирующихся газов в кабинах летательных аппаратов и от авиационных газотурбинных двигателей
RU202816U1 (ru) * 2020-10-02 2021-03-09 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный университет" Министерства обороны Российской Федерации Система диагностики состояния цилиндропоршневой группы дизелей бронетанкового вооружения и военной автомобильной техники

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1002874A2 (ru) * 1980-01-15 1983-03-07 Всесоюзный научно-исследовательский институт аналитического приборостроения Газоаналитическа система выхлопных газов автомобильных двигателей
SU1642300A1 (ru) * 1989-03-02 1991-04-15 Специализированный Проектно-Изыскательский И Экспериментально-Конструкторский Институт "Гидроспецпроект" Устройство дл отбора проб газов
RU2006021C1 (ru) * 1992-10-13 1994-01-15 Рязанское высшее военное автомобильное инженерное училище Устройство для отбора проб газа из цилиндра двигателя внутреннего сгорания
RU44820U1 (ru) * 2004-06-15 2005-03-27 Открытое акционерное общество Самарский научно-технический комплекс им. Н.Д. Кузнецова Стенд для испытания газотурбинного двигателя
US6957569B1 (en) * 2004-04-15 2005-10-25 Hamilton Sundstrand Corporation Detection of oil in turbine engine bleed air
US20080121021A1 (en) * 2006-11-27 2008-05-29 Lufthansa Technik Ag Process and apparatus for inspection of an aircraft jet engine for oil leaks
RU2494366C2 (ru) * 2011-11-17 2013-09-27 Открытое акционерное общество "Московское машиностроительное предприятие им. В.В. Чернышёва" Комплекс для отбора проб воздуха
RU2553296C1 (ru) * 2014-03-11 2015-06-10 Открытое акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Устройство для отбора пробы воздуха в кабине летательного аппарата

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1002874A2 (ru) * 1980-01-15 1983-03-07 Всесоюзный научно-исследовательский институт аналитического приборостроения Газоаналитическа система выхлопных газов автомобильных двигателей
SU1642300A1 (ru) * 1989-03-02 1991-04-15 Специализированный Проектно-Изыскательский И Экспериментально-Конструкторский Институт "Гидроспецпроект" Устройство дл отбора проб газов
RU2006021C1 (ru) * 1992-10-13 1994-01-15 Рязанское высшее военное автомобильное инженерное училище Устройство для отбора проб газа из цилиндра двигателя внутреннего сгорания
US6957569B1 (en) * 2004-04-15 2005-10-25 Hamilton Sundstrand Corporation Detection of oil in turbine engine bleed air
RU44820U1 (ru) * 2004-06-15 2005-03-27 Открытое акционерное общество Самарский научно-технический комплекс им. Н.Д. Кузнецова Стенд для испытания газотурбинного двигателя
US20080121021A1 (en) * 2006-11-27 2008-05-29 Lufthansa Technik Ag Process and apparatus for inspection of an aircraft jet engine for oil leaks
RU2494366C2 (ru) * 2011-11-17 2013-09-27 Открытое акционерное общество "Московское машиностроительное предприятие им. В.В. Чернышёва" Комплекс для отбора проб воздуха
RU2553296C1 (ru) * 2014-03-11 2015-06-10 Открытое акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Устройство для отбора пробы воздуха в кабине летательного аппарата

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662763C1 (ru) * 2017-09-12 2018-07-30 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Способ оценки средних за полёт концентраций токсичных примесей в воздухе гермокабин летательных аппаратов и в воздухе, поступающем от компрессоров газотурбинных двигателей, и устройство для его осуществления
CN108732308A (zh) * 2018-05-11 2018-11-02 南京信息工程大学 一种基于八旋翼无人机的气体测量装置
CN108732308B (zh) * 2018-05-11 2023-05-26 南京信息工程大学 一种基于八旋翼无人机的气体测量装置
RU2681192C1 (ru) * 2018-06-09 2019-03-04 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Устройство для отбора средней за полёт пробы воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях
RU2717458C1 (ru) * 2019-06-27 2020-03-23 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Устройство автоматического отбора проб воздуха для последующего анализа на содержание слабоадсорбирующихся газов в кабинах летательных аппаратов и от авиационных газотурбинных двигателей
RU202816U1 (ru) * 2020-10-02 2021-03-09 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный университет" Министерства обороны Российской Федерации Система диагностики состояния цилиндропоршневой группы дизелей бронетанкового вооружения и военной автомобильной техники

Similar Documents

Publication Publication Date Title
RU2624159C1 (ru) Устройство для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях
US5458010A (en) Vacuum dilution extraction gas sampling system
EP1718946B1 (en) Adapter for low volume air sampler
CA2088030C (en) Method and apparatus for the automated testing of vehicle fuel evaporation control systems
US20080156073A1 (en) Systems and methods for measurement and analysis of pipeline contaminants
RU2553296C1 (ru) Устройство для отбора пробы воздуха в кабине летательного аппарата
EP0882227A1 (en) Method and apparatus for providing diluted exhaust gas to exhaust emission analyzer
CN108007699A (zh) 一种模块化的机动车尾气污染物车载排放测试平台
RU2625234C1 (ru) Устройство для отбора проб воздуха в мотогондолах авиационных газотурбинных двигателей
CN109655317B (zh) 基于动态稀释法的机动车尾气车载测试平台及采样方法
CN109765084A (zh) 一种烟气分级采样***及其采样方法
RU2527980C1 (ru) Способ отбора проб высокотемпературных газов и устройство для его реализации
CN206208862U (zh) 一种用于锅炉高灰烟气成分测试的***
US7533585B2 (en) Dilution device
CN108801718A (zh) 一种船用尾气在线监测***
AU753085B3 (en) Assembly and method for mixing gases
CN106405015A (zh) 一种用于锅炉高灰烟气成分测试的***
WO2002071030A1 (en) Particulate and gaseous emission testing method and apparatus
RU125704U1 (ru) Устройство для концентрирования примесей воздуха авиационных газотурбинных двигателей
EP2097731A1 (en) Systems and methods for measurement and analysis of pipeline contaminants
RU2662763C1 (ru) Способ оценки средних за полёт концентраций токсичных примесей в воздухе гермокабин летательных аппаратов и в воздухе, поступающем от компрессоров газотурбинных двигателей, и устройство для его осуществления
RU2681192C1 (ru) Устройство для отбора средней за полёт пробы воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях
CN110579379B (zh) 一种机动车尾气柔性采样***及采样方法
CN114216687B (zh) 一种汽车发动机国六排放认证的装置及方法
RU2694371C1 (ru) Способ оценки градиента токсичных примесей в воздухе гермокабин летательных аппаратов и устройство для его осуществления