RU2624144C1 - Комплексная аппаратура для исследования нефтегазовых скважин и способ регистрации полученных данных - Google Patents

Комплексная аппаратура для исследования нефтегазовых скважин и способ регистрации полученных данных Download PDF

Info

Publication number
RU2624144C1
RU2624144C1 RU2016118454A RU2016118454A RU2624144C1 RU 2624144 C1 RU2624144 C1 RU 2624144C1 RU 2016118454 A RU2016118454 A RU 2016118454A RU 2016118454 A RU2016118454 A RU 2016118454A RU 2624144 C1 RU2624144 C1 RU 2624144C1
Authority
RU
Russia
Prior art keywords
probe
oil
gas wells
probes
sgk
Prior art date
Application number
RU2016118454A
Other languages
English (en)
Inventor
Виктор Иванович Борисов
Любовь Константиновна Борисова
Алексей Владимирович Кондрашов
Рустам Равилович Куйбышев
Александр Андреевич Крысов
Тагир Сахабович Мамлеев
Виталий Никифорович Даниленко
Владислав Витальевич Даниленко
Виталий Иванович Шамшин
Сергей Александрович Хан
Александр Петрович Потапов
Original Assignee
Публичное акционерное общество "Газпром"
Публичное акционерное общество Научно-производственное предприятие "Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин"
Акционерное общество Научно-производственная фирма "Геофизические исследования, технология, аппаратура, сервис"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Газпром", Публичное акционерное общество Научно-производственное предприятие "Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин", Акционерное общество Научно-производственная фирма "Геофизические исследования, технология, аппаратура, сервис" filed Critical Публичное акционерное общество "Газпром"
Priority to RU2016118454A priority Critical patent/RU2624144C1/ru
Application granted granted Critical
Publication of RU2624144C1 publication Critical patent/RU2624144C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/10Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Использование: для исследования нефтегазовых скважин. Сущность изобретения заключается в том, что комплексная аппаратура для исследования нефтегазовых скважин включает модуль ядерного каротажа, содержащий спектрометрические зонды с детекторами гамма-излучения радиационного захвата – СНГК, зонды с детекторами тепловых нейтронов - ННК-Т и спектрометрический зонд с детектором естественной радиоактивности - СГК, а также модуль электромагнитного дефектоскопа - ЭД. В процессе работы производят регистрацию интенсивностей гамма-излучения с помощью модуля СНГК и зонда СГК с одновременной периодической регистрацией ЭДС, наведенной в приемной катушке ЭД вихревыми токами, возбуждаемыми в стальных трубах процессом спада электромагнитного поля, вызванного зондирующим импульсом тока намагничивания генераторной катушки, при этом зарегистрированные сигналы модуля СНГК и зонда СГК накапливают, разбивают на фрагменты данных и передают их на поверхность в период каждого цикла подачи зондирующих импульсов тока намагничивания генераторной катушки, после чего фрагменты данных восстанавливают в единый массив в наземной станции. Технический результат: повышение достоверности исследования нефтегазовых скважин. 2 н. и 4 з.п. ф-лы, 3 ил.

Description

Группа изобретений относится к области прикладной ядерной геофизики и может быть использована в нефтегазодобывающей отрасли при решении вопросов эксплуатации и ремонта скважин нефтегазовых месторождений и подземных хранилищ газа (ПХГ).
Известна комплексная спектрометрическая аппаратура ядерного каротажа, включающая спектрометр естественной радиоактивности (СГК) и два широкодиапазонных спектрометра гамма-излучения радиационного захвата (СНГК-Ш), что позволяет одновременно выполнять измерения СГК, 2ННК и 2 СНГК-Ш за одну спуско-подъемную операцию (Комплексная спектрометрическая аппаратура ядерного каротажа для исследования нефтегазовых скважин / Крысов А.А. Мамлеев Т.С. Кулешова Г.С., Зараменских Н.М., Даниленко В.Н., Борисов В.И. // Научный симпозиум «Новые геофизические технологии для нефтяной промышленности»: Тезисы докладов. - Уфа. - 2003. - С. 128).
Недостатком аналога является отсутствие в его составе методов для диагностики технического состояния колонн, заполнения внутрискважинного пространства, недостаточное количество зондов СНГК для осуществления зондирования прискважинной зоны в условиях многоколонной конструкции скважины и пониженная достоверность плотности потока тепловых нейтронов, определяемая по интенсивности борного пика-конвертора в условиях минерализованных пластовых вод и соленосных толщах.
Известен также контрольно-измерительный комплекс для исследования технического состояния действующих скважин (патент РФ на полезную модель №135357. МПК E21B 47/00, E21B 47/005. Контрольно-измерительный комплекс для исследования технического состояния действующих скважин. Заявл. 01.04.2013. Опубл. 10.12.2013).
Известный комплекс содержит каротажную систему с набором соединяемых друг с другом геофизических модулей гамма-каротажа, нейтронного каротажа, нейтронного гамма-каротажа, нейтрон-нейтронного каротажа и импульсного нейтронного каротажа, позволяющего осуществить контроль качества цементного камня в межколонном и заколонном пространствах и выявление техногенных скоплений газа в пустотах и полостях цементного камня.
Недостатком данного аналога также является отсутствие в его составе средств для диагностики технического состояния колонн и заполнения внутрискважинного пространства. Еще одним недостатком аппаратуры является реализация многометодных нейтронных измерений при однозондовой системе и использование нейтронной модификации по хлору. Однозондовые измерения, выполненные различными методами, требуют дополнительной увязки в связи с различием физических основ методов, что при неконтролируемых вариациях условий измерений может привести к снижению достоверности получаемых результатов из-за возникновения неоднозначных ситуаций. Использование нейтронной модификации по хлору в любом варианте (импульсном или стационарном) эффективно только в условиях минерализованных пластовых вод, содержащих ионы хлора. Кроме того, эта модификация СНГК уступает широкодиапазонной по информативности, так как изначально настроена на различие пресных и минерализованных флюидов. Вариант хлорного каротажа с импульсным источником нейтронов значительно превосходит вариант со стационарным источником по стоимости. Практическая реализация всех модулей данного аналога для изучения прискважинной зоны в единой связке скважинных модулей приведет к значительному увеличению размеров по длине скважинного прибора, что затруднит выполнение каротажных исследований через шлюзовое оборудование на устье скважины.
В качестве прототипа выбрана наиболее близкая по сущности комплексная спектрометрическая аппаратура ядерного каротажа, включающая зонд, содержащий детектор естественной радиоактивности (СГК) и детекторы гамма-излучения радиационного захвата (СНГК), развернутые от детекторов тепловых нейтронов в разные стороны по оси прибора относительно общего закрытого источника быстрых нейтронов (ЗРнИ) (патент РФ на полезную модель №127487. МПК G01V 5/00. Комплексная спектрометрическая аппаратура ядерного каротажа. Заявл. 04.12.2012. Опубл. 27.04.2012).
Недостатком прототипа, так же как и аналогов, является отсутствие в его составе средств и методов для диагностики технического состояния колонн, заполнения внутрискважинного пространства, а также недостаточное количество зондов СНГК для осуществления нейтронного зондирования прискважинной зоны в условиях многоколонной конструкции.
Техническим результатом, получаемым предложенной группой изобретений, является повышение достоверности решения геолого-технических задач за счет возможности одновременного получения информации об околоскважинной среде при помощи нейтронного зондирования прискважинной зоны и данных диагностики технического состояния скважины при помощи электромагнитного дефектоскопа.
Указанный технический результат достигается тем, что заявленная комплексная аппаратура для исследования нефтегазовых скважин, включающая модуль ядерного каротажа, содержащий спектрометрические зонды с детекторами гамма-излучения радиационного захвата - СНГК и зонды с детекторами тепловых нейтронов - ННК-Т, имеющими общий закрытый радионуклидный источник быстрых нейтронов, и удаленно расположенный спектрометрический зонд с детектором естественной радиоактивности - СГК, в отличие от известной снабжена модулем электромагнитного дефектоскопа, соединенным с модулем ядерного каротажа стыковочным узлом и функционально связанным с ним проводной связью и с общей электронной схемой, содержащей контроллер-ретранслятор передачи данных на поверхность, при этом измерительные схемы указанных модулей снабжены выходными контроллерами, связанными с контроллером-ретранслятором, обеспечивающим накопление в памяти, усиление сигналов, их оцифровку и разбивку на фрагменты данных модуля ядерного каротажа и зонда СГК для передачи на поверхность.
При этом модуль ядерного каротажа содержит три зонда СНГК, а зонд СГК помещен в кожухе модуля электромагнитного дефектоскопа, который содержит высокочувствительный термометр и датчик давления.
Кроме того, сборка комплексной аппаратуры снабжена верхним, средним и нижним центраторами.
Указанный технический результат достигается тем, что заявленный способ передачи данных комплексной аппаратуры для исследования нефтегазовых скважин включает спуск в скважину комплексной аппаратуры, содержащей модуль ядерного каротажа, имеющий в своем составе спектрометрические зонды с детекторами гамма-излучения радиационного захвата - СНГК и зонды с детекторами тепловых нейтронов - ННК-Т, а также спектрометрический зонд с детекторами естественной радиоактивности - СГК, осуществление накопления спектров СНГК и СГК и счета тепловых нейтронов ННК-Т и передачу накопленных параметров по каротажному кабелю на поверхность, при этом модуль ядерного каротажа снабжают модулем электромагнитного дефектоскопа, функционально связанным с ним и с общей электронной схемой передачи данных на поверхность, и производят регистрацию интенсивностей гамма-излучения с помощью модуля ядерного каротажа и зонда СГК с одновременной периодической регистрацией ЭДС, наведенной в приемной катушке электромагнитного дефектоскопа вихревыми токами, возбуждаемыми в стальных трубах процессом спада электромагнитного поля, вызванного зондирующим импульсом тока намагничивания в генераторной катушке, а периодическую регистрацию ЭДС осуществляют с постоянной частотой циклов записи и передачи данных на поверхность, при этом цифровые зарегистрированные сигналы модуля ядерного каротажа и зонда СГК накапливают, разбивают на фрагменты данных и передают их на поверхность в период каждого цикла подачи зондирующих импульсов тока намагничивания в генераторной катушке, после чего фрагменты данных восстанавливают в единый массив в наземной станции.
Периодическую регистрацию ЭДС осуществляют с постоянной частотой циклов записи и передачи данных на поверхность, равной четырем герцам.
Программно задают контроллеру-ретранслятору режим переключения временных интервалов между циклами подачи зондирующих импульсов тока намагничивания генераторной катушки.
На фиг. 1 изображена модульная схема комплексной аппаратуры для исследования нефтегазовых скважин.
На фиг. 2 представлена принципиальная электронная схема передачи данных на поверхность.
На фиг. 3 изображен спад возбуждаемого тока в генераторной катушке электромагнитного дефектоскопа.
Комплекс аппаратуры для исследования нефтегазовых скважин содержит нижний модуль ядерного каротажа, включающий три спектрометрических зонда с детекторами гамма-излучения радиационного захвата (СНГК) - большой зонд 1, средний зонд 2 и малый зонд 3, и два зонда с детекторами тепловых нейтронов (ННК-Т) - большой зонд 4, малый зонд 5, имеющие общий закрытый радионуклидный источник быстрых нейтронов 6 и размещенные в одном охранном кожухе 7, который посредством стыковочного узла 8 с центратором 9 соединен с охранным кожухом 10 верхнего модуля, в котором размещены большой 11 и малый 12 зонды электромагнитного дефектоскопа с генераторной катушкой 13, а также зонд СГК 14, высокочувствительный датчик термометра 15 и датчик давления 16. Охранные кожухи 7 и 10 помимо среднего центратора 9 снабжены верхним 17 и нижним 18 центраторами.
При этом измерительные схемы нижнего и верхнего модулей (фиг. 2) снабжены выходными контроллерами 19 и 20, соединенными проводным каналом связи 21 с общей электронной схемой передачи данных 22, в которую введен контроллер-ретранслятор 23, обеспечивающий накопление, усиление сигналов, их оцифровку и разбивку данных с модуля ядерного каротажа на фрагменты для передачи по каротажному кабелю 24 на поверхность через регистратор 25 в компьютер 26.
Сущность предложенного способа раскрывается при описании работы устройства.
Перед работой нижний и верхний модули в охранных кожухах 7 и 10 соединяют стыковочным узлом 8 и на каротажном кабеле 24 спускают в скважину. При этом стыковочный узел 8 через проводной канал 21 обеспечивает электрический контакт проводной связи между выходом 19 электронной схемы модуля ядерного каротажа и выходом 20 электронной схемы модуля электромагнитного дефектоскопа и СГК с общей электронной схемой передачи данных 22. Центраторы 9, 17 и 18 обеспечивают надежное центрирование комплексного прибора в скважине в процессе каротажа.
Во время работы комплексного прибора осуществляется регистрация и накопление спектров зондов 1, 2, 3 СНГК, зонда 14 СГК и счета тепловых нейтронов зондов 4 и 5 ННК-Т, усиление полученных сигналов, их оцифровка и разбивка данных на фрагменты для передачи на поверхность. Одновременно производят периодическую регистрацию ЭДС, наведенной в приемных катушках 11 и 12 электромагнитного дефектоскопа вихревыми токами, возбуждаемыми в стальных трубах процессом спада электромагнитного поля, в результате воздействия зондирующего импульса тока намагничивания генераторной катушки 13, а также показаний термометра 15 и датчика давления 16. Эти измерения выполняются с постоянной частотой циклов записи и передачи данных на поверхность, равной четырем герцам.
Контроллеру-ретранслятору 23 программно задают режим переключения временных интервалов между циклами подачи зондирующих импульсов тока намагничивания генераторной катушки 13.
Передача фрагментированных данных ядерного каротажа (СНГК, ННК-Т и СГК) на поверхность осуществляется в период каждого цикла подачи зондирующих импульсов тока намагничивания генераторной катушки 13 с помощью общей электронной схемы 22 передачи данных на поверхность по кабелю 24 в регистратор 25. Единый массив данных ядерного каротажа восстанавливается из переданных фрагментов в наземном блоке аппаратуры.
Принцип работы электромагнитного дефектоскопа известен, в частности представлен в пат. РФ №2372478.
По генераторной катушке 13 пропускают переменный ток, возбуждающий в окружающей стальной трубе круговые вихревые токи, наводящие ЭДС в приемных катушках 11 и 12. При прохождении приемных катушек мимо дефектов в стенке колонны отмечаются характерные изменения магнитного поля.
На фиг. 3 показана кривая спада возбуждаемого тока. Период передачи данных ядерного каротажа (СНГК, ННК-Т и СГК) отмечен точками I-I. При этом импульс генерируемого тока имеет вид прямой линии. Далее происходит регистрация данных с зондов модуля электромагнитного каротажа, при этом сигналы, получаемые в обмотках приемных катушек 11 и 12, имеют форму экспоненциальных спадов, которые несут информацию о наличии или отсутствии дефектов металлических колонн.
Известно, что увеличение количества колонн в скважине, а также их утолщение, в частности, в интервалах муфтовых соединений приводит к уменьшению интенсивностей показаний зонда СГК и зондов СНГК, ННК-Т независимо от длины зондовой установки, поскольку стальные колонны, так же как муфтовые соединения и другие конструктивные элементы скважины, характеризуются высокой плотностью по сравнению с горной породой, цементным камнем и скважинным флюидом (Филиппов Е.Н. Ядерная разведка полезных ископаемых. Справочник. - Киев: Наукова думка, 1978).
Кроме того, основной элемент стальных колонн - железо, является радиационно-активным с высоким сечением рассеяния и поглощения нейтронов и значительным количеством линий гамма-излучения радиационного захвата.
Таким образом, диагностика технического состояния колонн с определением их толщины, выполняемая электромагнитным дефектоскопом, позволяют внести коррективы в пространственное распределение нейтронов и гамма-квантов и способствует повышению достоверности решения геолого-технических задач ядерными методами.
На показания нейтронных методов существенно влияет характер заполнения ствола скважины, поскольку водород, входящий в большом количестве в жидкостные флюиды, является радиационно-активным элементом. Поэтому заявленная комплексная аппаратура по сравнению с прототипом дополнена высокочувствительным термометром и датчиком давления, позволяющими получать информацию о характере заполнения ствола скважины.
Для осуществления зондирования прискважинной зоны нейтронными методами в условиях многоколонной конструкции скважины в комплексную аппаратуру дополнительно введен третий зонд СНГК, что в комплексе с двухзондовым исполнением ННК-Т обеспечивает зондирование прискважинной зоны на основании вариаций ядерных свойств прискважинного пространства.
Такая вариация позволяет расширить область применения ядерных методов для решения целого ряда геолого-технических задач, связанных с динамикой физико-химических процессов в прискважинной зоне, таких как выявление зон подвижного пластового флюида, определение радиальной зоны обводнения коллекторов, оценка степени заполнения заколонного и межколонного пространства цементным камнем и другие.
Технологическая программа, используемая для регистрации данных предлагаемого комплекса аппаратуры для исследования нефтегазовых скважин, позволяет оператору одновременно наблюдать все регистрируемые параметры в режиме реального времени с привязкой данных по глубине, включая спектры и спады магнитоимпульсной дефектоскопии, интегральные показания всех детекторов и технологические данные.

Claims (6)

1. Комплексная аппаратура для исследования нефтегазовых скважин, включающая модуль ядерного каротажа, содержащий спектрометрические зонды с детекторами гамма-излучения радиационного захвата - СНГК и зонды с детекторами тепловых нейтронов - ННК-Т, имеющими общий закрытый радионуклидный источник быстрых нейтронов, и удаленно расположенный спектрометрический зонд с детектором естественной радиоактивности - СГК, отличающаяся тем, что она снабжена модулем электромагнитного дефектоскопа, соединенным с модулем ядерного каротажа стыковочным узлом и функционально связанным с ним проводной связью и с общей электронной схемой, содержащей контроллер-ретранслятор для передачи данных на поверхность, при этом измерительные схемы указанных модулей снабжены выходными контроллерами, связанными с контроллером-ретранслятором, обеспечивающим накопление в памяти, усиление сигналов, их оцифровку и разбивку на фрагменты данных модуля ядерного каротажа и зонда СГК для передачи на поверхность.
2. Комплексная аппаратура для исследования нефтегазовых скважин по п. 1, отличающаяся тем, что модуль ядерного каротажа содержит три зонда СНГК, а зонд СГК помещен в кожухе модуля электромагнитного дефектоскопа, который содержит высокочувствительный термометр и датчик давления.
3. Комплексная аппаратура для исследования нефтегазовых скважин по п. 1, отличающаяся тем, что сборка комплексной аппаратуры снабжена верхним, средним и нижним центраторами.
4. Способ передачи данных комплексной аппаратуры для исследования нефтегазовых скважин, включающий спуск в скважину комплексной аппаратуры, содержащей модуль ядерного каротажа, имеющий в своем составе спектрометрические зонды с детекторами гамма-излучения радиационного захвата - СНГК, зонды с детекторами тепловых нейтронов - ННК-Т и спектрометрический зонд с детекторами естественной радиоактивности - СГК, осуществление накопления спектров СНГК и СГК и счета тепловых нейтронов ННК-Т и передачу накопленных параметров по каротажному кабелю на поверхность, отличающийся тем, что модуль ядерного каротажа снабжают модулем электромагнитного дефектоскопа, функционально связанным с ним и с общей электронной схемой передачи данных на поверхность, и производят регистрацию интенсивностей гамма-излучения с помощью модуля ядерного каротажа и зонда СГК с одновременной периодической регистрацией ЭДС, наведенной в приемной катушке электромагнитного дефектоскопа вихревыми токами, возбуждаемыми в стальных трубах процессом спада электромагнитного поля, вызванного зондирующим импульсом тока намагничивания генераторной катушки, при этом периодическую регистрацию ЭДС осуществляют с постоянной частотой циклов записи и передачи данных на поверхность, а цифровые зарегистрированные сигналы модуля ядерного каротажа и зонда СГК накапливают, разбивают на фрагменты данных и передают их на поверхность в период каждого цикла подачи зондирующих импульсов тока намагничивания генераторной катушки, после чего фрагменты данных восстанавливают в единый массив в наземной станции.
5. Способ передачи данных комплексной аппаратуры для исследования нефтегазовых скважин по п. 4, отличающийся тем, что периодическую регистрацию ЭДС осуществляют с постоянной частотой циклов записи и передачи данных на поверхность, равной четырем герцам.
6. Способ передачи данных комплексной аппаратуры для исследования нефтегазовых скважин по п. 4, отличающийся тем, что программно задают контроллеру-ретранслятору режим переключения временных интервалов между циклами подачи зондирующих импульсов тока намагничивания в генераторной катушке.
RU2016118454A 2016-05-11 2016-05-11 Комплексная аппаратура для исследования нефтегазовых скважин и способ регистрации полученных данных RU2624144C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016118454A RU2624144C1 (ru) 2016-05-11 2016-05-11 Комплексная аппаратура для исследования нефтегазовых скважин и способ регистрации полученных данных

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016118454A RU2624144C1 (ru) 2016-05-11 2016-05-11 Комплексная аппаратура для исследования нефтегазовых скважин и способ регистрации полученных данных

Publications (1)

Publication Number Publication Date
RU2624144C1 true RU2624144C1 (ru) 2017-06-30

Family

ID=59312515

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016118454A RU2624144C1 (ru) 2016-05-11 2016-05-11 Комплексная аппаратура для исследования нефтегазовых скважин и способ регистрации полученных данных

Country Status (1)

Country Link
RU (1) RU2624144C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320224A (zh) * 2019-08-08 2019-10-11 中国科学技术大学 混凝土探伤装置与探伤仪
RU2703051C1 (ru) * 2019-02-18 2019-10-15 Общество с ограниченной ответственностью "Инновационные нефтегазовые технологии" (ООО "ИНГТ") Способ контроля герметичности муфтовых соединений эксплуатационной колонны и выявления за ней интервалов скоплений газа в действующих газовых скважинах стационарными нейтронными методами
CN112216091A (zh) * 2020-11-17 2021-01-12 华南蓝天航空油料有限公司广东分公司 一种机坪供油附属设施******

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886355A (en) * 1971-05-24 1975-05-27 Dresser Ind Method and apparatus for logging well boreholes with gamma rays from the inelastic scattering of fast neutrons
SU486709A1 (ru) * 1973-08-09 1976-04-25 Всесоюзный Научно-Исследовательский Институт Ядерной Геофизики И Геохимии Способ проведени импульсного нейтронного каротажа
SU525038A1 (ru) * 1974-07-01 1976-08-15 Всесоюзный Научно-Исследовательский Институт Ядерной Геофизики И Геохимии Устройство дл проведени комплекса методов импульсного нейтронного каротажа
RU2232409C1 (ru) * 2003-03-24 2004-07-10 Общество с ограниченной ответственностью "Союзпромгеофизика" Способ определения текущей нефте- и газонасыщенности коллекторов в обсаженных скважинах и устройство для его осуществления
US20080114547A1 (en) * 2004-04-30 2008-05-15 Schlumberger Technology Corporation Method and System for Determining Hydrocarbon Properties
RU127487U1 (ru) * 2012-12-04 2013-04-27 Закрытое акционерное общество Научно-производственная фирма "ГИТАС" (ЗАО НПФ "ГИТАС") Комплексная спектрометрическая аппаратура ядерного каротажа

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886355A (en) * 1971-05-24 1975-05-27 Dresser Ind Method and apparatus for logging well boreholes with gamma rays from the inelastic scattering of fast neutrons
SU486709A1 (ru) * 1973-08-09 1976-04-25 Всесоюзный Научно-Исследовательский Институт Ядерной Геофизики И Геохимии Способ проведени импульсного нейтронного каротажа
SU525038A1 (ru) * 1974-07-01 1976-08-15 Всесоюзный Научно-Исследовательский Институт Ядерной Геофизики И Геохимии Устройство дл проведени комплекса методов импульсного нейтронного каротажа
RU2232409C1 (ru) * 2003-03-24 2004-07-10 Общество с ограниченной ответственностью "Союзпромгеофизика" Способ определения текущей нефте- и газонасыщенности коллекторов в обсаженных скважинах и устройство для его осуществления
US20080114547A1 (en) * 2004-04-30 2008-05-15 Schlumberger Technology Corporation Method and System for Determining Hydrocarbon Properties
RU127487U1 (ru) * 2012-12-04 2013-04-27 Закрытое акционерное общество Научно-производственная фирма "ГИТАС" (ЗАО НПФ "ГИТАС") Комплексная спектрометрическая аппаратура ядерного каротажа

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703051C1 (ru) * 2019-02-18 2019-10-15 Общество с ограниченной ответственностью "Инновационные нефтегазовые технологии" (ООО "ИНГТ") Способ контроля герметичности муфтовых соединений эксплуатационной колонны и выявления за ней интервалов скоплений газа в действующих газовых скважинах стационарными нейтронными методами
CN110320224A (zh) * 2019-08-08 2019-10-11 中国科学技术大学 混凝土探伤装置与探伤仪
CN110320224B (zh) * 2019-08-08 2021-10-01 中国科学技术大学 混凝土探伤装置与探伤仪
CN112216091A (zh) * 2020-11-17 2021-01-12 华南蓝天航空油料有限公司广东分公司 一种机坪供油附属设施******

Similar Documents

Publication Publication Date Title
US10365398B2 (en) Casing inspection using pulsed neutron measurements
US9611736B2 (en) Borehole electric field survey with improved discrimination of subsurface features
CN105122087B (zh) 通过管中子测量方法及其设备、***和使用
EA011470B1 (ru) Способ и устройство для измерения удельной проводимости формации изнутри обсаженной скважины
EA008080B1 (ru) Система и способ для установки и использования устройств в буровых микроскважинах
WO2014035285A1 (en) A method of electromagnetic defectoscopy for multi-string wells and the electromagnetic downhole defectoscope.
RU2624144C1 (ru) Комплексная аппаратура для исследования нефтегазовых скважин и способ регистрации полученных данных
US10495524B2 (en) Apparatus and method for monitoring production wells
Freifeld et al. Recent advances in well-based monitoring of CO2 sequestration
WO2016153475A1 (en) Fiber optic array apparatus, systems, and methods
EP3277922B1 (en) Acoustic source identification apparatus, systems, and methods
US4189638A (en) Water injection profiling by nuclear logging
US11105952B2 (en) Systems and methods for determining the presence of cement behind at least one casing using spectroscopy measurement
RU2372478C1 (ru) Электромагнитный скважинный дефектоскоп
Steingrimsson Geothermal well logging: Geological wireline logs and fracture imaging
RU2515752C1 (ru) Способ выявления технологических каверн в газоотдающих коллекторах газонаполненных скважин
Bristow et al. A new temperature, capacitive-resistivity, and magnetic-susceptibility borehole probe for mineral exploration, groundwater, and environmental applications
RU2215143C2 (ru) Электромагнитный скважинный дефектоскоп
RU160808U1 (ru) Комплексная геофизическая аппаратура
RU2789613C1 (ru) Комплексная аппаратура импульсного мультиметодного нейтронного каротажа для промыслово-геофизических исследований обсаженных газовых и нефтегазовых скважин
Zemke et al. Monitoring of well integrity by magnetic imaging defectoscopy (MID) at the Ketzin pilot site, Germany
RU2507394C1 (ru) Способ контроля коррозионного состояния обсадных колонн скважин
Kamble et al. Electrical resistivity logging for assessing nature of foundation at Kaiga nuclear power plant
RU2693073C1 (ru) Способ мониторинга и контроля над разработкой месторождений нефти методом внутрипластового горения
RU31659U1 (ru) Устройство спектрометрического гамма-каротажа скважин