RU2623667C1 - Способ навигационных астрономических измерений координат местоположения подвижного объекта и устройство для его реализации - Google Patents

Способ навигационных астрономических измерений координат местоположения подвижного объекта и устройство для его реализации Download PDF

Info

Publication number
RU2623667C1
RU2623667C1 RU2016114939A RU2016114939A RU2623667C1 RU 2623667 C1 RU2623667 C1 RU 2623667C1 RU 2016114939 A RU2016114939 A RU 2016114939A RU 2016114939 A RU2016114939 A RU 2016114939A RU 2623667 C1 RU2623667 C1 RU 2623667C1
Authority
RU
Russia
Prior art keywords
coordinates
satellite
software
output
earth
Prior art date
Application number
RU2016114939A
Other languages
English (en)
Inventor
Станислав Николаевич Кузнецов
Николай Михайлович Расолько
Original Assignee
Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт Войск воздушно-космической обороны Минобороны России" (ФГБУ "ЦНИИ ВВКО Минобороны России")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт Войск воздушно-космической обороны Минобороны России" (ФГБУ "ЦНИИ ВВКО Минобороны России") filed Critical Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт Войск воздушно-космической обороны Минобороны России" (ФГБУ "ЦНИИ ВВКО Минобороны России")
Priority to RU2016114939A priority Critical patent/RU2623667C1/ru
Application granted granted Critical
Publication of RU2623667C1 publication Critical patent/RU2623667C1/ru

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к области навигационного приборостроения и может найти применение для определения координат местоположения подвижного объекта, например летательного аппарата (ЛА). Технический результат – повышение точности. Для этого в качестве источников подвижных объектов используют искусственные спутники Земли (ИСЗ). При этом способ включает измерение зенитных углов пеленгуемых ИСЗ, приведение измеренного зенитного угла к центральному зенитному углу, вычисление по измеренному и приведенному углу и координатам ИСЗ координат местоположения подвижного объекта. Предлагаемые способ и устройство позволяют повысить точность определения координат подвижного объекта - ЛА в 1,9-2 раза, а также в 2-2,5 раза уменьшить время пеленгации для достижения требуемой точности (1,85 км). 2 н.п. ф-лы, 2 ил.

Description

Область техники.
Изобретение относится к области навигации, конкретно к способам навигационных астрономических измерений координат местоположения подвижного объекта (ПО) и устройствам для его реализации.
Уровень техники.
Известны способы и устройства навигационных астрономических измерений координат местоположения ПО /1-4/.
Наиболее близким из известных по назначению и технической сущности является способ астрономических навигационных измерений /1/, основанный на стабилизации астротелескопа относительно местной вертикали, пеленгации навигационной звезды, измерений курсового угла звезды и вычисления курса ПО.
Недостатками данного способа и устройства является низкая точность измерения координат местоположения ПО из-за низкой точности и информативности пеленгации астроориентиров (звезд).
Задачей и техническим результатом настоящего изобретения является повышение точности навигационных измерений координат местоположения ПО.
Сущность изобретения.
Решение поставленной задачи и достижение заявленного технического результата обеспечивается тем, что способ навигационных астрономических измерений координат местоположения подвижного объекта основан на стабилизации астротелескопа, установленного на подвижном объекте относительно местной вертикали, пеленгации астротелескопом не менее трех источников навигации (астроориентиров), измерении их текущих угловых координат относительно текущей местной вертикали астротелескопа ПО и вычислении координат местоположения ПО по измеренным значениям зенитных углов источников навигации.
Согласно изобретению в качестве источников навигации для ПО используют искусственные спутники земли (ИСЗ) с известными текущими координатами Xc, Yc, Zc, производят их автосопровождение астротелескопом ПО, измеряют текущие зенитные углы bc каждого ИСЗ относительно нормали гиростабилизированной платформы ПО, переводят измеренные значения зенитных углов bc каждого ИСЗ к центральному зенитному углу b с вершиной в центре Земли и вычисляют координаты ПО согласно выражениям вида:
Figure 00000001
Figure 00000002
где i - порядковый номер ИСЗ;
I - количество наблюдаемых ИСЗ, причем I≥2;
R=X+Y+Z - расстояние от центра Земли до ПО в прямоугольной системе координат;
Rc=Хс+Yc+Zc - расстояние от центра Земли до ИСЗ в прямоугольной системе координат;
Ro=(Xc-X)+(Yc-Y)+(Zc-Z)-расстояние от ПО до ИСЗ в прямоугольной системе координат.
Вывод выражений (1) и (2) осуществляется следующим образом. Согласно фиг. 1 расстояние от центра Земли до ИСЗ можно записать:
Figure 00000003
Figure 00000004
Приравнивая правые части выражений 1 и 2, получим:
Figure 00000005
После преобразования (3) выражение для определения зенитного угла bc примет вид:
Figure 00000006
Из 4 выражение искомой величины R примет вид:
Figure 00000007
Figure 00000008
Figure 00000009
Пересчет прямоугольных координат X, Y, Z в географические F, L, Н возможен путем решения следующей системы уравнений:
Figure 00000010
В соответствии с теоремой косинусов зенитный угол (b) может быть определен согласно фиг. 1 из следующего выражения:
Figure 00000011
Из 9 следует:
Figure 00000012
где OK - расстояние от центра Земли до второго ИСЗ;
F - широта ПО - ЛА в географической системе координат;
L - долгота ПО - ЛА в географической системе координат;
Н - высота полета ПО - ЛА над поверхностью Земли в географической системе координат.
Новыми признаками, обладающими существенными отличиями, являются:
- использование в качестве астроориентира искусственного спутника Земли (ИСЗ);
- приведение измеренного зенитного угла к центральному зенитному углу;
- новые аналитические зависимости вычисления координат подвижного объекта;
- новая схема устройства навигационных астрономических измерений.
Данные признаки обладают существенными отличиями, так как среди известных технических решений предлагаемый способ не обнаружен.
Применение всех новых признаков позволяет повысить точность астрономических навигационных измерений или сократить время пеленгации астроориентира для достижения требуемой точности за счет того, что в качестве астроориентира вместо навигационной звезды используется подвижный объект - ИСЗ, координаты которого известны с высокой точностью.
Указанное утверждение основано на известном факте, что угловая скорость низко- и среднеорбитальных ИСЗ значительно больше углового перемещения звезды, а информативность измерения тем выше, чем больше угловая скорость линии визирования, следовательно, информативность ИСЗ как астроориентира значительно выше, чем навигационной звезды.
Также известно, что точность навигационных измерений и время обработки информации для достижения требуемой точности определяются информативностью измерений, т.е. наблюдаемостью измерений, и она тем выше, чем выше информативность [3].
Описание чертежей
На фиг. 1 изображена схема пеленгации астроориентиров, поясняющая предложенный способ.
На фиг. 2 - блок-схема устройства для реализации способа навигационных астрономических определений.
Сущность предлагаемого способа навигационных астрономических измерений координат местоположения подвижного объекта поясняется с помощью устройства для его реализации и его работе по предлагаемому способу.
Описание устройства, реализующего предлагаемый способ.
Устройство для реализации предлагаемого способа навигационных астрономических измерений координат местоположения подвижного объекта содержит гиростабилизированную платформу 1. Механический выход платформы 1 через систему наведения 2 и следящую систему 3 соединен с механическим входом астротелескопа 4. Электрический вход астротелескопа 4 через следящую систему 3 и систему наведения 2 связан с выходом блока 5 наведения. Первый вход блока 5 связан с внешним источником информации, а второй - с электрическим выходом гиростабилизированной платформы 1. Электрический выход следящей системы 3 связан с первым входом блока 6 вычисления углов, второй вход которого связан с внешним источником информации. Выход блока 6 вычисления углов связан с входом блока 7 вычисления координат, выход которого является выходом 8 предлагаемого устройства.
Работа устройства навигационных астрономических измерений координат местоположения подвижного объекта по предлагаемому способу.
Работа устройства навигационных астрономических измерений координат местоположения подвижного объекта по предлагаемому способу состоит в следующем.
С помощью гиростабилизированной платформы 1 через систему наведения 2 и следящую систему 3 осуществляется стабилизация астротелескопа 4 относительно местной вертикали. В блоке 5 наведения по дополнительной информации о координатах ИСЗ Хс, Yc, Zc и углам ориентации ЛА от гиростабилизированной платформы 1 вычисляются углы наведения bci на ИСЗ, которые поступают в систему наведения 2. Система наведения 2 через следящую систему 3 разворачивает астротелескоп 4 по линии визирования на ИСЗ, который захватывает спутник и с помощью следящей системы 3 сопровождает его. При этом происходит измерение зенитного угла bc ИСЗ, относительно местной вертикали, информация о котором поступает в блок 6 вычисления углов. В блоке 6 вычисления углов осуществляется приведение измеренного зенитного угла bc к центральному зенитному углу b с вершиной в центре Земли. Аналогичным образом производится пеленгация еще одного или двух ИСЗ, в зависимости от необходимости определения двух или трех координат местоположения и измерения их зенитных углов. Информация о зенитных углах bc, и центральных зенитных углах bi i-го ИСЗ поступает в блок 7 вычисления координат, в котором осуществляется определение координат местоположения (X, Y, Z) ПО - ЛА согласно указанных выше выражений (1 и 2).
Ввиду того, что расстояние от ПО - ЛА до ИСЗ значительно меньше расстояния от ПО - ЛА до звезд, поэтому угловая скорость линии визирования ИСЗ выше, что, в свою очередь, повышает информативность и соответственно точность измерений.
Промышленная применимость
Применение предложенного изобретения позволяет повысить точность навигационных астрономических измерений координат местоположения ПО - ЛА за счет увеличения информативности измерений, выполняемых по ПО - ИСЗ. Достоверность повышения точности предлагаемым способом подтверждается указанными выше известными фактами по процессу пеленгации подвижного объекта в сравнении с неподвижным и теорией информативности измерений. Кроме того, авторами проведены сравнительные исследования методом математического моделирования способа изложенного в прототипе и предлагаемого способа при одних и тех же начальных ошибках измерения и условиях. В результате получено, что для ИСЗ с периодом обращения Т=120 мин предложенный способ позволяет повысить точность определения координат ПО - ЛА в 1,9-2 раза, а также в 2-2,5 раза уменьшить время пеленгации для достижения требуемой точности (1,85 км).
Кроме того, данный способ позволяет сократить время пеленгации астроориентира для достижения требуемой точности.
Источники информации
1. И.И. Помыкаев, В.П. Селезнев, Д.А. Дмитроченко. Навигационные приборы и системы. - М.: Машиностроение, 1983, с. 201.
2. В.И. Кузнецов, Т.В. Данилова, Д.М. Косулин. Способ автономной навигации и ориентации космических аппаратов на основе виртуальных измерений зенитных расстояний звезд. Патент №2010144278.
3. В.В. Малышев, М.Н. Красильников, В.И. Карлов. Оптимизация наблюдения и управления летательных аппаратов. - М.: Машиностроение, 1989, 311 с.
4. Авиационные приборы и навигационные системы / Под ред. О.А. Бабича. - М.: ВВИА им. Н. Е. Жуковского.

Claims (9)

1. Способ навигационных астрономических измерений координат местоположения подвижного объекта (ПО), основанный на стабилизации астротелескопа, установленного на ПО относительно местной вертикали, пеленгации астротелескопом не менее трех источников навигации, измерении их текущих угловых координат относительно текущей местной вертикали астротелескопа ПО и вычислении координат местоположения ПО по измеренным значениям зенитных углов источников навигации, отличающийся тем, что в качестве источников навигации для ПО используют искусственные спутники земли (ИСЗ) с известными текущими координатами Хс, Ус, Zc, производят их автосопровождение астротелескопом ПО, измеряют текущие зенитные углы bc каждого ИСЗ относительно нормали гиростабилизированной платформы ПО, переводят измеренные значения зенитных углов bc каждого ИСЗ к центральному зенитному углу b с вершиной в центре Земли и вычисляют координаты ПО согласно выражениям вида:
bci=arcctg(ctg(b)-R/(Rci*sin(b)),
bi=arccos((Rci+R-Ro)/(2Rci*R)),
где i - порядковый номер ИСЗ;
I - количество наблюдаемых ИСЗ, причем I≥2;
R=X+Y+Z - расстояние от центра Земли до ПО в прямоугольной системе координат;
Rc=Хс+Yc+Zc - расстояние от центра Земли до ИСЗ в прямоугольной системе координат;
Ro=(Xc-X)+(Yc-Y)+(Zc-Z) - расстояние от ПО до ИСЗ в прямоугольной системе координат.
2. Устройство для реализации способа по п. 1 содержит гиростабилизированную платформу, механический выход которой через систему наведения и следящую систему соединен с механическим входом астротелескопа, электрический вход которого через следящую систему и систему наведения связан с выходом блока наведения, первый вход которого связан с внешним источником информации, а второй - с электрическим выходом гиростабилизированной платформы, первый вход блока вычисления углов связан с электрическим выходом следящей системы, а второй - с внешним источником информации, выход блока вычисления углов связан с входом блока вычисления координат, выход которого является выходом предлагаемого устройства.
RU2016114939A 2016-04-18 2016-04-18 Способ навигационных астрономических измерений координат местоположения подвижного объекта и устройство для его реализации RU2623667C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016114939A RU2623667C1 (ru) 2016-04-18 2016-04-18 Способ навигационных астрономических измерений координат местоположения подвижного объекта и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016114939A RU2623667C1 (ru) 2016-04-18 2016-04-18 Способ навигационных астрономических измерений координат местоположения подвижного объекта и устройство для его реализации

Publications (1)

Publication Number Publication Date
RU2623667C1 true RU2623667C1 (ru) 2017-06-28

Family

ID=59312359

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016114939A RU2623667C1 (ru) 2016-04-18 2016-04-18 Способ навигационных астрономических измерений координат местоположения подвижного объекта и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2623667C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3417661A1 (de) * 1983-05-13 1984-11-15 Mitsubishi Denki K.K., Tokio/Tokyo System zur regelung der lage eines kuenstlichen satelliten
US5054719A (en) * 1988-10-06 1991-10-08 Aerospatiale Societe Nationale Industrielle Active three-axis attitude control system for a geostationary satellite
RU2318188C1 (ru) * 2006-07-17 2008-02-27 Военно-космическая академия имени А.Ф. Можайского Способ автономной навигации и ориентации космических аппаратов
RU2454631C1 (ru) * 2010-10-28 2012-06-27 Государственное образовательное учреждение высшего профессионального образования Военно-космическая академия имени А.Ф. Можайского Способ автономной навигации и ориентации космических аппаратов на основе виртуальных измерений зенитных расстояний звезд

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3417661A1 (de) * 1983-05-13 1984-11-15 Mitsubishi Denki K.K., Tokio/Tokyo System zur regelung der lage eines kuenstlichen satelliten
US5054719A (en) * 1988-10-06 1991-10-08 Aerospatiale Societe Nationale Industrielle Active three-axis attitude control system for a geostationary satellite
RU2318188C1 (ru) * 2006-07-17 2008-02-27 Военно-космическая академия имени А.Ф. Можайского Способ автономной навигации и ориентации космических аппаратов
RU2454631C1 (ru) * 2010-10-28 2012-06-27 Государственное образовательное учреждение высшего профессионального образования Военно-космическая академия имени А.Ф. Можайского Способ автономной навигации и ориентации космических аппаратов на основе виртуальных измерений зенитных расстояний звезд

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Помыкаев И.И., Селезнев В.П., Дмитроченко Д.А. Навигационные приборы и системы. - М.: Машиностроение, 1983, с. 201. *

Similar Documents

Publication Publication Date Title
Johnson et al. Analysis and testing of a lidar-based approach to terrain relative navigation for precise lunar landing
Germanovitch et al. Autonomous navigation and attitude control of spacecrafts on near-earth circular orbits
CN102928861A (zh) 机载设备用目标定位方法及装置
Mostafa et al. A novel GPS/RAVO/MEMS-INS smartphone-sensor-integrated method to enhance USV navigation systems during GPS outages
CN103335654B (zh) 一种行星动力下降段的自主导航方法
CN112800159B (zh) 地图数据处理方法及装置
CN106443062B (zh) 无人机速度测量方法、装置及无人机
RU2611564C1 (ru) Способ навигации летательных аппаратов
US20140249750A1 (en) Navigational and location determination system
RU2567865C1 (ru) Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов
Stich Geo-pointing and threat location techniques for airborne border surveillance
US10184799B2 (en) Systems and methods for targeting objects of interest in denied GPS environments
CN102607563B (zh) 利用背景天文信息对于航天器进行相对导航的***
RU2515469C1 (ru) Способ навигации летательных аппаратов
RU2515106C2 (ru) Способ наведения беспилотного летательного аппарата
RU2423720C1 (ru) Способ триангуляции целей
RU2623667C1 (ru) Способ навигационных астрономических измерений координат местоположения подвижного объекта и устройство для его реализации
RU2617147C1 (ru) Способ начального ориентирования гироскопической навигационной системы для наземных подвижных объектов
CN103630109A (zh) 一种基于星光折射确定地心矢量的方法
RU2308681C1 (ru) Гироскопическая навигационная система для подвижных объектов
RU2684710C1 (ru) Система коррекции ошибок инс летательного аппарата по дорожной карте местности
KR101391764B1 (ko) 관성항법장치와 토털스테이션 간의 축 일치 방법
RU2378617C1 (ru) Способ космической навигации и устройство для его осуществления
RU2608176C1 (ru) Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов
RU2692945C1 (ru) Способ ориентирования мобильных объектов относительно объекта с известным дирекционным углом

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180419