RU2623252C1 - Пенный массообменный и теплообменный аппарат - Google Patents

Пенный массообменный и теплообменный аппарат Download PDF

Info

Publication number
RU2623252C1
RU2623252C1 RU2016126651A RU2016126651A RU2623252C1 RU 2623252 C1 RU2623252 C1 RU 2623252C1 RU 2016126651 A RU2016126651 A RU 2016126651A RU 2016126651 A RU2016126651 A RU 2016126651A RU 2623252 C1 RU2623252 C1 RU 2623252C1
Authority
RU
Russia
Prior art keywords
working fluid
partition
heat exchange
housing
sublattice
Prior art date
Application number
RU2016126651A
Other languages
English (en)
Inventor
Дмитрий Львович Астановский
Лев Залманович Астановский
Оксана Валерьевна Астановская
Original Assignee
Дмитрий Львович Астановский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Львович Астановский filed Critical Дмитрий Львович Астановский
Priority to RU2016126651A priority Critical patent/RU2623252C1/ru
Application granted granted Critical
Publication of RU2623252C1 publication Critical patent/RU2623252C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/04Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour through foam

Landscapes

  • Gas Separation By Absorption (AREA)

Abstract

Изобретение относится к устройствам для проведения массообменных и теплообменных процессов. Предложен пенный массообменный и теплообменный аппарат, содержащий корпус с патрубками ввода и вывода газа и патрубком ввода рабочей жидкости; группу решеток, горизонтально установленных внутри корпуса по его высоте с разделением внутренней полости корпуса на подрешеточную и надрешеточную зоны; вертикальную замкнутую перегородку, установленную внутри корпуса соосно с ним с образованием между ней и корпусом полости кольцеобразного канала для слива рабочей жидкости, причем решетки закреплены по периметру внутренней поверхности перегородки, а верхний торец перегородки расположен выше верхней решетки и служит его переливным порогом; газоподводящую трубу, имеющую прямолинейный участок, проходящий вертикально вниз вдоль оси корпуса через все решетки; брызгоотделитель, размещенный в надрешеточной зоне, камеру слива рабочей жидкости с патрубком вывода отработанной рабочей жидкости, причем в подрешеточной зоне в полости, образованной нижней решеткой и перегородкой, установлена теплообменная поверхность с патрубками подвода и отвода теплоносителя, размещенными за пределами корпуса, а нижний торец перегородки расположен ниже теплообменной поверхности, кроме того, в камеру слива рабочей жидкости встроен датчик температуры, а на линии подвода теплоносителя к теплообменной поверхности установлен регулятор расхода теплоносителя, управляемый по сигналам от датчика температуры. Технический результат – обеспечение утилизации теплоты обрабатываемых газов чистым теплоносителем непосредственно в пенном аппарате. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к устройствам для проведения массообменных и теплообменных процессов, в том числе для очистки воздуха и промышленных газов от твердых, жидких и газообразных компонентов, и может использоваться в химической, нефтехимической, металлургической и других отраслях промышленности при проведении технологических процессов и для решения экологических проблем методом жидкостной промывки газов.
Пенные аппараты имеют широкое применение для проведения процессов газоочистки, теплообмена и массообмена.
Известен пенный газопромыватель по патенту RU 2316382 С1, МПК 6 В01D 47/02, 2006 г., содержащий корпус, тангенциальный патрубок для подачи загрязненного воздуха и вертикальную цилиндрическую контактно-выхлопную трубу, установленную соосно с корпусом, нижний конец которой помещен внутри корпуса и снабжен лопаточным закручивателем, связанным с нижней частью корпуса, причем закручиватель выполнен, по меньшей мере, с тремя лопатками трапециевидной формы, изогнутыми по спирали Архимеда, а в верхней части контактно-выхлопной трубы установлен влагоотделитель тарельчатого типа, над которым размещен патрубок для выхода очищенного воздуха; предусмотрено, что по мере работы аппарата отработанная рабочая жидкость удаляется и замещается свежей рабочей жидкостью; уровень рабочей жидкости поддерживается с помощью поплавкового регулятора, установленного в нижней части аппарата.
Недостатками известного технического решения являются следующие:
- сложность конструкции;
- принцип работы аппарата основан на инжекции и придании вращательного движения рабочей жидкости потоком закрученного обрабатываемого воздуха; следовательно, на нерасчетных режимах (например, при уменьшении расхода обрабатываемого воздуха) эффективность работы аппарата существенно снижается;
- аппарат не предусматривает возможности проведения массообменных процессов с подводом и/или отводом тепла.
Известно также устройство для очистки запыленных горячих газов и утилизации теплоты по патенту RU №2253504 С1, МПК 6 В01D 47/04, 2004 г., содержащее корпус со сборником рабочей жидкости и патрубками подвода и отвода обрабатываемого газа и рабочей жидкости, каплеуловитель и, по меньшей мере, две ступени газоочистки, расположенные одна под другой, каждая из которых включает насадку из закрепленных в корпусе удлиненных элементов, расположенную под насадкой распределительную решетку и расположенное под распределительной решеткой устройство для подачи рабочей жидкости с отверстиями, ориентированными по газовому потоку; корпус в месте соединения двух ступеней имеет внешние карманы для сбора нагретой рабочей жидкости, карманы вышерасположенной ступени соединены с устройством для подачи рабочей жидкости в нижерасположенной ступени, а под нижней ступенью установлено дополнительное устройство для подачи рабочей жидкости, связанное с напорным трубопроводом; нагретая рабочая жидкость отводится для дальнейшего использования в качестве теплоносителя из карманов нижней секции, а свежая рабочая жидкость подводится к устройству для подачи рабочей жидкости верхней ступени.
Недостатки известного технического решения:
- сложность конструкции;
- так как отводимая из аппарата нагретая рабочая жидкость загрязнена различными компонентами, выделенными из обрабатываемого газа, дальнейшее использование ее в качестве теплоносителя существенно ограничено;
- устройство не предусматривает возможности проведения массообменных процессов с поддержанием оптимальной температуры процесса при выделении или поглощении тепла.
Наиболее близким аналогом заявляемого изобретения, принятым в качестве прототипа, является аппарат для очистки газов по патенту RU №2079344 С1, МПК 6 В01D 47/04, 1995 г., содержащий корпус с патрубками ввода и вывода газа и рабочей жидкости, группу решеток, горизонтально установленных внутри корпуса по его высоте с разделением внутренней полости корпуса на подрешеточную и надрешеточную зоны, вертикальную замкнутую перегородку, установленную внутри корпуса соосно с ним с образованием между ней и корпусом полости камеры слива рабочей жидкости, решетки закреплены по периметру внутренней поверхности перегородки, верхний торец перегородки расположен выше верхней решетки и служит его переливным порогом, а нижний торец перегородки расположен ниже нижней решетки, газоподводящую трубу, имеющую прямолинейный участок, проходящий вертикально вдоль оси корпуса через все решетки, брызгоотделитель, размещенный в надрешеточной зоне, и камеру слива рабочей жидкости,
Данный аппарат имеет следующие недостатки:
- не предусмотрена утилизация теплоты, отбираемой рабочей жидкостью при очистке горячих газов;
- не предусмотрено поддержание температурного режима, оптимального для разделения газов и вредных компонентов, в частности, при протекании экзотермических и эндотермических массообменных процессов;
- не предусмотрено раздельное удаление из аппарата отработанной рабочей жидкости и выделенного твердого осадка (шлама).
Задачей изобретения является обеспечение утилизации теплоты обрабатываемых горячих газов чистым теплоносителем непосредственно в пенном аппарате.
Задачей изобретения является также обеспечение возможности подвода или отвода теплоты к рабочей жидкости при протекании в аппарате соответственно эндотермических или экзотермических массообменных процессов с выделением вредных компонентов или веществ, предназначенных для дальнейшего использования из обрабатываемых газов.
Задачей изобретения является также обеспечение возможности поддержания в аппарате оптимального для протекающих массообменных процессов температурного режима.
Задачей изобретения является также обеспечение возможности раздельного вывода из аппарата твердого осадка (шлама) и отработанной рабочей жидкости, содержащей выделенные из обрабатываемых газов газообразные и жидкие компоненты.
Поставленные задачи решены тем, что в пенном массообменном и теплообменном аппарате, содержащем: корпус с патрубками ввода и вывода газа и патрубком ввода рабочей жидкости; группу решеток, горизонтально установленных внутри корпуса по его высоте с разделением внутренней полости корпуса на подрешеточную и надрешеточную зоны; вертикальную замкнутую перегородку, установленную внутри корпуса соосно с ним с образованием между ней и корпусом кольцеобразного канала для слива рабочей жидкости, причем решетки закреплены по периметру внутренней поверхности перегородки, а верхний торец перегородки расположен выше верхней решетки и служит его переливным порогом; газоподводящую трубу, имеющую прямолинейный участок, проходящий вертикально вниз вдоль оси корпуса через все решетки; брызгоотделитель, размещенный в надрешеточной зоне; присоединенное к нижней части корпуса и выполненное преимущественно в виде опрокинутого конуса днище с патрубком вывода отработанной рабочей жидкости, образующее вместе с нижней частью корпуса камеру слива рабочей жидкости; в подрешеточной зоне в полости, образованной нижней решеткой и перегородкой, установлена теплообменная поверхность с патрубками подвода и отвода теплоносителя, размещенными за пределами корпуса, а нижний торец перегородки расположен ниже теплообменной поверхности.
Кроме того, с целью поддержания в аппарате оптимального для протекающих в нем массообменных процессов температурного режима в камеру слива рабочей жидкости встроен датчик температуры, а на линии подвода теплоносителя к теплообменной поверхности установлен регулятор расхода теплоносителя, управляемый по сигналам от датчика температуры, что позволяет поддерживать требуемую температуру рабочей жидкости.
Кроме того, если аппарат предназначен для очистки газов от выпадающих в осадок твердых частиц, он дополнительно снабжен размещенным в нижней части камеры слива рабочей жидкости патрубком с разгрузочным устройством для удаления шлама, а патрубок вывода отработанной рабочей жидкости установлен выше максимального уровня шлама, скапливающегося в нижней части аппарата.
Ниже изобретение поясняется конкретным примером его выполнения и прилагаемым чертежом, на котором изображен предлагаемый пенный аппарат, продольный разрез.
Пенный массообменный и теплообменный аппарат содержит:
- корпус 1 с патрубками ввода 2 и вывода 3 газа и патрубком ввода 4 рабочей жидкости;
- группу решеток 5, горизонтально установленных внутри корпуса 1 по его высоте с разделением внутренней полости корпуса на подрешеточную А и надрешеточную Б зоны;
- вертикальную замкнутую перегородку 6, установленную внутри корпуса 1 соосно с ним с образованием между ней и корпусом 1 кольцеобразного канала 7 для слива рабочей жидкости, причем решетки 5 закреплены по периметру внутренней поверхности перегородки 6, верхний торец перегородки 6 расположен выше верхней решетки 5 и служит его переливным порогом;
- газоподводящую трубу 8, имеющую прямолинейный участок, проходящий вертикально вниз вдоль оси корпуса 1 через все решетки 5;
- брызгоотделитель 9, размещенный в надрешеточной зоне Б выше парубка ввода рабочей жидкости;
- присоединенное к нижней части корпуса 1 и выполненное преимущественно в виде опрокинутого конуса днище 10 с патрубком 11 вывода отработанной рабочей жидкости, образующее вместе с нижней частью корпуса 1 камеру В слива рабочей жидкости;
- теплообменную поверхность 12, установленную в подрешеточной зоне A в полости, образованной нижней решеткой 5 и перегородкой 6, с патрубками подвода 13 и отвода 14 теплоносителя, размещенными за пределами корпуса 1, причем нижний торец перегородки 6 расположен ниже теплообменной поверхности 12.
Если аппарат предназначен для очистки газов от выпадающих в осадок твердых частиц, он дополнительно снабжен размещенным в нижней части днища 10 патрубком 15 и разгрузочным устройством 16 для удаления шлама, причем патрубок 11 вывода отработанной рабочей жидкости установлен выше максимального уровня шлама, скапливающегося в нижней части аппарата.
С целью поддержания в аппарате оптимального для протекающих в нем массообменных процессов температурного режима в камеру В слива рабочей жидкости встроен датчик температуры 17, а на линии подвода теплоносителя к теплообменной поверхности 12 установлен регулятор 18 расхода теплоносителя, управляемый по сигналам от датчика температуры 17.
Аппарат может применяться при проведении различных процессов, среди которых следует указать следующие:
- для очистки и охлаждения горячих (например, дымовых) газов, что позволяет не только удалять из газов, сбрасываемых в окружающую среду вредные компоненты, но одновременно утилизировать теплоту горячих газов;
- для проведения массообменных процессов в различных производствах и для отделения из воздуха паров легкокипящих жидкостей (например, бензина и различных растворителей) с обеспечением оптимального температурного режима процесса, для чего при эндотермических реакциях в теплообменную поверхность подается высокотемпературный теплоноситель, благодаря чему рабочая жидкость нагревается, а при экзотермических реакциях - низкотемпературный теплоноситель, что позволяет охлаждать рабочую жидкость и отводить выделяемую при реакции теплоту;
- для абсорбции водорода жидким нефтяным сырьем при его гидрогенизационной обработке;
- для проведения процессов увлажнения или осушения газов, например в установках производства электроэнергии из углеводородного сырья в электрохимических генераторах с топливными элементами.
В зависимости от состава газов, подвергаемых очистке, и вида улавливаемых компонентов в качестве рабочей жидкости могут использоваться вода, нефтяное масло, керосин, азотная кислота и др.
В качестве теплоносителя следует преимущественно использовать жидкости (воду; этиленгликоль и другие жидкости), а также воздух и газообразные продукты основных производств, имеющих температуру, обеспечивающую выполнение задачи (подвода или отвода теплоты к протекающему процессу).
Аппарат работает следующим образом.
Перед началом работы аппарат заполняется рабочей жидкостью по уровню выше нижней решетки 6, а через внутреннюю полость теплообменной поверхности 12 через патрубок 13 подводится теплоноситель, который затем выводится из теплообменной поверхности 12 через патрубок 14.
Обрабатываемые газы поступают через патрубок 2 и трубу 8 в подрешеточную полость А, захватывают рабочую жидкость и через решетки 5 внутри перегородки 6 поднимается вверх, омывая теплообменную поверхность 12 и образуя высокотурбулизированную газожидкостную смесь в виде подвижной нестабильной пены, в которой происходит очистка газов и другие тепломассообменные процессы. При этом обеспечивается хороший контакт фаз между рабочей жидкостью и газами (а также между рабочей жидкостью и твердыми частицами, при их наличии в газах). На верхней решетке 5 пена перетекает через порог, образуемый верхним торцом перегородки 6, и попадает в кольцеобразный канал 7, где разрушается. Газовая фаза поднимается вверх и попадает в надрешеточную зону Б, откуда, пройдя через брызгоотделитель 9, выводится из аппарата через патрубок 3, а рабочая жидкость через кольцеобразный канал 7 стекает в камеру В слива жидкости. Непрерывная циркуляция рабочей жидкости обеспечивается благодаря кинетической энергии потока обрабатываемых газов.
Если в аппарате осуществляется очистка газов, имеющих высокую температуру, то в теплообменную поверхность 12 подводится холодный теплоноситель, который, протекая через теплообменную поверхность 12, нагревается, отбирая теплоту от циркулирующей в аппарате рабочей жидкости, благодаря чему обеспечивается утилизация теплоты горячих газов.
Если в аппарате реализуются массообменные процессы, то, в зависимости от характера протекающей реакции - эндотермической или экзотермической, - в теплообменную поверхность 12 подается соответственно высокотемпературный или низкотемпературный теплоноситель. При этом регулятором 18 по сигналам от датчика температуры 17 поддерживается расход теплоносителя, подаваемого в теплообменную поверхность 12, который обеспечивает поддержание требуемой температуры рабочей жидкости, а следовательно, и оптимального для протекающих в аппарате процессов температурного режима.
Аналогичным путем обеспечивается увлажнение или осушение технологических газов.
По мере необходимости (для регенерации рабочей жидкости или для выделения уловленных полезных компонентов) отработанная рабочая жидкость выводится из аппарата через патрубок 11, а необходимое количество заменяющей ее свежей рабочей жидкости подводится через патрубок 4.
Если из обрабатываемых газов выделяются твердые частицы, оседающие в нижней части камеры В слива рабочей жидкости, то по мере накопления осадка (шлама) он периодически выводится из аппарата через патрубок 15 с помощью разгрузочного устройства 16.
Предлагаемый пенный аппарат имеет, по сравнению с известными техническими решениями, в том числе с прототипом, следующие преимущества:
- обеспечивается утилизация теплоты обрабатываемых горячих газов без использования дополнительных теплообменных аппаратов;
- утилизация теплоты горячих газов и транспортировка ее для дальнейшего использования осуществляются чистым теплоносителем, не вступающим в контакт с загрязненными средами;
- если в аппарате протекают массообменные процессы, сопровождающиеся поглощением или выделением теплоты реакции, то, в зависимости от характера реакции, регулируемой циркуляцией через теплообменную поверхность соответственно высокотемпературного или низкотемпературного теплоносителя обеспечивается поддержание оптимального температурного режима;
- обеспечивается раздельное удаление из аппарата отработанной рабочей жидкости и твердых осадков.

Claims (2)

1. Пенный массообменный и теплообменный аппарат, содержащий корпус с патрубками ввода и вывода газа и патрубком ввода рабочей жидкости; группу решеток, горизонтально установленных внутри корпуса по его высоте с разделением внутренней полости корпуса на подрешеточную и надрешеточную зоны; вертикальную замкнутую перегородку, установленную внутри корпуса соосно с ним с образованием между ней и корпусом полости кольцеобразного канала для слива рабочей жидкости, причем решетки закреплены по периметру внутренней поверхности перегородки, а верхний торец перегородки расположен выше верхней решетки и служит его переливным порогом; газоподводящую трубу, имеющую прямолинейный участок, проходящий вертикально вниз вдоль оси корпуса через все решетки; брызгоотделитель, размещенный в надрешеточной зоне, камеру слива рабочей жидкости с патрубком вывода отработанной рабочей жидкости, причем в подрешеточной зоне в полости, образованной нижней решеткой и перегородкой, установлена теплообменная поверхность с патрубками подвода и отвода теплоносителя, размещенными за пределами корпуса, а нижний торец перегородки расположен ниже теплообменной поверхности, кроме того, в камеру слива рабочей жидкости встроен датчик температуры, а на линии подвода теплоносителя к теплообменной поверхности установлен регулятор расхода теплоносителя, управляемый по сигналам от датчика температуры.
2. Аппарат по п. 1, отличающийся тем, что в нижней части днища дополнительно размещен патрубок с разгрузочным устройством для удаления шлама, а патрубок вывода отработанной рабочей жидкости установлен выше максимального уровня шлама, скапливающегося в нижней части аппарата.
RU2016126651A 2016-07-04 2016-07-04 Пенный массообменный и теплообменный аппарат RU2623252C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016126651A RU2623252C1 (ru) 2016-07-04 2016-07-04 Пенный массообменный и теплообменный аппарат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016126651A RU2623252C1 (ru) 2016-07-04 2016-07-04 Пенный массообменный и теплообменный аппарат

Publications (1)

Publication Number Publication Date
RU2623252C1 true RU2623252C1 (ru) 2017-06-23

Family

ID=59241350

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016126651A RU2623252C1 (ru) 2016-07-04 2016-07-04 Пенный массообменный и теплообменный аппарат

Country Status (1)

Country Link
RU (1) RU2623252C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338566A (en) * 1962-12-29 1967-08-29 Counter Current Op Gas-liquid contact column apparatus
SU719676A1 (ru) * 1978-07-11 1980-03-05 Украинский Государственный Институт По Проектированию Металлургических Заводов Устройство дл очистки дымовых газов
RU2079344C1 (ru) * 1995-03-06 1997-05-20 Дмитрий Львович Астановский Аппарат для очистки газов (варианты)
RU2345813C1 (ru) * 2007-04-25 2009-02-10 Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") Тепломассообменный аппарат
RU2535695C1 (ru) * 2013-05-15 2014-12-20 Дмитрий Львович Астановский Способ очистки и осушки шахтного газа и попутного нефтяного газа и установка для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338566A (en) * 1962-12-29 1967-08-29 Counter Current Op Gas-liquid contact column apparatus
SU719676A1 (ru) * 1978-07-11 1980-03-05 Украинский Государственный Институт По Проектированию Металлургических Заводов Устройство дл очистки дымовых газов
RU2079344C1 (ru) * 1995-03-06 1997-05-20 Дмитрий Львович Астановский Аппарат для очистки газов (варианты)
RU2345813C1 (ru) * 2007-04-25 2009-02-10 Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") Тепломассообменный аппарат
RU2535695C1 (ru) * 2013-05-15 2014-12-20 Дмитрий Львович Астановский Способ очистки и осушки шахтного газа и попутного нефтяного газа и установка для его осуществления

Similar Documents

Publication Publication Date Title
KR101365116B1 (ko) 액체금속을 이용한 가스 정제 장치
CN1332736C (zh) 用于超净化烟气或气体的方法和装置
RU2020100577A (ru) Реакторные установки с рециркуляцией флюида
WO2018190104A1 (ja) 燃焼排ガス中の二酸化炭素を回収するための装置及び方法
CN101381630A (zh) 酚水自处理的冷煤气生产工艺
RU2584287C1 (ru) Установка для очистки генераторного газа
RU2650967C1 (ru) Способ очистки газов и устройство для его осуществления
CN103691211B (zh) 沸腾床渣油加氢反应器的气相产物旋流净化装置以及利用其对气相产物进行净化的方法
CN202277783U (zh) 一种催化裂化再生烟气除尘脱硫装置
RU2535695C1 (ru) Способ очистки и осушки шахтного газа и попутного нефтяного газа и установка для его осуществления
RU2623252C1 (ru) Пенный массообменный и теплообменный аппарат
CN106076114B (zh) 一种烟气处理***及方法
CN206121512U (zh) 一种烟气处理***
CN101920157A (zh) 一种含油易爆气体除焦油除尘一体化工艺及装置
CN202803043U (zh) 锅炉烟尘净化装置
CN203155019U (zh) 一种烟气净化器
CN106829880B (zh) 一种硫酸再生生产线
CN115040962A (zh) 一种二氧化碳吸收***
RU2532435C2 (ru) Способ и устройство для очистки газов путем абсорбции
JP2008062205A (ja) ガス浄化装置、排煙脱硫システム、排ガス処理方法
CN211562494U (zh) 一种新型的烟气脱硫排放一体化设备
RU53664U1 (ru) Устройство для получения элементарной серы
RU79976U1 (ru) Промышленный технологический комплекс по переработке и утилизации нефтесодержащих отходов
CN209596871U (zh) 一种酰化反应的废气吸收装置
RU2477648C2 (ru) Способ и устройство для полной утилизации дымовых газов