RU2622505C1 - Способ проведения поисково-спасательных работ - Google Patents

Способ проведения поисково-спасательных работ Download PDF

Info

Publication number
RU2622505C1
RU2622505C1 RU2016120811A RU2016120811A RU2622505C1 RU 2622505 C1 RU2622505 C1 RU 2622505C1 RU 2016120811 A RU2016120811 A RU 2016120811A RU 2016120811 A RU2016120811 A RU 2016120811A RU 2622505 C1 RU2622505 C1 RU 2622505C1
Authority
RU
Russia
Prior art keywords
aerial vehicle
unmanned aerial
victim
search
operator
Prior art date
Application number
RU2016120811A
Other languages
English (en)
Inventor
Павел Владимирович Богданов
Дмитрий Юрьевич Захаров
Дмитрий Александрович Шутов
Александр Николаевич Иванов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ)
Priority to RU2016120811A priority Critical patent/RU2622505C1/ru
Application granted granted Critical
Publication of RU2622505C1 publication Critical patent/RU2622505C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Alarm Systems (AREA)

Abstract

Изобретение относится к способам проведения поисково-спасательных работ с помощью авиационных средств. Способ проведения поисково-спасательных работ включает введение перед запуском беспилотного летательного аппарата (БПЛА) координат границ поиска, высоту полета, направление и шаг сканирования. БПЛА, обладающий ГЛОНАС, производит поиск, сканируя территорию при помощи сверхширокополосного радара (СШПР), при этом рассчитывают расстояние между беспилотным летательным аппаратом и обнаруженным пострадавшим, определяют его физическое состояние, устанавливают уровень углекислого газа в атмосфере с помощью газоанализатора. По изображению с инфракрасной видеокамеры определяют источники огня и повышенной температурной опасности. С помощью лазерного 3D сканера определяют местонахождение препятствий, которые необходимо облететь. Данные со всех детектирующих устройств поступают в микрокомпьютер БПЛА и на пульт оператора. При обнаружении человека в области сканирования на пульт оператора подают сигнал и с помощью БПЛА доставляют средства индивидуальной защиты, медикаменты, мобильный телефон. Достигается ускорение и улучшение качества поисково-спасательных работ. 3 ил.

Description

Изобретение относится к области спасательной техники, а именно к летательным аппаратам вертикального взлета и посадки специального назначения, для применения при чрезвычайных ситуациях, и может быть использовано для поиска людей под завалами вне зоны видимости вооруженным глазом и возможной опасности проведения спасательных работ, мониторинга высотных зданий и сооружений, разведки обстановки внутри помещений через непрозрачные преграды, оказания экстренной помощи людям, терпящим бедствие на отсеченных пожаром верхних этажах зданий, путем доставки туда спасательных средств.
Известен способ, в котором доставку полезного груза осуществляют с помощью беспилотного дистанционно-пилотируемого летательного аппарата, оснащенного бортовым радиоэлектронным оборудованием и парашютом. Спасательные работы осуществляют с помощью парашютирования полезного груза с последующей доставкой его к потерпевшему [Патент 2059423, Российская Федерация, МПК A62B 37/00. Способ спасения терпящих бедствие / Карягин Н.В.; Киселев В.Н.; Федоров Е.Н. Заявитель и патентообладатель Карягин Николай Васильевич. - № 93039158/11, заявл. 30.07.1993; опубл. 10.05.1996].
Недостатком аналога является то, что координаты получают с помощью спутниковой системы, что ведет к удорожанию работ и потере точности вследствие возможного перемещения потерпевшего. При этом существует проблема точного наведения, решаемая, например, с помощью применения системы самонаведения на радиомаяк потерпевшего, содержащей тяжелую систему точного расчета координат, использующую гиростабилизированную платформу и пассивную радиолокационную станцию с антенной большой апертуры.
За прототип принят способ обнаружения потерпевшего и точной доставки полезного груза для него при проведении поисково-спасательных операций, включающий запуск беспилотного летательного аппарата для выхода в район бедствия, который снабжен ретранслятором сигналов радиокомандной линии управления и является возвращаемым, наведение этого аппарата на место нахождения потерпевшего и выбрасывание с этого аппарата к потерпевшему беспилотного летательного аппарата-носителя полезного груза. Управление летательным аппаратом и аппаратом-носителем производят посредством анализа изображения с телевизионной камеры, размещенной на летательном аппарате [Патент 2223803, Российская Федерация, МПК A62B 37/00, G08B 25/00. Способ обнаружения потерпевшего и точной доставки полезного груза для него при проведении поисково-спасательных операций / Кирюшин Игорь Герольдович; заявитель и патентообладатель: Кирюшин Игорь Герольдович; заявл. 25.10.2002; опубл. 20.02.2004].
Недостатками прототипа являются наличие дополнительного аппарата-носителя полезного груза, который уменьшает полезную массу основного носителя, также это увеличивает энергозатраты для взлета, уменьшает дальность полета и требует дополнительной системы управления, что влечет численное увеличение обслуживающего персонала. Поиск пострадавшего осуществляется только на открытой (видимой, прозрачной) поверхности, что неприменимо в случае поиска людей под завалами, за непрозрачными стенами или дымовой завесой при пожаре, что замедляет спасение пострадавших.
Техническим результатом изобретения является ускорение проведения и улучшение качества поисково-спасательной операции с возможностью обнаружения людей и определения их физического состояния в затруднительных (экстремальных) условиях для визуального и физического поиска.
Указанный результат достигается тем, что в способе проведения поисково-спасательных работ, заключающемся в запуске беспилотного летательного аппарата для выхода в район бедствия, наведении беспилотного летательного аппарата на место нахождения потерпевшего и выбрасывании с беспилотного летательного аппарата к потерпевшему полезного груза, запускаемый беспилотный летательный аппарат является возвращаемым, при этом полетом беспилотного летательного аппарата управляют с помощью радиокомандной линии управления, а управление им проводят посредством анализа изображения взаимного расположения беспилотного летательного аппарата, несущего полезный груз и потерпевшего, полученного с телевизионной камеры, причем наведением беспилотного летательного после доставки потерпевшему полезного груза с командного пункта осуществляют возврат возвращаемого беспилотного летательного аппарата, согласно изобретению перед запуском беспилотного летательного аппарата оператор задает координаты границ поиска, высоту полета, начало координат, направление сканирования и шаг сканирования, в пределах которых беспилотный летательный аппарат, обладающий ГЛОНАС, производит поисковую деятельность, после запуска беспилотного летательного аппарата он сканирует территорию с определенной оператором высоты, при этом сканирование осуществляют при помощи сверхширокополосного радара (СШПР), обладающего свойством "видеть" через непрозрачные преграды, а также настроенного на отражение посылаемых им сигналов от человека, при этом рассчитывают расстояние между беспилотным летательным аппаратом и пострадавшим, из анализа которого определяют его физическое состояние, устанавливают уровень СО2 (углекислого газа) в атмосфере с помощью установленного в беспилотном летательном аппарате газоанализатора, по изображению с инфракрасной видеокамеры, которой снабжен беспилотный летательный аппарат, определяют источники огня и повышенной температурной опасности, с помощью лазерного 3D сканера, производящего построение трехмерной карты местности, определяют местонахождение препятствий, которые необходимо облететь, данные со всех детектирующих устройств поступают в микрокомпьютер, установленный в составе беспилотного летательного аппарата, одновременно посредством радиоретранслятора они передаются на пульт оператора, в случае нахождения пострадавшего человека в области сканирования, в ходе обработки данных с СШПР микрокомпьютером, на пульт оператора подается сигнал и с помощью беспилотного летательного аппарата доставляют средства индивидуальной защиты и медикаменты для оказания первой медицинской помощи в случае, если пострадавший в сознании и находится на поверхности земли, после произведенной посадки рядом с пострадавшим в беспилотном летательном аппарате открывают контейнер, содержащий средства индивидуальной защиты, мобильный телефон для связи с поисково-спасательным отрядом, а также аптечку первой помощи.
Изобретение поясняется чертежами, где на фиг. 1 показано устройство летательного аппарата, на фиг. 2 - его вид спереди, на фиг. 3 - алгоритм проведения поисково-спасательной операции.
Пример практического осуществления способа
В качестве возвращаемого летательного аппарата 1 (фиг. 1, фиг. 2) используют дистанционно-пилотируемый летательный аппарат вертикального взлета и посадки с изменяемым углом силовых установок. В качестве обмена данными между оператором и беспилотным летательным аппаратом используется радиоретранслятор 10.
Проведение поисково-спасательной операции начинают с того, что оператор командного пункта выбирает режим управления - ручной или автоматический (фиг. 3). В случае автоматического управления оператор осуществляет выделение квадрата на электронной карте для поисково-спасательной деятельности, задает высоту полета, начало координат, направление местности сканирования и шаг сканирования. После включения беспилотного летательного аппарата он производит взлет и направляется в квадрат к началу координат. За точное позиционирование отвечает ГЛОНАСС приемник 2. Выбранная оператором высота полета влияет на глубину сканирования, так как примененный СШПР 3 работает только на расстоянии до 30 метров, соответственно, чем глубже находится пострадавший, тем ниже высота полета беспилотного летательного аппарата. Сканирование может осуществляться как поступательно, так и по кругу, относительно начала координат с заданным шагом сканирования, что является расстоянием между параллельными линиями траектории полета беспилотного летательного аппарата. В ходе сканирования СШПР передатчик посылает сигнал, в случае его попадания в пострадавшего, сигнал отражается и принимается приемником СШПР. Сканирование приостанавливают для отправки сигнала оператору с точными координатами найденного человека, глубины нахождения и информацией о его физическом состоянии, определяемом по разности расстояний вдоха и выдоха грудной клетки. В дополнение к определению места нахождения человека измеряется уровень углекислого газа в атмосфере в месте нахождения пострадавшего с помощью встроенного газоанализатора 4 для определения уровня агрессивности окружающей человека среды. Также посредством цветной видеокамеры 9, инфракрасной видеокамеры 5 и 3D сканера 6 просматривается местность в зоне нахождения пострадавшего. Все полученные данные поступают на микрокомпьютер 7, который обрабатывает их и отправляет на пульт оператора посредством радиокомандной линии управления. Данные, представленные в командном пункте оператора, позволяют поисково-спасательному отряду определить приоритеты спасения, его пути и быстро произвести спасательную операцию.
При автоматическом полете беспилотного летательного аппарата на его пути могут попадаться различные препятствия в виде деревьев, стен. Для их детектирования использован 3D-сканер, сканирующий объемное пространство вокруг беспилотного летательного аппарата, что позволяет облетать препятствия, а инфракрасная камера позволяет определить источники огня и также облететь их.
В ручном режиме пилотирования оператор самостоятельно управляет беспилотным летательным аппаратом из командного пункта, самостоятельно анализируя при этом данные, полученные с детектируемых устройств. При этом оператор в командном пункте видит все то, что видит и детектирует беспилотный летательный аппарат. После того, как был обнаружен пострадавший, на пульте оператора раздается сигнал и выводятся данные о глубине его нахождения, физическом состоянии и окружающей его среде, далее оператор сообщает точные координаты нахождения пострадавшего спасательной группе и переходит в ручной режим управления беспилотным летательным аппаратом для доставления средств индивидуальной защиты и медикаментов для оказания первой медицинской помощи в случае, если пострадавший в сознании и находится на поверхности земли.
Ввиду того, что беспилотный летательный аппарат является аппаратом вертикального взлета и посадки, то доставление полезного груза к пострадавшему осуществляется достаточно точно. После произведенной посадки рядом с пострадавшим в беспилотном летательном аппарате открывается контейнер 8, в котором содержится СИЗ, мобильный телефон для связи со спасателями, а также аптечка первой помощи.

Claims (1)

  1. Способ проведения поисково-спасательных работ, заключающийся в запуске беспилотного летательного аппарата для выхода в район бедствия, наведении беспилотного летательного аппарата на место нахождения потерпевшего и выбрасывании с беспилотного летательного аппарата к потерпевшему полезного груза, запускаемый беспилотный летательный аппарат является возвращаемым, при этом полетом беспилотного летательного аппарата управляют с помощью радиокомандной линии управления, а управление им проводят посредством анализа изображения взаимного расположения беспилотного летательного аппарата, несущего полезный груз и потерпевшего, полученного с телевизионной камеры, причем наведением беспилотного летательного аппарата после доставки потерпевшему полезного груза с командного пункта осуществляют возврат возвращаемого беспилотного летательного аппарата, отличающийся тем, что перед запуском беспилотного летательного аппарата оператор задает координаты границ поиска, высоту полета, начало координат, направление сканирования и шаг сканирования, в пределах которых беспилотный летательный аппарат, обладающий ГЛОНАС, производит поисковую деятельность, после запуска беспилотного летательного аппарата он сканирует территорию с определенной оператором высоты, при этом сканирование осуществляют при помощи сверхширокополосного радара (СШПР), обладающего свойством "видеть" через непрозрачные преграды, а также настроенного на отражение посылаемых им сигналов от человека, при этом рассчитывают расстояние между беспилотным летательным аппаратом и пострадавшим, из анализа которого определяют его физическое состояние, устанавливают уровень углекислого газа в атмосфере с помощью установленного в беспилотном летательном аппарате газоанализатора, по изображению с инфракрасной видеокамеры, которой снабжен беспилотный летательный аппарат, определяют источники огня и повышенной температурной опасности, с помощью лазерного 3D сканера, производящего построение трехмерной карты местности, определяют местонахождение препятствий, которые необходимо облететь, данные со всех детектирующих устройств поступают в микрокомпьютер, установленный в составе беспилотного летательного аппарата, одновременно посредством радиоретранслятора их передают на пульт оператора, в случае нахождения пострадавшего человека в области сканирования, в ходе обработки данных с СШПР микрокомпьютером, на пульт оператора подают сигнал и с помощью беспилотного летательного аппарата доставляют средства индивидуальной защиты и медикаменты для оказания первой медицинской помощи в случае, если пострадавший в сознании и находится на поверхности земли, после произведенной посадки рядом с пострадавшим в беспилотном летательном аппарате открывают контейнер, содержащий средства индивидуальной защиты, мобильный телефон для связи с поисково-спасательным отрядом, а также аптечку первой помощи.
RU2016120811A 2016-05-26 2016-05-26 Способ проведения поисково-спасательных работ RU2622505C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016120811A RU2622505C1 (ru) 2016-05-26 2016-05-26 Способ проведения поисково-спасательных работ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016120811A RU2622505C1 (ru) 2016-05-26 2016-05-26 Способ проведения поисково-спасательных работ

Publications (1)

Publication Number Publication Date
RU2622505C1 true RU2622505C1 (ru) 2017-06-16

Family

ID=59068559

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016120811A RU2622505C1 (ru) 2016-05-26 2016-05-26 Способ проведения поисково-спасательных работ

Country Status (1)

Country Link
RU (1) RU2622505C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109701178A (zh) * 2019-01-14 2019-05-03 陈利娟 无人机绕建筑监控巡逻的水炮喷射式救援方法及其***
RU2694528C1 (ru) * 2018-11-07 2019-07-16 Общество с ограниченной ответственностью (ООО) "Кардиовид" Способ проведения поисково-спасательных работ
RU2698893C1 (ru) * 2018-12-24 2019-08-30 Общество с ограниченной ответственностью "ТехноСтандарт" (ООО "ТехноСтандарт") Способ проведения поисково-спасательных работ
CN110209199A (zh) * 2019-07-09 2019-09-06 山东理工大学 一种农田火源监测无人机***设计
CN112000128A (zh) * 2020-08-28 2020-11-27 中国电子科技集团公司第五十四研究所 一种用于抢险救灾的无人机集群任务协同方法及***
RU2762052C1 (ru) * 2020-12-30 2021-12-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" Способ проведения спасательных работ и беспилотное воздушное судно для осуществления способа
RU2775578C1 (ru) * 2021-12-10 2022-07-04 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Система спасения утопающих с применением дрона
US20230106865A1 (en) * 2020-02-27 2023-04-06 Abb Schweiz Ag Method and System for Controlling Personal Protective Equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056237A (en) * 1997-06-25 2000-05-02 Woodland; Richard L. K. Sonotube compatible unmanned aerial vehicle and system
US20030198364A1 (en) * 2001-03-22 2003-10-23 Yonover Robert N. Video search and rescue device
RU2223803C1 (ru) * 2002-10-25 2004-02-20 Кирюшин Игорь Герольдович Способ обнаружения потерпевшего и точной доставки полезного груза для него при проведении поисково-спасательных операций
RU2381959C1 (ru) * 2008-07-11 2010-02-20 Юрий Сергеевич Воронков Авиационная система обеспечения спасательных работ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056237A (en) * 1997-06-25 2000-05-02 Woodland; Richard L. K. Sonotube compatible unmanned aerial vehicle and system
US20030198364A1 (en) * 2001-03-22 2003-10-23 Yonover Robert N. Video search and rescue device
RU2223803C1 (ru) * 2002-10-25 2004-02-20 Кирюшин Игорь Герольдович Способ обнаружения потерпевшего и точной доставки полезного груза для него при проведении поисково-спасательных операций
RU2381959C1 (ru) * 2008-07-11 2010-02-20 Юрий Сергеевич Воронков Авиационная система обеспечения спасательных работ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694528C1 (ru) * 2018-11-07 2019-07-16 Общество с ограниченной ответственностью (ООО) "Кардиовид" Способ проведения поисково-спасательных работ
RU2698893C1 (ru) * 2018-12-24 2019-08-30 Общество с ограниченной ответственностью "ТехноСтандарт" (ООО "ТехноСтандарт") Способ проведения поисково-спасательных работ
CN109701178A (zh) * 2019-01-14 2019-05-03 陈利娟 无人机绕建筑监控巡逻的水炮喷射式救援方法及其***
CN110209199A (zh) * 2019-07-09 2019-09-06 山东理工大学 一种农田火源监测无人机***设计
US20230106865A1 (en) * 2020-02-27 2023-04-06 Abb Schweiz Ag Method and System for Controlling Personal Protective Equipment
US11988332B2 (en) * 2020-02-27 2024-05-21 Abb Schweiz Ag Method and system for controlling personal protective equipment
CN112000128A (zh) * 2020-08-28 2020-11-27 中国电子科技集团公司第五十四研究所 一种用于抢险救灾的无人机集群任务协同方法及***
RU2762052C1 (ru) * 2020-12-30 2021-12-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" Способ проведения спасательных работ и беспилотное воздушное судно для осуществления способа
RU2775578C1 (ru) * 2021-12-10 2022-07-04 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Система спасения утопающих с применением дрона
RU2818393C1 (ru) * 2023-10-23 2024-05-02 Акционерное общество "научно-исследовательский институт "Вектор" (АО НИИ "Вектор") Способ поисковых и спасательных операций с помощью беспилотного воздушного судна

Similar Documents

Publication Publication Date Title
RU2622505C1 (ru) Способ проведения поисково-спасательных работ
US11810465B2 (en) Flight control for flight-restricted regions
US10277305B1 (en) UAV wildlife monitoring system and related methods
KR101925094B1 (ko) 무인비행체 조종면허시험 시스템
RU2698893C1 (ru) Способ проведения поисково-спасательных работ
CN105416584B (zh) 一种灾后生命循迹无人机***
CN107356945A (zh) 一种便携式低空无人机管控方法及***
RU2640680C1 (ru) Устройство маркировки цели и система обработки цели, содержащая такое устройство маркировки цели
CN108545192B (zh) 无人机投弹***及方法
KR20190000439A (ko) 조류퇴치를 위한 무인비행체 및 그 운용방법
EP2009458A1 (en) Portable autonomous terminal guidance system
CN104735423B (zh) 位于无人机上的输电设备辨认平台
JPH03502142A (ja) 大災害の防止と環境の保護に対する誘導方法とその装置
CN106741875A (zh) 一种飞行搜救***及方法
Wing et al. A low-cost unmanned aerial system for remote sensing of forested landscapes
CN113820709B (zh) 基于无人机的穿墙雷达探测***及探测方法
KR102450383B1 (ko) 무인 비행체 모니터링 시스템
RU155323U1 (ru) Система управления беспилотным летательным аппаратом
CN108196588A (zh) 一种基于无人机的山地旅游紧急救援***
Andreev et al. Flight safety sensor and auto-landing system of unmanned aerial system
CH711672A2 (it) Drone, sistema di soccorso comprendente il drone e relativa metodologia di soccorso.
Mitchell et al. Testing and Evaluation of UTM Systems in a BVLOS Environment
RU2709562C1 (ru) Способ управления дроном и система для его осуществления
Ateş Important issues in unmanned aerial vehicle user education and training
KR20150121573A (ko) 스마트기기를 이용한 무선조종비행기 조종평가 시스템

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190527