RU2618030C1 - Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности - Google Patents

Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности Download PDF

Info

Publication number
RU2618030C1
RU2618030C1 RU2015149045A RU2015149045A RU2618030C1 RU 2618030 C1 RU2618030 C1 RU 2618030C1 RU 2015149045 A RU2015149045 A RU 2015149045A RU 2015149045 A RU2015149045 A RU 2015149045A RU 2618030 C1 RU2618030 C1 RU 2618030C1
Authority
RU
Russia
Prior art keywords
furnace
slag
iron
romelt
feo
Prior art date
Application number
RU2015149045A
Other languages
English (en)
Inventor
Владимир Андреевич Роменец
Валерий Сергеевич Валавин
Юрий Валентинович Похвиснев
Сергей Александрович Макеев
Александр Константинович Зайцев
Наталия Вячеславовна Симакова
Алена Александровна Федорова
Евгений Федорович Шкурко
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2015149045A priority Critical patent/RU2618030C1/ru
Application granted granted Critical
Publication of RU2618030C1 publication Critical patent/RU2618030C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/008Use of special additives or fluxing agents

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к производству жидкого чугуна процессом жидкофазного восстановления Ромелт при переработке железосодержащих материалов высокой степени окисленности. В шлаковую ванну печи Ромелт подают предварительно подготовленный в дополнительной печи расплав железосодержащих материалов с температурой 1300-1500°C, содержанием FeO в пределах 35-80% от суммарного содержания оксидов железа в шлаке, отношением CaO/SiO2 0,8-1,4 и вязкостью 0,2-1 Па⋅с. Также подают угольный материал в количестве, обеспечивающем остаточное содержание FeO в шлаке на уровне 1,5-6,0%, энергоносители для барботажа шлака и кислород над шлаковой ванной для дожигания. Дополнительная печь является печью барботажного типа с жидкой шлаковой ванной или электропечью. Печь Ромелт и дополнительная печь соединены между собой желобом. Изобретение позволяет утилизировать железосодержащие отходы без предварительной подготовки, увеличить скорость восстановления оксидов железа, уменьшить потери железа со шлаком и исключить возможность неконтролируемого вскипания шлаковой ванны. 8 з.п. ф-лы, 1 ил., 1 пр.

Description

Изобретение относится к черной металлургии, а именно к производству жидкого углеродистого полупродукта и чугуна, но может найти применение и в других отраслях промышленности, например в цветной металлургии, производстве стройматериалов и т.д.
Известен способ управления процессом жидкофазного восстановления (например, классический Ромелт), включающий непрерывную загрузку в одну шлаковую ванну железосодержащих материалов различного минералогического состава, угля, извести, подачу кислорода и кислородсодержащего дутья в зоны выше и ниже уровня шлака, вывод образующегося металла, шлака и газов (Процесс Ромелт / В.А. Роменец [и др.] - М.: МИСиС, Издательский дом «Руда и металлы», 2005. с. 8).
Недостатком этого способа является управление процессом только на основании расчета расхода угля и кислорода по уравнениям материального баланса; при этом плавка осуществляется вне зависимости от вида и минералогического состава перерабатываемых железосодержащих материалов, включающих оксиды железа различного вида (FeO, Fe2O3, Fe3O4). Также не осуществляется контроль и учет соотношения оксидов железа в поступающем в печь материале, что приводит к уменьшению производительности процесса и возможному неконтролируемому вскипанию шлаковой ванны.
Наиболее близким к предлагаемому изобретению является «Способ управления процессом Ромелт» (RU 2182603, опубл. 20.05.2000 г.), согласно которому в ходе плавки поддерживают и регулируют содержание оксидов железа в шлаке на заданном уровне в зависимости от температуры шлака и состава газа за счет увеличения/уменьшения количества загружаемого угля и увеличения/уменьшения количества кислорода, подаваемого выше уровня фурм.
По этому способу управление процессом осуществляется также вне зависимости от минералогических характеристик загружаемого железосодержащего материала и соотношения в нем FeO/Fe2O3 в одной шлаковой ванне, куда подается весь уголь и известь, необходимые для полного восстановления оксидов и получения углеродистого полупродукта или чугуна.
Недостатком этого способа управления процессом является то, что при загрузке в печь железосодержащих материалов, имеющих различное отношение в них FeO/Fe2O3, не учитываются особенности и различия в механизме поведения при восстановлении в шлаковой ванне оксидов FeO и Fe2O3, а также не учитывается, что в зависимости от вида загружаемого оксида в шлаке будет содержаться различное конечное количество FeO.
Это приводит к тому, что при загрузке по упомянутому выше способу железосодержащих материалов, содержащих железо преимущественно в виде Fe2O3 (гематитовые, лимонитовые, гидрогематитовые руды, бурые железняки и др.), и отношении в них FeO/Fe2O3 меньше 0,8 снижается производительность печи Ромелт, увеличивается расход кислорода и угля, повышается содержание FeO в шлаке и увеличиваются потери железа, затрудняется управление процессом, повышаются риски неконтролируемого вскипания шлаковой ванны.
В изобретении достигается технический результат, заключающийся в
- возможности осуществления непрерывности технологического процесса переработки железосодержащих материалов с FeO/Fe2O3 менее 0,8, включая железосодержащие отходы и бедные железные руды, с выпуском продуктов плавки;
- возможности утилизации железосодержащих отходов крупностью 3-20 мм без применения предварительной подготовки железосодержащего сырья, в том числе окускования, грохочения, осушки и других подготовительных операций;
- увеличении скорости восстановления оксидов железа по заявляемому способу, что позволит уменьшить потери железа со шлаком до величины менее 5% по сравнению с плавкой высокоокисленных материалов классической технологией Ромелт;
- исключении возможности неконтролируемого вскипания шлаковой ванны.
Технический результат достигается следующим образом.
В шлаковую ванну печи Ромелт подают предварительно подготовленный в дополнительной печи расплав железосодержащих материалов с температурой 1300-1500°C, содержанием в нем FeO в пределах 35-80% от суммарного содержания оксидов железа в шлаке, отношением CaO/SiO2 0,8-1,4 и вязкостью 0,2-1 Па⋅с, угольный материал на шлаковую ванну печи Ромелт в количестве, обеспечивающем остаточное содержание FeO в шлаке на уровне 1,5-6,0%, энергоносители в шлаковую ванну для барботажа шлака и кислород над шлаковой ванной для дожигания, отводят чугун и шлак в жидком виде и отводят охлажденные газообразные продукты.
Указанный расплав железосодержащих материалов получают в дополнительной печи барботажного типа с жидкой шлаковой ванной, продуваемой дутьем, содержащим кислород, воздух и природный газ, в которую загружают исходный железосодержащий материал с соотношением FeO/Fe2O3 менее 0,8, флюсы, добавки и угольный материал в количестве, обеспечивающим на выходе из печи содержание FeO в шлаке в пределах 35-80% от суммарного содержания оксидов железа в шлаке.
В качестве энергоносителей используют кислород, воздух, природный газ.
В качестве флюса используются известь или известняк, и/или доломит.
В качестве добавок - кварцевый песок и глинозем.
Расплав железосодержащих материалов может быть получен также в электропечи.
Печь Ромелт и дополнительная печь соединены между собой желобом, а подача расплава железосодержащих материалов из шлакового отстойника дополнительной печи в печь Ромелт осуществляется сверху через свод печи или через ее торцевую стенку на уровне не ниже 0,5-1,0 м от горизонтальной оси амбразур фурм для дожигания.
Печь Ромелт и дополнительная печь разделены перегородкой с возможностью перетекания расплава железосодержащих материалов из дополнительной печи в печь Ромелт.
Изобретение поясняется чертежом, где приведена схема реализации предлагаемого технического решения с использованием печи барботажного типа. На чертеже показаны печь 1 Ромелт, дополнительная печь 2 барботажного типа, шлаковый отстойник 3 печи Ромелт, отстойник 4 чугуна печи Ромелт, барботажные фурмы 5 печи Ромелт, фурмы 6 для дожигания печи Ромелт, отверстие 7 для загрузки угля в печь Ромелт, шлаковый отстойник 8 дополнительной печи, барботажные фурмы 9 дополнительной печи, отверстия 10 для загрузки шихтовых материалов, желоб 11 для расплава, соединяющий печь Ромелт и дополнительную печь, котел-утилизатор 12 отходящих газов.
При работе печи жидкофазного восстановления Ромелт попадающий в жидкий шлак оксид трехвалентного железа (Fe2O3) частично диссоциирует (максимум на 20-30%), однако в шлаке остается его значительное количество. При этом установлено, что скорость жидкофазного восстановления оксидов Fe2O3 и FeO значительно отличаются. Так при восстановлении в лабораторной печи образцов шлаков на основе Fe2O3 (FeO/Fe2O3=0,13) скорость восстановления на начальном этапе была в два раза ниже, чем из шлаков с FeO/Fe2O3=3,18.
Это связано с тем, что при использовании железорудных материалов, в которых присутствует в значительном количестве железо в виде Fe2O3, процесс жидкофазного восстановления протекает последовательно:
Figure 00000001
,
а затем:
Figure 00000002
.
Однако в условиях классического процесса жидкофазного восстановления Ромелт, протекающего в одной ванне, образующееся жидкое железо будет окисляться поступающими с шихтой новыми порциями Fe2O3 по реакции:
Figure 00000003
.
Вторичное окисление железа оксидами трехвалентного железа при работе на рудах с высокой степенью окисленности резко тормозит скорость реакции жидкофазного восстановления, а следовательно, и производительность агрегата, повышает конечное содержание FeO в шлаке, увеличивая тем самым потери железа со шлаком и риски неконтролируемого вскипания шлака.
Температура расплава должна находиться в интервале температур 1300-1500°C, так как при этом обеспечивается оптимальная вязкость шлака в пределах 0,2-1 Па⋅с. Снижение температуры ниже 1300°C увеличит вязкость шлака, затруднит барботаж и увеличит потери железа; разогрев шлака выше 1500°C увеличит энергозатраты, приведет к чрезмерной подвижности шлака и уменьшению толщины гарнисажа на кессонах.
Содержание FeO в шлаке в пределах 35-80% от общего содержания оксидов железа в шлаке связано с кинетическими и термодинамическими особенностями восстановления и поведения высших оксидов железа в шлаковом расплаве. При температурах 1300-1500°C Fe2O3 диссоциирует на 30-35%, т.е. начинать восстановление гематита нужно выше этой величины; восстановление свыше 80%-ного содержания FeO от общего количества оксидов железа в шлаке не следует допускать из-за возможности локального образования металлического железа, которое будет окисляться гематитом руды.
Конечное содержание FeO в шлаке в пределах 1,5-6,0% связано с тем, что 1,5% этого оксида является кинетическим порогом для плавки при данных параметрах. Его снижение возможно только при перерасходе энергоносителей и потере производительности. При концентрации FeO в шлаке выше 6,0% увеличиваются риски неконтролируемого вскипания шлака и потери железа.
По предлагаемому способу железосодержащий материал с содержанием FeO/Fe2O3 меньше 0,8, уголь, флюс и добавки через отверстия 10 в своде загружают в дополнительную печь 2, в которую через барботажные фурмы 9 подают дутье, содержащее кислород, воздух и природный газ. Образующийся шлаковый расплав с температурой 1300-1500°C, содержанием в FeO в пределах 35-80% от суммарного содержания оксидов железа в шлаке, отношением CaO/SiO2 0,8-1,4 и вязкостью 0,2-1 Па⋅с через шлаковый отстойник 8 по желобу 11 перетекает в печь 1 Ромелт. В печь 1 Ромелт через отверстие 7 в своде подают уголь, энергоносители на барботажные фурмы 5 и кислород на фурмы 6 для дожигания. Образующийся при восстановлении чугун через переток попадает в сифонный отстойник 4 чугуна, а шлак с остаточным содержанием FeO 1,5-6,0% - в отстойник 3 шлака. Дымовые газы от печи 1 Ромелт и дополнительной печи 2 отводят через котел-утилизатор 12 отходящих газов.
Возможна также реализация предлагаемого способа, при котором дополнительная печь, в которой выплавляется расплав железосодержащих материалов, и печь Ромелт, в которой происходит восстановление оксидов железа и получение жидкого чугуна или углеродистого полупродукта, разделены перегородкой, через которую перетекает расплав железосодержащих материалов из дополнительной печи в печь Ромелт.
Пример осуществления способа.
В качестве примера для переработки железосодержащего материала используют фракции железной лимонитовой руды крупностью 3-20 мм без их предварительного окускования. Содержание Feобщ в данной руде составляет 38,5%, а отношение FeO/Fe2O3 составляет 0,13.
Исходный железосодержащий материал в виде железной лимонитовой руды, уголь, флюс и добавки загружают в дополнительную печь 2. Далее подают дутье, содержащее кислород, воздух и природный газ.
Образующийся шлаковый расплав с температурой 1300-1500°С, содержанием FeO в пределах 35-80% от суммарного содержания оксидов железа в шлаке, отношением CaO/SiO2 0,8-1,4 и вязкостью 0,2-1 Па⋅с перетекает в печь 1 Ромелт. В печь 1 Ромелт подают уголь, энергоносители и кислород для дожигания.
Образующийся при восстановлении чугун через переток попадает в сифонный отстойник 4 чугуна, а шлак с остаточным содержанием FeO 1,5-6,0% - в отстойник 3 шлака.
При этом удельные расходы угля и кислорода на тонну чугуна по данному способу составили 1090 кг/т и 1061 м3/т.
При сравнительном анализе с классическим способом Ромелт было рассчитано, что удельные расходы угля и кислорода на тонну чугуна составляют 1539 кг/т и 1356 м3/т.
Таким образом, предлагаемый способ устраняет не только возможность неконтролируемого вскипания шлаковой ванны, но и обеспечивает экономию расхода угля и кислорода по сравнению с классической технологией Ромелт.

Claims (9)

1. Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности, заключающийся в том, что в шлаковую ванну печи в Ромелт подают предварительно подготовленный в дополнительной печи расплав железосодержащих материалов с температурой 1300-1500°C, содержанием FeO в пределах 35-80% от суммарного содержания оксидов железа в шлаке, отношением CaO/SiO2 0,8-1,4 и вязкостью 0,2-1 Па⋅с, на шлаковую ванну печи в Ромелт подают угольный материал в количестве, обеспечивающем остаточное содержание FeO в шлаке на уровне 1,5-6,0%, в шлаковую ванну для барботажа шлака подают энергоносители, а над шлаковой ванной для дожигания подают кислород, отводят чугун и шлак в жидком виде и отводят охлажденные газообразные продукты.
2. Способ по п. 1, в котором в качестве энергоносителей используют кислород, воздух и природный газ.
3. Способ по п. 1, в котором расплав железосодержащих материалов с температурой 1300-1500°C, отношением СаО/SiO2 0,8-1,4 и вязкостью 0,2-1 Па⋅с предварительно подготавливают в дополнительной печи барботажного типа с жидкой шлаковой ванной, продуваемой дутьем, содержащим кислород, воздух и природный газ, в которую загружают исходный железосодержащий материал с соотношением FeO/Fe2O3 менее 0,8, флюсы, добавки и угольный материал в количестве, обеспечивающем на выходе из печи содержание FeO в шлаке в пределах 35-80% от суммарного содержания оксидов железа в шлаке.
4. Способ по п. 3, в котором в качестве флюса используют известь или известняк и/или доломит.
5. Способ по п. 3, в котором в качестве добавок используют кварцевый песок и глинозем.
6. Способ по п. 1, в котором расплав железосодержащих материалов с температурой 1300-1500°C, отношением CaO/SiO2 0,8-1,4 и вязкостью 0,2-1 Па⋅с предварительно подготавливают в электропечи.
7. Способ по п. 1, в котором печь Ромелт и дополнительная печь соединены между собой желобом, а подачу расплава железосодержащих материалов из шлакового отстойника дополнительной печи в печь Ромелт осуществляют сверху через свод печи или через ее торцевую стенку.
8. Способ по п. 7, в котором подачу расплава железосодержащих материалов осуществляют через торцевую стенку на уровне не ниже 0,5-1,0 м от горизонтальной оси амбразур фурм для дожигания.
9. Способ по п. 1, в котором печь Ромелт и дополнительная печь разделены перегородкой с возможностью перетекания расплава железосодержащих материалов из дополнительной печи в печь Ромелт.
RU2015149045A 2015-11-17 2015-11-17 Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности RU2618030C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015149045A RU2618030C1 (ru) 2015-11-17 2015-11-17 Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015149045A RU2618030C1 (ru) 2015-11-17 2015-11-17 Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности

Publications (1)

Publication Number Publication Date
RU2618030C1 true RU2618030C1 (ru) 2017-05-02

Family

ID=58697718

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015149045A RU2618030C1 (ru) 2015-11-17 2015-11-17 Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности

Country Status (1)

Country Link
RU (1) RU2618030C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480474A (en) * 1993-06-15 1996-01-02 Mannesmann Aktiengesellschaft Process and apparatus for smelting reduction of ores or pre-reduced metal carriers
RU2182603C2 (ru) * 2000-05-18 2002-05-20 ЗАО Научно-производственное объединение "АЛГОН" Способ управления процессом "ромелт"
RU2191831C1 (ru) * 2001-02-08 2002-10-27 МГИСиС (технологический университет) Способ переработки железомарганцевого сырья

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480474A (en) * 1993-06-15 1996-01-02 Mannesmann Aktiengesellschaft Process and apparatus for smelting reduction of ores or pre-reduced metal carriers
RU2182603C2 (ru) * 2000-05-18 2002-05-20 ЗАО Научно-производственное объединение "АЛГОН" Способ управления процессом "ромелт"
RU2191831C1 (ru) * 2001-02-08 2002-10-27 МГИСиС (технологический университет) Способ переработки железомарганцевого сырья

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КУРУНОВ И.Ф. и др. Состояние и перспективы бездоменной металлургии железа. М.: Черметинформация, 2002, с.129-138. *

Similar Documents

Publication Publication Date Title
RU2510419C1 (ru) Способ получения черновой меди непосредственно из медного концентрата
CN103484590B (zh) 一种含钒钢渣冶炼富钒生铁的方法
CN106755654A (zh) 一种熔渣冶金熔融还原生产的方法
Steinberg et al. The history and development of the pyrometallurgical processes at Evraz Highveld Steel & Vanadium
WO2019071788A1 (zh) 一种由含铜与铁的混合熔渣生产的方法
WO2019071794A1 (zh) 一种由含铜与铁的混合熔渣回收有价组分的方法
Bakker et al. ISASMELT™ TSL–Applications for nickel
Holtzer et al. The recycling of materials containing iron and zinc in the OxyCup process
CN101760631A (zh) 一种用因分特炉炼铜的工艺
CN103643051A (zh) 采用底吹熔池熔炼技术处理铜铅冶炼混合渣的工艺及其装置
RU2479648C1 (ru) Способ пирометаллургической переработки красных шламов
CN105132611B (zh) 一种转炉单渣生产超低磷钢的方法
JP5428534B2 (ja) 高亜鉛含有鉄鉱石を用いた銑鉄製造方法
Errington et al. The ISA-YMG lead smelting process
CN103667738B (zh) 富氧侧吹双区熔池熔炼炉及其含铜复杂物料炼冰铜方法
US5980606A (en) Method for reducing sulfuric content in the offgas of an iron smelting process
US3473918A (en) Production of copper
CN103937992A (zh) 顶吹炉熔炼铅精炼的铜浮渣的方法
CN114317873B (zh) 一种炼钢造渣工艺
Matinde et al. Metallurgical overview and production of slags
CN110724821A (zh) 低品位多金属危险废物综合回收有价金属的方法
RU2618030C1 (ru) Способ управления процессом жидкофазного восстановления Ромелт для переработки железосодержащих материалов высокой степени окисленности
RU2542042C2 (ru) Способ обеднения медьсодержащих шлаков
KR102628195B1 (ko) 용강의 제조 방법
CN104046882A (zh) 一种利用aod转炉废弃镁钙砖冶炼奥氏不锈钢的方法