RU2615934C1 - Alloy on base of magnesium - Google Patents

Alloy on base of magnesium Download PDF

Info

Publication number
RU2615934C1
RU2615934C1 RU2016124012A RU2016124012A RU2615934C1 RU 2615934 C1 RU2615934 C1 RU 2615934C1 RU 2016124012 A RU2016124012 A RU 2016124012A RU 2016124012 A RU2016124012 A RU 2016124012A RU 2615934 C1 RU2615934 C1 RU 2615934C1
Authority
RU
Russia
Prior art keywords
magnesium
alloy
neodymium
zirconium
titanium
Prior art date
Application number
RU2016124012A
Other languages
Russian (ru)
Inventor
Юлия Алексеевна Щепочкина
Original Assignee
Юлия Алексеевна Щепочкина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юлия Алексеевна Щепочкина filed Critical Юлия Алексеевна Щепочкина
Priority to RU2016124012A priority Critical patent/RU2615934C1/en
Application granted granted Critical
Publication of RU2615934C1 publication Critical patent/RU2615934C1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent

Landscapes

  • Continuous Casting (AREA)

Abstract

FIELD: metallurgy.
SUBSTANCE: magnesium-based alloy contains, wt %: zinc 1.8-2.5, neodymium 0.8-1.2, zirconium 0.6-0.9, titanium 0.1-0.2, nickel 1.0-2.0, silver 0.6-1.0, magnesium is the rest.
EFFECT: increased magnesium alloy strength.
1 tbl

Description

Изобретение относится к области цветной металлургии, в частности к составам сплавов на основе магния, которые могут быть использованы для изготовления корпусов бытовой техники, шпулек и катушек текстильных станков, подставок для телекамер и других изделий.The invention relates to the field of non-ferrous metallurgy, in particular to the compositions of magnesium-based alloys, which can be used for the manufacture of housings for household appliances, bobbins and coils of textile machines, stands for television cameras and other products.

Известен сплав на основе магния, содержащий, мас.%: цинк 1,8-2,5; неодим 0,8-1,2; цирконий 0,7-1,0; титан 0,1-0,2; магний - остальное [1].Known magnesium-based alloy containing, wt.%: Zinc 1.8-2.5; neodymium 0.8-1.2; zirconium 0.7-1.0; titanium 0.1-0.2; magnesium - the rest [1].

Задачей изобретения является повышение прочности сплава.The objective of the invention is to increase the strength of the alloy.

Технический результат достигается тем, что сплав на основе магния, содержащий цинк, неодим, цирконий, титан, магний, дополнительно включает никель и серебро, причем компоненты находятся при следующем соотношении, мас.%: цинк 1,8-2,5; неодим 0,8-1,2; цирконий 0,6-0,9; титан 0,1-0,2; никель 1,0-2,0; серебро 0,6-1,0; магний - остальное.The technical result is achieved in that the magnesium-based alloy containing zinc, neodymium, zirconium, titanium, magnesium, additionally includes nickel and silver, and the components are in the following ratio, wt.%: Zinc 1.8-2.5; neodymium 0.8-1.2; zirconium 0.6-0.9; titanium 0.1-0.2; nickel 1.0-2.0; silver 0.6-1.0; magnesium is the rest.

В таблице приведены составы сплава.The table shows the alloy compositions.

Figure 00000001
Figure 00000001

Повышение прочности сплава на основе магния достигается комплексным влиянием компонентов, входящих в его состав. Цинк в сочетании с цирконием, неодимом и серебром повышает прочность сплава на основе магния. Никель увеличивает твердость и плотность сплава, титан способствует измельчению его структурных составляющих.Increasing the strength of an alloy based on magnesium is achieved by the complex influence of the components that make up its composition. Zinc in combination with zirconium, neodymium and silver increases the strength of the magnesium-based alloy. Nickel increases the hardness and density of the alloy, titanium contributes to the grinding of its structural components.

Сплав выплавляют под флюсом ВИ2 (флюс содержит, мас.%: MgCl2 40,0-48,0; KCl 30,0-40,0; BaCl2 5,0; CaF2 3,0-5,0) в стационарных толстостенных стальных тиглях. После рафинирования и модифицирования расплав отстаивают в течение 10-15 мин при температуре 700-720°С и разливают по металлическим формам (при заливке форм струю металла припудривают молотой серой для предотвращения загорания).The alloy is melted under a VI2 flux (the flux contains, wt.%: MgCl 2 40.0-48.0; KCl 30.0-40.0; BaCl 2 5.0; CaF 2 3.0-5.0) in stationary thick-walled steel crucibles. After refining and modification, the melt is settled for 10-15 minutes at a temperature of 700-720 ° C and poured into metal molds (when pouring molds, a stream of metal is dusted with ground sulfur to prevent sunburn).

Источники информацииInformation sources

1. SU 1678881, С22С 23/04, 1991.1. SU 1678881, C22C 23/04, 1991.

Claims (1)

Сплав на основе магния, содержащий цинк, неодим, цирконий, титан, магний, отличающийся тем, что дополнительно включает никель и серебро, причем компоненты находятся при следующем соотношении, мас.%: цинк 1,8-2,5; неодим 0,8-1,2; цирконий 0,6-0,9; титан 0,1-0,2; никель 1,0-2,0; серебро 0,6-1,0; магний - остальное.A magnesium-based alloy containing zinc, neodymium, zirconium, titanium, magnesium, characterized in that it further includes nickel and silver, the components being in the following ratio, wt.%: Zinc 1.8-2.5; neodymium 0.8-1.2; zirconium 0.6-0.9; titanium 0.1-0.2; nickel 1.0-2.0; silver 0.6-1.0; magnesium is the rest.
RU2016124012A 2016-06-16 2016-06-16 Alloy on base of magnesium RU2615934C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016124012A RU2615934C1 (en) 2016-06-16 2016-06-16 Alloy on base of magnesium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016124012A RU2615934C1 (en) 2016-06-16 2016-06-16 Alloy on base of magnesium

Publications (1)

Publication Number Publication Date
RU2615934C1 true RU2615934C1 (en) 2017-04-11

Family

ID=58642432

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016124012A RU2615934C1 (en) 2016-06-16 2016-06-16 Alloy on base of magnesium

Country Status (1)

Country Link
RU (1) RU2615934C1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA000092B1 (en) * 1995-02-06 1998-06-25 Бритиш Алюминиум Холдингз Лимитед Magnesium alloys
US20050002821A1 (en) * 2002-06-21 2005-01-06 Bettles Colleen Joyce Creep resistant magnesium alloy
WO2007125532A2 (en) * 2006-04-28 2007-11-08 Biomagnesium Systems Ltd. Biodegradable magnesium alloys and uses thereof
RU2351675C2 (en) * 2003-10-10 2009-04-10 Магнезиум Электрон Лимитед Castable magnesium alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA000092B1 (en) * 1995-02-06 1998-06-25 Бритиш Алюминиум Холдингз Лимитед Magnesium alloys
US20050002821A1 (en) * 2002-06-21 2005-01-06 Bettles Colleen Joyce Creep resistant magnesium alloy
RU2351675C2 (en) * 2003-10-10 2009-04-10 Магнезиум Электрон Лимитед Castable magnesium alloy
WO2007125532A2 (en) * 2006-04-28 2007-11-08 Biomagnesium Systems Ltd. Biodegradable magnesium alloys and uses thereof

Similar Documents

Publication Publication Date Title
JP5674136B2 (en) High thermal conductivity magnesium alloy for die casting
JP2013529255A (en) Aluminum alloy and aluminum alloy casting
IL188837A (en) Magnesium alloy
Li et al. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg–Zn–Er alloys
JP2016128603A (en) Magnesium alloy
Kores et al. Formation of AlFeSi phase in AlSi12 alloy with Ce addition
JP2009203545A (en) Zn ALLOY FOR DIE CASTING, AND METHOD FOR PRODUCING DIE-CAST MEMBER USING THE Zn ALLOY FOR DIE CASTING
Hussein et al. Influence of Al and Ti additions on microstructure and mechanical properties of leaded brass alloys
CN103938029B (en) A kind of master alloy nickel molybdenum 30 additive for titanium molybdenum Ni-Ti alloy ingot casting and production method
Kim et al. Microstructure and mechanical properties of a thixocast Mg–Cu–Y alloy
RU2578273C1 (en) Magnesium-based alloy
RU2615934C1 (en) Alloy on base of magnesium
RU2615935C1 (en) Alloy on base of magnesium
RU2615933C1 (en) Alloy on base of magnesium
US20110165014A1 (en) Aluminium-based grain refiner
RU2615938C1 (en) Alloy on base of magnesium
ES2582529T3 (en) Cast aluminum alloy
RU2578275C1 (en) Magnesium-based alloy
Zhiyong et al. Effect of Ce-rich rare earth on microstructure and mechanical properties of Mg-10Zn-5Al-0.1 Sb magnesium alloy.
Ajibola et al. Effect of MgFeSi inoculant on properties of Cast 6061 Al Alloy for brake master piston application
Moradjoy‐Hamedani et al. The microstructure evolution of a high Zr‐containing WE magnesium alloy through isothermal semi‐solid treatment
RU2355802C1 (en) Alloy on the basis of magnesium and product made of it
Birol Internal cooling to produce aluminium alloy slurries for rheocasting
Ajith Kumar et al. Microstructural evolution and mechanical properties of misch metal added Mg-Si alloys
RU2566098C1 (en) Copper-based alloy