RU2613594C1 - Способ измерения мощности дозы в смешанном аппаратурном спектре гамма-излучения - Google Patents

Способ измерения мощности дозы в смешанном аппаратурном спектре гамма-излучения Download PDF

Info

Publication number
RU2613594C1
RU2613594C1 RU2015152092A RU2015152092A RU2613594C1 RU 2613594 C1 RU2613594 C1 RU 2613594C1 RU 2015152092 A RU2015152092 A RU 2015152092A RU 2015152092 A RU2015152092 A RU 2015152092A RU 2613594 C1 RU2613594 C1 RU 2613594C1
Authority
RU
Russia
Prior art keywords
energy
radiation
spectrum
gamma
emax
Prior art date
Application number
RU2015152092A
Other languages
English (en)
Inventor
Павел Андреевич Кудрин
Тимофей Викторович Андрианов
Евгений Александрович Крамер-Агеев
Original Assignee
Общество с ограниченной ответственностью "Радиационные технологии" (ООО "РадТех")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Радиационные технологии" (ООО "РадТех") filed Critical Общество с ограниченной ответственностью "Радиационные технологии" (ООО "РадТех")
Priority to RU2015152092A priority Critical patent/RU2613594C1/ru
Application granted granted Critical
Publication of RU2613594C1 publication Critical patent/RU2613594C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к области ядерного приборостроения, а именно к способам измерения мощности поглощенной дозы гамма-излучения с помощью сцинтилляционных детекторов. Для измерения мощности дозы в смешанном аппаратурном спектре гамма-излучения производят расчет аппаратурной формы линии энергетических спектров реперных источников ионизирующего излучения, принимаемой за эталонную, и определяют положение пиков полного поглощения излучения на энергетической шкале дозиметра-спектрометра; калибруют дозиметр-спектрометр, устанавливая линейное соответствие между значениями номеров каналов дозиметра-спектрометра максимумов пиков полного поглощения и энергиями фотонов реперных источников ионизирующего излучения. Далее регистрируют аппаратный спектр гамма-излучения неизвестного состава и определяют в нем пик полного поглощения, соответствующий максимальному значению энергии гамма-квантов Emax. По эталонной зависимости определяют энергию гамма-квантов Emax выявленного пика полного поглощения, определяют радионуклид, соответствующий этой энергии. Далее рассчитывают мощность дозы фотонного излучения от компоненты i с энергией Emax путем вторичной регистрации плотности потока гамма-частиц с энергией Emax. После чего поканально вычитают из измеренного аппаратурного спектра гамма-излучения неизвестного состава аппаратурный спектр выявленного радионуклида. Действия повторяют до тех пор, пока не будут вычислены мощности дозы фотонного излучения от всех составляющих смешанного аппаратного спектра гамма-излучения. Технический результат – снижение погрешности измерения мощности поглощенной и экспозиционной дозы в смешанном спектре гамма-излучения. 8 з.п. ф-лы, 1 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области ядерного приборостроения, а именно к способам измерения мощности поглощенной дозы гамма-излучения с помощью сцинтилляционных детекторов, и может быть использовано для создания дозиметров с функцией распознавания/индикации радионуклидов в исследуемом поле гамма-излучения, счетчиков излучения человека, индивидуальных дозиметрах, а также технологических спектрометров из состава систем радиационного контроля на радиационно-опасных объектах.
УРОВЕНЬ ТЕХНИКИ
Существующие сертифицированные средства измерений в области дозиметрического контроля (например, ДКГ-05Д, ДКС-04), измеряющие мощность поглощенной дозы гамма-излучения при внешнем облучении в широком энергетическом диапазоне, нормированы по чувствительности на излучение радионуклида 137Cs. При этом заявленные погрешности измерений приборов ИДК не превышают, как правило, ±30%. Вместе с тем, детекторы ионизирующих излучений (ИИ) имеют непостоянную энергетическую зависимость дозовой чувствительности. Отсутствие поправки показаний на функцию восприимчивости детектора к определенному нуклиду приводит к существенной ошибке при определении эквивалента дозы смешанного спектра гамма-излучения. Таким образом, измерения в полях ИИ, отличных от 137Cs (т.е. в полях излучения смешанного состава), вносят дополнительную погрешность измерений.
Широко известны устройства измерения мощности дозы гамма-излучения, представляющие собой дозиметры с газоразрядными детекторами (счетчиками Гейгера), представляющие собой промышленные сертифицированные средства измерений (например, ДКГ-05Д), так и изобретения, основанные на тех же физических принципах, что и промышленно освоенные (RU 92011251 А, опубл. 30.04.1995, SU 1839950 А1, опубл. 20.06.2006, RU 2361240 С1, опубл. 10.07.2009). Предложенные изобретения, а также способы измерения мощности дозы гамма-излучения расширяют диапазон измерения мощности дозы. Однако недостатком рассматриваемых аналогов является отсутствие корректировки результатов измерений в зависимости от энергии и биологического эффекта излучения, что приводит к ошибке в измерениях до плюс 30% в диапазоне энергий от начала регистрации энергий (низкоэнергетичное излучение) до энергии 662 кэВ (энергия радионуклида 137Cs) и до значений минус 30% в диапазоне энергий выше энергии 662 кэВ до значений заявленных измерений (высокоэнергетичное измерение).
Недостатком известных способов является высокая погрешность методов обработки измерений, а также приборные неопределенности, связанные с сильно выраженной температурной нестабильностью энергетического спектра гамма-излучения.
Известен способ определения спектра гамма-излучения, основанный на использовании кремниевого детектора (RU 2067306 С1, опубл. 27.09.1996), позволяющий расширить диапазон энергий определяемого спектра гамма-излучения без охлаждения до криогенных температур.
Наиболее близким аналогом, который взят за прототип представленного изобретения, является способ определения энергетического спектра гамма-квантов от нескольких источников излучений (RU 2497157 С1, опубл. 27.10.2013), позволяющий упростить методики определения спектра гамма-квантов в полях излучений от разных источников. Сущность метода, представленного в прототипе, заключается в том, что с помощью известных дозиметров измеряют экспозиционные дозы гамма-квантов сначала от одного источника излучений, затем последовательно от двух, трех и т.д. до n-источников, от которых определяется искомый спектр гамма-квантов, при постоянной схеме их размещения относительно дозиметра, рассчитывают вклад (ξ) гамма-квантов от разных источников в показания дозиметров путем решения системы рекурентных уравнений, в правой части которых представлены формулы для расчета поглощенных доз гамма-квантов в воздухе, а в левой - результаты измерений экспозиционных доз. По значениям ξ определяют энергетические спектры гамма-квантов.
Недостатком представленного способа, раскрытого в RU 2497157 С1, является измерение экспозиционных доз в фиксированной геометрии (на заданном расстоянии детектора от источника), необходимость заведомого знания состава смешанного излучения, использование набора радионуклидов, ошибка в измерениях, связанная с отсутствием применения метода режекции наложений импульсов от разных по энергии источников гамма-квантов, которая приводит к уменьшению количества регистрируемых импульсов, а значит - к занижению истинной мощности дозы. Отсутствие поправки на эффективность регистрации различной регистрируемой энергии гамма-квантов в многокомпонентном поле излучения (при количестве источников n>1), также приводит к значительному искажению представляемого результата, как уже было сказано.
В реальных условиях на персонал радиационно-опасных объектов оказывает влияние смешанный спектр гамма-излучения. В настоящий момент не учитывается вклад относительной биологической эффективности различных нуклидов, т.е. производится некорректное измерение интегральной мощности экспозиционной дозы (МЭД).
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Задачей, решаемой предложенным изобретением, является измерение энергетического спектра смешанного фотонного излучения, по которому измеряется интегральная (кумулятивная) поглощенная и экспозиционная мощность дозы фотонного излучения в смешанном поле гамма-излучения с возможностью определения вклада в суммарную дозу от любого компонента спектра гамма-излучения.
Техническим результатом изобретения является снижение погрешности измерения мощности поглощенной и экспозиционной дозы в смешанном спектре гамма-излучения за счет учета при измерении интегральной (кумулятивной) дозы многокомпонентного состава вклада отдельных радионуклидов и влияния их биологической составляющей на организм.
Дополнительным результатом от реализации предложенного изобретения является распознавание состава гамма-излучения (индикация радионуклидного состава), а также измерение объемной активности компонент исследуемого поля фотонного излучения.
Технический результат достигается тем, что производят расчет аппаратурной формы линии энергетических спектров реперных источников ионизирующего излучения, принимаемой за эталонную, и определяют положение пиков полного поглощения излучения на энергетической шкале дозиметра-спектрометра; калибруют указанный дозиметр-спектрометр, устанавливая линейное соответствие между значениями номеров каналов дозиметра-спектрометра максимумов пиков полного поглощения и энергиями фотонов реперных источников ионизирующего излучения; регистрируют аппаратный спектр гамма-излучения неизвестного состава; определяют в аппаратном спектре гамма-излучения неизвестного состава пик полного поглощения, соответствующий максимальному значению энергии гамма-квантов Emax исследуемого спектра; определяют по эталонной зависимости энергию гамма-квантов Emax выявленного пика полного поглощения, определяют радионуклид, соответствующий этой энергии; рассчитывают мощность дозы фотонного излучения от компоненты i с энергией Emax смешанного спектра гамма-спектра путем вторичной регистрации плотности потока гамма-частиц с энергией Emax; поканально вычитают из измеренного аппаратурного спектра гамма-излучения неизвестного состава аппаратурный спектр выявленного радионуклида; повторяют действия до тех пор, пока не будут вычислены мощности дозы фотонного излучения от всех составляющих смешанного аппаратного спектра гамма-излучения.
Кроме того, определяют табличные значения коэффициентов поглощения энергии μ(Е), соответствующих значениям энергии Е, значения коэффициентов квантового выхода η(Е) для реперных источников ионизирующего излучения, значения коэффициентов эффективности регистрации ε(Е) реперных источников ионизирующего излучения и заносят указанные данные в энергонезависимую память дозиметра-спектрометра.
Кроме того, построение калибровочной зависимости положения номера канала дозиметра-спектрометра N производят по следующим пикам полного поглощения реперных источников ионизирующего излучения:
241Am (59,5 кэВ), 57Со (122 кэВ), 133Ва (364 кэВ), 137Cs (661 кэВ), 54Mn (842 кэВ), 60Со (1173, 1333 кэВ).
Кроме того, значение положения пика полного поглощения N на энергетической шкале дозиметра спектрометра во всем диапазоне энергий Е рассчитывают по формуле N(E)=a0+a1×E, где а0 и а1 - рассчитанные линейные коэффициенты, занесенные в энергонезависимую память дозиметра-спектрометра.
Кроме того, для определения погрешности измерений регистрируют гамма-излучение от по меньшей мере одного контрольного источника ионизирующего излучения из набора ОСГИ, и сравнивают положение пиков полного поглощения от контрольного источника ионизирующего излучения с эталонной зависимостью и при расхождении корректируют положение пиков, изменяя коэффициент усиления.
Кроме того, в аппаратурном спектре гамма-излучения неизвестного состава для определения максимальной энергии гамма-квантов Emax определяют номер канала Nmax дозиметра-спектрометра с максимальным количеством отсчетов в первом пике полного поглощения, начиная с крайне правого на шкале аппаратурного спектра реперных источников ионизирующего излучения, после чего в соответствии с калибровочной зависимостью определяют энергию пика полного поглощения, соответствующую этому номеру канала Emax=(Nmax-a0)/a1.
Кроме того, пик полного поглощения с энергией Emax аппроксимируют гауссианом и вычисляют площадь под пиком полного поглощения: Sппп=σ×(2π)1/2×H=1.064×Δn×H, где Δn - ширина пика полного поглощения на половине его высоты, Н - высота пика полного поглощения, определяют плотность потока падающего фотонного излучения с энергией Emax: ϕ(Emax)=Sппп/(ε(Emax)×Sдет), где Sдет - площадь поверхности сцинтилляционного детектора, ε(Emax) - эффективность регистрации радионуклида с энергией Emax, и рассчитывают мощность дозы фотонного излучения от компоненты i с энергией Emax смешанного спектра гамма-спектра по формуле
Figure 00000001
, где i - номер радионуклида с энергией, соответствующей Emax, μ(E)i - коэффициент поглощения энергии Ei i-го радионуклида.
Кроме того, кумулятивную мощность поглощенной дозы в смешанном спектре гамма-излучения рассчитывают по формуле
Figure 00000002
, где i - номер радионуклида, k - количество радионуклидов в смешанном спектре гамма-излучения
Кроме того, по измеренному энергетическому спектру дозиметра-спектрометра определяют значения удельной активности i-го радионуклида с энергией Е по формуле Ai(E)=Sппп(E)i/ε(E)i/η(E)i, где Sппп(E)i - зарегистрированная скорость счета в пике полного поглощения; ε(E)i - эффективность регистрации i-го радионуклида; η(Е)i - квантовый выход i-го радионуклида
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 схематично представлена блок-схема портативного прямопоказывающего дозиметра-спектрометра, с помощью которого реализуются этапы заявленного способа.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Для решения поставленной проблемы предлагается использовать сцинтилляционный принцип детектирования гамма-излучения. Принцип работы дозиметра-спектрометра, осуществляющего этапы способа, заключается в регистрации гамма-излучения с помощью детектора типа SiPM в сборке со сцинтилляционным кристаллом Csl(TI).
Кремниевый фотоумножитель представляет собой совокупность множества пикселей лавинных фотодиодов, соединенных параллельно и объединенных электрически на общую подложку с коэффициентом умножения сигнала, составляющим 106 - как в вакуумных фотоэлектронных умножителях (ФЭУ). Отличительной особенностью кремниевого ФЭУ является нечувствительность к магнитному излучению, в отличие от вакуумных ФЭУ, миниатюрность, а также возможность измерения спектрального распределения видимого света.
На фиг. 1 представлена принципиальная схема выполнения дозиметра-спектрометра.
Узел питания А1 преобразует низковольтное напряжение питания прибора в питание детектора Uдет, выше напряжения пробоя, питает дисплей А6 дозиметра-спектрометра, узел управления дисплея А5 и микроконтроллер. Узел детектора А2 представляет собой сцинтиллятор, совмещенный с твердотельным кремниевым ФЭУ. Гамма-кванты, попадая в объем сцинтиллятора, взаимодействуют с веществом сцинтиллятора, преобразуясь в видимый свет, который регистрируется кремниевым ФЭУ. Узел АЦП A3 преобразует зарегистрированный аналоговый сигнал в дискретный код (цифровой сигнал) и передает значения в узел накопления А4, в котором происходит обработка сигналов по заданным алгоритмам, а также хранение в энергонезависимой памяти EEPROM реперных характеристик.
Способ осуществляется следующим образом.
До начала штатного измерения смешанного поля гамма-излучения неизвестного онуклидного состава с помощью математических аппаратных средств метода Монте-Карло для дозиметра-спектрометра производится расчет аппаратурной формы линии энергетических спектров реперных нуклидов и определяется положение пиков полного поглощения излучения на энергетической шкале дозиметра-спектрометра. В качестве реперных источников используют источники - 241Am (59,5 кэВ), 57Со (122 кэВ), 133Ва (364 кэВ), 137Cs (661 кэВ), 54Mn (842 кэВ), 60Со (1173, 1333 кэВ).
Расчетные энергетические спектры указанных источников ионизирующего излучения принимаются за эталонные и нормируются на единичную активность с помощью дозиметра-спектрометра.
Производится расчет зависимости положения номера канала пика полного поглощения от энергии гамма-излучения реперных нуклидов в диапазоне энергий от 59,5 кэВ до 3000 кэВ. Для этого снимают показания положения пиков полного поглощения (которому соответствует номер канала АЦП N) от реперных нуклидов с энергией Е. Определяют линейные коэффициенты а0 и а1 зависимости номера канала N от энергии гамма-излучения путем решения системы линейных уравнений
Figure 00000003
Figure 00000004
где Ni - номер канала АЦП, соответствующий энергии пика полного поглощения реперного нуклида Ei, i=1,2
В энергонезависимую память дозиметра-спектрометра заносятся значения линейных коэффициентов а0 и а1. Таким образом, значение положения пика полного поглощения N на энергетической шкале дозиметра спектрометра во всем диапазоне энергий Е (от 59,5 кэВ до 3000 кэВ) может быть определено по формуле
Figure 00000005
В энергонезависимую память дозиметра-спектрометра заносятся табличные значения коэффициентов поглощения энергии реперных нуклидов μ(Е), соответствующих значениям энергии Е, значения коэффициентов квантового выхода η(Е) для реперных источников ионизирующего излучения, значения коэффициентов эффективности регистрации ε(Е) реперных источников ионизирующего излучения.
Погрешность измерений определяется следующим образом. Дозиметром-спектрометром регистрируется гамма-излучение от по меньшей мере одного контрольного источника излучения, подаваемого до начала измерения исследуемого излучения. В качестве контрольного источника применяют изотопный источник из набора ОСГИ.
Затем сравнивают положение пиков полного поглощения от контрольного источника излучения с эталонной зависимостью и при расхождении корректируют положение пиков, изменяя коэффициент усиления.
Дозиметром-спектрометром проводится измерение аппаратурного спектра гамма-излучения неизвестного состава. По энергетическому спектру определяют пик полного поглощения, соответствующий наибольшему значению энергии спектра исследуемого гамма-излучения Emax.
По эталонной зависимости определяют энергию выявленного пика полного поглощения.
В аппаратурном спектре положение пика полного поглощения с максимальной энергией гамма-квантов Emax определяют следующим образом:
- определяют номер канала Nmax с максимальным количеством отсчетов в первом пике полного поглощения начиная с крайне правого на шкале аппаратурного спектра реперных источников ионизирующего излучения,
- в соответствии с калибровочной зависимостью определяют энергию пика полного поглощения, соответствующую этому номеру канала Emax=(Nmax-a0)/a1.
Далее по таблице соответствия определяют радионуклид, соответствующий этой энергии, вычисляют площадь под фотопиком, которая однозначно соответствует удельной активности исследуемого радионуклида, рассчитывают мощность дозы фотонного излучения от компоненты i с энергией Emax смешанного спектра гамма-спектра; и поканально вычитают рассчитанный ранее спектр выявленного радионуклида из суммарного аппаратурного спектра гамма-излучения. Данную методику применяют до тех пор, пока не будут рассчитаны мощности дозы всех составляющих энергетического спектра.
Площадь под пиком полного поглощения с энергией Emax вычисляется после аппроксимации гауссианом и вычисляется по формуле
Figure 00000006
где Δn - ширина пика полного поглощения на половине его высоты, Н - высота пика полного поглощения (количество отсчетов в канале Nmax).
Плотность потока падающего фотонного излучения с энергией Emax вычисляют по формуле:
Figure 00000007
где Sдет - площадь поверхности сцинтилляционного детектора, ε(Emax) - эффективность регистрации радионуклида с энергией Emax.
Мощность дозы фотонного излучения от компоненты i с энергией Emax смешанного спектра гамма-спектра рассчитывается по формуле
Figure 00000008
где i - номер радионуклида с энергией, соответствующей Emax, μ(E)i - коэффициент поглощения энергии, соответствующий значениям энергии Е, ϕ(E)i - плотность потока падающего фотонного излучения с энергией Е.
Рассчитывается кумулятивная (суммарная) мощность поглощенной дозы в смешанном спектре гамма-излучения по формуле
Figure 00000009
где i - номер радионуклида, k - количество радионуклидов в смешанном спектре гамма-излучения.
По измеренному энергетическому спектру дифференциального дозиметра-спектрометра также определяют значения удельной активности i-го радионуклида с энергией Е по формуле
Figure 00000010
где Sппп(E)i - зарегистрированная скорость счета в пике полного поглощения; ε(E)i - эффективность регистрации i-го радионуклида из библиотеки данных; η(Е)i - квантовый выход i-го радионуклида
Доза гамма-излучения D является величиной аддитивной (суммарная доза равна сумме доз от различных компонент) и связана с активностью радионуклида А соотношением
D=A*Г/R2
где Г - гамма-постоянная для конкретного радионуклида (i-компонента), R - расстояние до источника ионизирующего излучения.
В реальном поле излучения расстояние (удаленность) до источника (тем более если их много и находятся на разном расстоянии) не известно. В связи с этим в настоящем изобретении мощность дозы определяется путем вторичной регистрации плотности потока гамма-частиц, проходящих через объем сцинтиллятора), определение объемной активности (OA) компонент смешанного спектра является дополнительным преимуществом над имеющимися дозиметрами-радиометрами, как и наличие возможности отображения спектра в связи с использованием сцинтилляционного метода регистрации.
Способ позволяет проводить измерения во всем энергетическом диапазоне, что позволяет в режиме реального времени контролировать состояние измерительной среды.

Claims (27)

1. Способ измерения мощности дозы в смешанном аппаратурном спектре гамма-излучения, состоящий в том, что
- производят расчет аппаратурной формы линии энергетических спектров реперных источников ионизирующего излучения, принимаемой за эталонную, и определяют положение пиков полного поглощения излучения на энергетической шкале дозиметра-спектрометра;
- калибруют дозиметр-спектрометр, устанавливая линейное соответствие между значениями номеров каналов дозиметра-спектрометра максимумов пиков полного поглощения и энергиями фотонов реперных источников ионизирующего излучения;
- регистрируют аппаратный спектр гамма-излучения неизвестного состава;
- определяют в аппаратном спектре гамма-излучения неизвестного состава пик полного поглощения, соответствующий максимальному значению энергии гамма-квантов Emax исследуемого спектра;
- определяют по эталонной зависимости энергию гамма-квантов Emax выявленного пика полного поглощения, определяют радионуклид, соответствующий этой энергии;
- рассчитывают мощность дозы фотонного излучения от компоненты i с энергией Emax смешанного спектра гамма-спектра путем вторичной регистрации плотности потока гамма-частиц с энергией Emax;
- поканально вычитают из измеренного аппаратурного спектра гамма-излучения неизвестного состава аппаратурный спектр выявленного радионуклида;
- повторяют действия до тех пор, пока не будут вычислены мощности дозы фотонного излучения от всех составляющих смешанного аппаратного спектра гамма-излучения.
2. Способ по п. 1, отличающийся тем, что определяют табличные значения коэффициентов поглощения энергии μ(Е), соответствующих значениям энергии Е, значения коэффициентов квантового выхода η(Е) для реперных источников ионизирующего излучения, значения коэффициентов эффективности регистрации ε(Е) реперных источников ионизирующего излучения и заносят указанные данные в энергонезависимую память дозиметра-спектрометра.
3. Способ по п. 2, отличающийся тем, что построение калибровочной зависимости положения номера канала дозиметра-спектрометра N производят по следующим пикам полного поглощения реперных источников ионизирующего излучения:
241Am (59,5 кэВ), 57Со (122 кэВ), 133Ва (364 кэВ), 137Cs (661 кэВ), 54Mn (842 кэВ), 60Со (1173, 1333 кэВ).
4. Способ по п. 3, отличающийся тем, что значение положения пика полного поглощения N на энергетической шкале дозиметра спектрометра во всем диапазоне энергий Е рассчитывают по формуле
N(E)=a0+a1×E, где а0 и а1 - рассчитанные линейные коэффициенты, занесенные в энергонезависимую память дозиметра-спектрометра.
5. Способ по п. 1, отличающийся тем, что погрешность измерений определяют следующим образом:
- регистрируют гамма-излучение от по меньшей мере одного контрольного источника ионизирующего излучения из набора ОСГИ,
- сравнивают положение пиков полного поглощения от контрольного источника ионизирующего излучения с эталонной зависимостью и при расхождении корректируют положение пиков, изменяя коэффициент усиления.
6. Способ по п. 4, отличающийся тем, что в аппаратурном спектре гамма-излучения неизвестного состава максимальную энергию гамма-квантов Emax определяют следующим образом:
- определяют номер канала Nmax дозиметра-спектрометра с максимальным количеством отсчетов в первом пике полного поглощения, начиная с крайне правого на шкале аппаратурного спектра реперных источников ионизирующего излучения;
- в соответствии с калибровочной зависимостью определяют энергию пика полного поглощения, соответствующую этому номеру канала Emax=(Nmax-a0)/a1.
7. Способ по п. 6, отличающийся тем, что пик полного поглощения с энергией Emax аппроксимируют гауссианом и вычисляют площадь под пиком полного поглощения: Sппп=σ×(2π)1/2×H=1.064×Δn×H, где Δn - ширина пика полного поглощения на половине его высоты, Н - высота пика полного поглощения, определяют плотность потока падающего фотонного излучения с энергией Emax: ϕ(Emax)=Sппп/(ε(Emax)×Sдет), где Sдет - площадь поверхности сцинтилляционного детектора, ε(Emax) - эффективность регистрации радионуклида с энергией Emax, и рассчитывают мощность дозы фотонного излучения от компоненты i с энергией Emax смешанного спектра гамма-спектра по формуле
Figure 00000011
,
где i - номер радионуклида с энергией, соответствующей Emax, μ(E)i - коэффициент поглощения энергии Ei i-го радионуклида.
8. Способ по п. 7, отличающийся тем, что рассчитывают кумулятивную мощность поглощенной дозы в смешанном спектре гамма-излучения по формуле
Figure 00000012
где i - номер радионуклида, k - количество радионуклидов в смешанном спектре гамма-излучения.
9. Способ по п. 7, отличающийся тем, что по измеренному энергетическому спектру дозиметра-спектрометра определяют значения удельной активности i-ro радионуклида с энергией Е по формуле
Ai(Е)=Sппп(Е)i/ε(Е)i/η(Е)i,
где Sппп(E)i - зарегистрированная скорость счета в пике полного поглощения; ε(Е)i - эффективность регистрации i-го радионуклида; η(E)i - квантовый выход i-го радионуклида.
RU2015152092A 2015-12-04 2015-12-04 Способ измерения мощности дозы в смешанном аппаратурном спектре гамма-излучения RU2613594C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015152092A RU2613594C1 (ru) 2015-12-04 2015-12-04 Способ измерения мощности дозы в смешанном аппаратурном спектре гамма-излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015152092A RU2613594C1 (ru) 2015-12-04 2015-12-04 Способ измерения мощности дозы в смешанном аппаратурном спектре гамма-излучения

Publications (1)

Publication Number Publication Date
RU2613594C1 true RU2613594C1 (ru) 2017-03-17

Family

ID=58458385

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015152092A RU2613594C1 (ru) 2015-12-04 2015-12-04 Способ измерения мощности дозы в смешанном аппаратурном спектре гамма-излучения

Country Status (1)

Country Link
RU (1) RU2613594C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2751458C1 (ru) * 2020-11-06 2021-07-14 Объединенный Институт Ядерных Исследований (Оияи) Способ измерения интенсивности радиационного излучения неизвестного состава
CN115267873A (zh) * 2022-08-01 2022-11-01 中国核动力研究设计院 一种反应堆沉积源项的测量分析方法、***、终端及介质
RU2790306C1 (ru) * 2022-03-22 2023-02-16 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Способ измерения мощности дозы импульсного тормозного излучения с использованием дозиметров гамма-излучения со счетчиками Гейгера-Мюллера

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1806385A3 (ru) * 1991-07-11 1993-03-30 Konstantin V Drozdov Способ измерения параметров поля ионизирующего излучения и устройство для его осуществления
US20030111612A1 (en) * 1997-05-15 2003-06-19 British Nuclear Fuels Plc Radiation dose rate measurement
RU2361240C1 (ru) * 2007-12-25 2009-07-10 Открытое акционерное общество "Специализированный научно-исследовательский институт приборостроения" (ОАО "СНИИП") Способ измерения мощности дозы гамма-излучения и устройство для его осуществления
RU2497157C1 (ru) * 2012-06-08 2013-10-27 Федеральное бюджетное учреждение "12 Центральный научно-исследовательский институт Министерства обороны Российской Федерации" Способ определения энергетического спектра гамма-квантов
EP2657721A2 (en) * 2006-02-09 2013-10-30 Friedrich-Alexander-Universität Erlangen-Nürnberg Method and apparatus for determining one or more characteristics of radiation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1806385A3 (ru) * 1991-07-11 1993-03-30 Konstantin V Drozdov Способ измерения параметров поля ионизирующего излучения и устройство для его осуществления
US20030111612A1 (en) * 1997-05-15 2003-06-19 British Nuclear Fuels Plc Radiation dose rate measurement
EP2657721A2 (en) * 2006-02-09 2013-10-30 Friedrich-Alexander-Universität Erlangen-Nürnberg Method and apparatus for determining one or more characteristics of radiation
RU2361240C1 (ru) * 2007-12-25 2009-07-10 Открытое акционерное общество "Специализированный научно-исследовательский институт приборостроения" (ОАО "СНИИП") Способ измерения мощности дозы гамма-излучения и устройство для его осуществления
RU2497157C1 (ru) * 2012-06-08 2013-10-27 Федеральное бюджетное учреждение "12 Центральный научно-исследовательский институт Министерства обороны Российской Федерации" Способ определения энергетического спектра гамма-квантов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2751458C1 (ru) * 2020-11-06 2021-07-14 Объединенный Институт Ядерных Исследований (Оияи) Способ измерения интенсивности радиационного излучения неизвестного состава
RU2790306C1 (ru) * 2022-03-22 2023-02-16 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Способ измерения мощности дозы импульсного тормозного излучения с использованием дозиметров гамма-излучения со счетчиками Гейгера-Мюллера
CN115267873A (zh) * 2022-08-01 2022-11-01 中国核动力研究设计院 一种反应堆沉积源项的测量分析方法、***、终端及介质
CN115267873B (zh) * 2022-08-01 2024-04-19 中国核动力研究设计院 一种反应堆沉积源项的测量分析方法、***、终端及介质

Similar Documents

Publication Publication Date Title
Lépy et al. Uncertainties in gamma-ray spectrometry
JP5171891B2 (ja) 放射線測定装置
Zakaly et al. Estimate the absolute efficiency by MATLAB for the NaI (Tl) detector using IAEA-314
Kim et al. A review of neutron scattering correction for the calibration of neutron survey meters using the shadow cone method
Gouda et al. Calibration of well-type NaI (Tl) detector using a point sources measured out the detector well at different axial distances
Buzhan et al. Silicon Photomultiplier and CsI (Tl) scintillator in application to portable H*(10) dosimeter
Park et al. Ambient dose equivalent measurement with a CsI (Tl) based electronic personal dosimeter
RU2613594C1 (ru) Способ измерения мощности дозы в смешанном аппаратурном спектре гамма-излучения
RU2657296C2 (ru) Способ измерения дозы посредством детектора излучения, в частности детектора рентгеновского излучения или гамма-излучения, используемого в спектроскопическом режиме, и система для измерения дозы с применением такого способа
Tripathy et al. Measurement of 241Am–Be spectra (bare and Pb-covered) using TLD pairs in multi-spheres: spectrum unfolding by different methods
CN114740516B (zh) 能谱-剂量的测量方法及装置
RU2701189C1 (ru) Способ определения величины выхода термоядерных нейтронов импульсного источника
Park et al. Remote radiation sensing module based on a silicon photomultiplier for industrial applications
Uosif et al. Comparison of total experimental and theoretical absolute γ-ray detection efficiencies of a cylindrical NaI (Tl) crystal
Rajan et al. Radiation monitoring instruments
Kudo et al. Measurement of/spl gamma/-ray dose in a thermal neutron field by using a/sup 3/He-filtered GM counter
RU2390800C2 (ru) Способ и устройство для измерения спектральной и интегральной плотности потока нейтронов
KR101523319B1 (ko) LaBr3 섬광검출기 백그라운드제거 방법
RU2159451C2 (ru) Способ гамма-спектрометрии
JP7477890B2 (ja) γ線計測方法およびγ線計測装置
Miller et al. Simultaneous Neutron-Photon Dosimetry with a Compact Organic Scintillator Detector
RU2497157C1 (ru) Способ определения энергетического спектра гамма-квантов
Murata et al. The performance of a prototype device designed to evaluate quality parameters of radiological equipment: Complementary study
Hemamali et al. Comparison of calibration factors of the radiation survey meters
Lotfi et al. Detection and dosimetry studies on the response of silicon diodes to an 241Am-Be source

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181205