RU2612481C1 - Способ получения серы из отходящих металлургических газов - Google Patents

Способ получения серы из отходящих металлургических газов Download PDF

Info

Publication number
RU2612481C1
RU2612481C1 RU2016102829A RU2016102829A RU2612481C1 RU 2612481 C1 RU2612481 C1 RU 2612481C1 RU 2016102829 A RU2016102829 A RU 2016102829A RU 2016102829 A RU2016102829 A RU 2016102829A RU 2612481 C1 RU2612481 C1 RU 2612481C1
Authority
RU
Russia
Prior art keywords
gas
hydrogen
carbon monoxide
temperature
sulfur
Prior art date
Application number
RU2016102829A
Other languages
English (en)
Inventor
Олег Георгиевич Ерёмин
Нямаа ДОВЧИН
Original Assignee
Общество С Ограниченной Ответственностью "Ноко"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Ноко" filed Critical Общество С Ограниченной Ответственностью "Ноко"
Priority to RU2016102829A priority Critical patent/RU2612481C1/ru
Application granted granted Critical
Publication of RU2612481C1 publication Critical patent/RU2612481C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0426Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process characterised by the catalytic conversion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/76Gas phase processes, e.g. by using aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8609Sulfur oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0473Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide
    • C01B17/0486Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide with carbon monoxide or carbon monoxide containing mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0473Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide
    • C01B17/0491Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide with hydrogen or hydrogen-containing mixtures, e.g. synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Изобретение может быть использовано на предприятиях цветной металлургии. Для получения серы из отходящих металлургических газов, содержащих оксид серы (IV) SO2 и кислород О2, восстанавливают SO2 газом, содержащим монооксид углерода СО и водород Н2, в полом реакторе при температуре 1100-1350°С. Далее перерабатывают полученный восстановленный газ в каталитическом реакторе с алюмооксидным катализатором. В полый реактор при этом подают дополнительное количество газа, содержащего монооксид углерода и водород, и получают газ, содержащий сероводород H2S, карбонилсульфид COS, СО, воду, Н2 и непрореагировавший SO2. Полученный газ подают в конденсатор серы для ее конденсации, а затем на установку получения серы методом Клауса. Вышеуказанную температуру в полом реакторе поддерживают изменением расхода газа, содержащего монооксид углерода и водород. Перед подачей упомянутого восстановленного газа в каталитический реактор его охлаждают в котле-утилизаторе до температуры 350-450°С. Каталитическое восстановление SO2 газом, содержащим монооксид углерода и водород, проводят при объемной скорости 250-500 час-1 и температуре в слое катализатора 400-500°С. Изобретение позволяет повысить степень извлечения серы из газов и упростить процесс. 6 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к химической технологии, а точнее - к способам получения элементарной серы из отходящих газов, содержащих оксид серы (IV).
УРОВЕНЬ ТЕХНИКИ
При производстве цветных металлов пирометаллургическим способом происходит неизбежное выделение отходящих газов, содержащих оксид серы (IV), концентрация которого зависит от технологии плавки металлургического сырья. Проблема утилизации серы из отходящих металлургических газов является актуальной и необходимость ее решения определяется не только экономическими факторами, но и возрастающими требованиями по охране окружающей среды от вредных промышленных газовых выбросов. В настоящее время отходящие газы в основном используются для получения серной кислоты, которая широко применяется в различных отраслях народного хозяйства. Однако в отдельных случаях при отсутствии потребителей серной кислоты отходящие газы целесообразно утилизировать с получением элементарной серы, которую по сравнению с серной кислотой значительно проще транспортировать и складировать на открытом складе.
В связи с вышеизложенным, например, институтом «Гинцветмет» разработан высокотемпературный вариант метанового способа получения серы из отходящих газов автогенных процессов, основанный на восстановлении оксида серы (IV) природным газом в полом реакторе при температуре 1250÷1300°С с последующей переработкой восстановленного газа методом Клауса (см. публикации: Ерёмин О.Г., Ерёмина Г.А. Утилизация серы из отходящих газов цветной металлургии «Цветные металлы», 1996, №4, С. 21÷23; Ерёмин О.Г., Ерёмина Г.А. О получении серы из отходящих металлургических газов «Цветные металлы», 2000, №3, С. 26÷28; Тарасов А.В., Ерёмин О.Г. Совершенствование технологии получения серы из отходящих металлургических газов «Цветные металлы», 2004, №10, С. 41÷43). Данная технология с одной ступенью Клауса была реализована в промышленном масштабе на НГМК при утилизации отходящих газов из печи Ванюкова, содержащих оксид серы (IV). Длительная эксплуатация промышленной установки получения серы показала, что процесс характеризуется простотой технологической схемы, надежностью и безопасностью. При этом обеспечивается получение товарной серы высшего сорта 9985 по ГОСТ-127÷76, что позволяет ее использовать для получения серной кислоты по так называемой «короткой» схеме. Однако этот способ получения серы (т.н. «метановый» способ) имеет существенный недостаток, который заключается в повышенном расходе дорогостоящего природного газа - до 1000 нм3 на 1 тонну получаемой серы (единицы измерения «нм3» обозначают кубический метр, в пересчете на объем при нормальных условиях). В настоящее время цена природного газа составляет 300÷350 долларов за 1000 нм3, а цена серы - 50 долларов за тонну. При таких издержках производство серы известным «метановым» способом нерентабельно, если не учитывать полезный экологический эффект (ущерб от загрязнения атмосферы).
Таким образом, при получении серы из отходящих металлургических газов представляется целесообразным использовать иные, более дешевые и эффективные восстановители, например газ, содержащий монооксид углерода и водород, полученный посредством газификации угля. Газ, содержащий монооксид углерода и водород, содержит значительные количества оксида углерода и водорода, которые являются эффективными восстановителями оксида серы (IV).
В отечественной и зарубежной литературе приводятся многочисленные результаты исследований по восстановлению оксида серы (IV) монооксидом углерода и водородом с получением серы. Все эти данные в основном показывают высокую эффективность восстановителей и возможность получения высокой степени конверсии оксида серы (IV) в серу. Однако все эти результаты были получены в лабораторных условиях с использованием химически чистых реагентов. При этом не учитывался реальный состав металлургических газов, в частности присутствие в газе кислорода и влаги. По этой причине не было предложено каких-либо конкретных технологий получения серы из отходящих металлургических газов.
Известно, что современные технологии получения серы из газов были разработаны сравнительно недавно, во второй половине двадцатого века. Необходимо особо отметить процесс получения серы, основанный на каталитическом восстановлении диоксида серы природным газом. Этот способ предусматривает каталитическое восстановление оксида серы (IV) природным газом посредством предварительного нагрева смеси исходного газа и природного газа в регенеративном теплообменнике от 450°С до 1100°С, после чего нагретую смесь газов подают в каталитический реактор, в котором оксид серы (IV) восстанавливают природным газом до элементарной серы. Восстановленный газ при температуре 1100°С проходит через второй регенеративный теплообменник, в котором происходит охлаждение газа до 450°С и одновременно разогрев насадки регенеративного теплообменника. После разогрева этого теплообменника его используют для подогрева исходного газа перед подачей в каталитический реактор, а первый регенеративный теплообменник - для охлаждения восстановленного газа при одновременном разогреве его насадки до 1100°С. Таким образом, нормальная работа каталитического реактора обеспечивается периодическим переключением потоков газа для прохождения их через регенеративные теплообменники (патент США №4039650). Недостаток этого способа заключается в сложности технологической схемы и необходимости применения регенеративных теплообменников с тепловой насадкой и термостойких клапанов сложной конструкции для изменения направления потоков агрессивного газа, содержащего SO2 и H2S при температурах до 1100°С.
Известен способ конверсии газов, содержащих оксид серы (IV), с получением серы посредством пропускания газовой смеси через слой катализатора, который периодически разогревают до температуры начала реакции конверсии, при этом нагрев возобновляют при охлаждении катализатора по всей высоте слоя (авторское свидетельство СССР №1157013). Недостаток этого способа заключается в необходимости периодического нагрева катализатора, что усложняет технологическую схему процесса и требует использования сложной системы автоматического управления. Периодический нагрев катализатора приводит к его быстрому разрушению и необходимости частой замены.
Наиболее близким по своей технической сущности к заявляемому способу является способ восстановления кислородсодержащего газа природным газом посредством предварительного сжигания части природного газа в форкамере при температуре 1470°С после чего в образовавшуюся термическую зону при отсутствии кислорода подают дополнительное избыточное количество природного газа, что по мнению авторов ускоряет процесс восстановления (патент РФ на изобретение №2137705). Недостаток этого способа состоит в том, что при использовании в качестве восстановителя SO2 газа, содержащего монооксид углерода и водород, при наличии кислорода в исходном металлургическом газе до 10% произойдет перегрев газовой смеси до температуры более 1350°С, что приведет к снижению выхода серы.
Возможность проведения процессов обескислороживания газов и восстановления SO2 потребует создания сложной системы отвода тепла из реакционной зоны.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задачей данного изобретения является создание простой и эффективной технологии утилизации сернистых газов с получением серы, основанной на восстановлении оксида серы (IV) газом, содержащим монооксид углерода и водород, повышение степени извлечения серы из газов и упрощение процесса.
Поставленная задача решена благодаря тому, что в способе получения серы из отходящих металлургических газов, содержащих оксид серы (IV) (SO2) и кислород (О2)
(а) восстанавливают SO2 газом, содержащим монооксид углерода (СО) и водород (Н2), в полом реакторе при температуре 1100÷1350°С,
(б) перерабатывают восстановленный газ, полученный на стадии (а), в каталитическом реакторе с алюмооксидным катализатором, в который при этом подают дополнительное количество газа, содержащего монооксид углерода и водород, с получением газа, содержащего сероводород (H2S), карбонилсульфид (COS), СО, воду (H2O), Н2 и непрореагировавший SO2,
(в) подают полученный на стадии (б) газ в конденсатор серы для ее конденсации, а затем на установку получения серы методом Клауса,
характеризующийся тем, что в нем
(б1) упомянутую температуру в полом реакторе на стадии (а) поддерживают изменением расхода газа, содержащего монооксид углерода и водород, а
(б2) перед подачей упомянутого восстановленного газа, полученного на стадии (а), в упомянутый каталитический реактор его охлаждают в котле утилизаторе до температуры 350÷450°С
(б3) каталитическое восстановление SO2 газом, содержащим монооксид углерода и водород, проводят при объемной скорости 250-500 час-1 и температуре в слое катализатора 400÷500°С.
В одном из вариантов осуществления способа при переработке газов с содержанием SO2 более 10% каталитическое восстановление на стадии (б) осуществляют посредством упомянутого реактора с многослойным катализатором, при этом между упомянутыми слоями газ дополнительно охлаждают до температуры 350÷450°С.
В еще одном из вариантов осуществления способа при переработке газов с содержанием SO2 более 10% каталитическое восстановление на стадии (б) осуществляют посредством упомянутого реактора с многослойным катализатором, при этом между упомянутыми слоями газ дополнительно охлаждают до температуры 500÷950°С посредством изменения расхода упомянутого газа, содержащего монооксид углерода и водород.
В другом варианте осуществления способа катализатор при пуске упомянутого реактора катализатор предварительно разогревают до температуры 350÷450°С дымовым газом от сжигания газа, содержащего монооксид углерода и водород, в кислородовоздушной смеси.
В одном из вариантов осуществления способа каталитическое восстановление SO2 газом, содержащим монооксид углерода и водород, на стадии (б) осуществляют при объемной скорости 200÷500 час-1.
В еще одном из вариантов осуществления способа, количество газа, содержащего монооксид углерода и водород, подаваемого в упомянутый реактор на стадии (б), регулируют по составу восстановленного газа с учетом его последующей переработки на серу методом Клауса.
В другом варианте осуществления способа газ, содержащий монооксид углерода и водород, содержит монооксид углерода в количестве 35÷40% и водород в количестве 47÷52%.
Как будет понятно из настоящего текста в целом, поставленная задача решается посредством подачи в полый реактор отходящих кислородосодержащих газов и газа, содержащего монооксид углерода и водород, содержащего СО и Н2. При этом за счет взаимодействия монооксида углерода и водорода с кислородом, присутствующим в исходном металлургическом газе, происходит разогрев газовой смеси в зависимости от содержания кислорода в исходном газе. Процесс разогрева сопровождается протеканием следующих химических реакций:
Figure 00000001
Figure 00000002
Технологические расчеты показывают, что один процент кислорода обеспечивает повышение температуры газовой смеси на 110°С.
При полном обескислороживании газовой смеси при температуре 1100÷1350°С и избытке газа, содержащего монооксид углерода и водород, протекает процесс восстановления оксида серы (IV) монооксидом углерода и водородом по реакциям:
Figure 00000003
Figure 00000004
Одновременно возможно протекание реакций образования сероводорода и карбонилсульфида:
Figure 00000005
Figure 00000006
Реакции 3 и 4, так же как и реакции 1 и 2, протекают с выделением тепла, вызывая дополнительный разогрев газовой смеси до температуры 1300÷1350°С, которая поддерживается регулированием расхода газа, содержащего монооксид углерода и водород. Восстановленный газ, содержащий H2S, COS, СО2, Н2О, Н2, СО, S2 и непрореагировавший SO2, подают в котел-утилизатор, в котором газ охлаждают до температуры 350÷400°С, и затем в каталитический реактор с тремя слоями катализатора. При этой температуре на катализаторе протекают реакции 3÷6. В качестве катализатора используют гранулированный активный оксид алюминия Al2O3 или другие алюмооксидные катализаторы. Количество газа, содержащего монооксид углерода и водород, подаваемого в каталитический реактор, также регулируют по температуре в первом и во втором слоях катализатора, которая должна быть в интервале 450÷900°С в зависимости от концентрации SO2 в газе на входе в каталитический реактор.
При достижении температуры газа на выходе из каталитического слоя 900°С его охлаждают в промежуточном экономайзере до температуры 350÷400°С и подают на второй слой катализатора в смеси с дополнительным количеством газа, содержащего монооксид углерода и водород, которое регулируется по температуре газа на выходе по аналогии с работой первого слоя катализатора.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖА
На чертеже показана технологическая схема процесса получения серы восстановлением оксида серы (IV) газом, содержащим монооксид углерода и водород.
На чертеже приняты следующие обозначения:
1 - высокотемпературный полый реактор;
2 - каталитический реактор;
3 - конденсатор серы;
4 - вход газа, содержащего монооксид углерода и водород;
5 - выход газа (для процесса Клауса);
6 - выход серы;
11 - отходящие металлургические газы, содержащие оксид серы (IV) (SO2) и кислород (O2);
7, 8, 9 и 10 - соединительные трубопроводы.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Для определения оптимальной объемной скорости и температуры процесса каталитического восстановления SO2 газом, содержащим монооксид углерода и водород, были проведены лабораторные и полупромышленные исследования.
При проведении исследований температура в каталитическом реакторе изменялась в интервале 300÷800°С. Концентрация SO2 в исходном газе составляла 10÷30%. Опыты проводились при объемной скорости в реакторе: 125, 250, 500 и 1000 час-1.
Исходный состав газа перед реактором и состав восстановленного газа определялись хромотографическим методом, а расход воздуха и оксида серы (IV) контролировался с помощью лабораторных реометров.
По результатам анализов исходного и восстановленного газа определялась степень конверсии оксида серы (IV) в серу по формуле:
Figure 00000007
где
Figure 00000008
,
Figure 00000009
SO2 в исходном и в восстановленном газе;
Figure 00000010
- коэффициент, учитывающий изменение объема газа при восстановлении;
Figure 00000011
,
Figure 00000012
- концентрация азота в исходном и восстановленном газе. Первая серия опытов по каталитическому восстановлению оксида серы (IV) монооксидом углерода проводилась с целью определения влияния температуры на степень конверсии SO2 в серу. Результаты исследований, проведенных при объемной скорости 250 час1 при изменении температуры в интервале 290÷500°С, представлены в таблице 1. Объемная скорость определялась как количество газовой смеси 250 л/час, которое проходило через 1 литр катализатора. Из полученных данных видно, что в восстановленном газе присутствуют сероводород и карбонилсульфид, а также остаточные количества оксида серы (IV) и монооксида углерода. Однако по сравнению с высокотемпературным вариантом метанового способа получения серы применение в качестве восстановителя SO2 газа, содержащего монооксид углерода и водород, при каталитическом восстановлении обеспечивает более высокий выход серы при минимальных содержаниях сероводорода и карбонилсульфида.
Анализируя представленные результаты можно заключить, что в интервале температур в слое катализатора 400÷500°С при объемной скорости 250 час-1 обеспечивается максимальная степень конверсии SO2 в серу 95÷96%. При снижении температуры до 370°С происходит постепенное снижение степени конверсии до 89,9% при соответствующем увеличении концентраций SO2, Н2S, COS в восстановленном газе. Поэтому каталитическое восстановление SO2 газом, содержащим монооксид углерода и водород, необходимо проводить при объемной скорости приблизительно 250÷500 час-1 и температуре в слое катализатора приблизительно 400÷500°С.
Проведенные исследования показали, что при содержании оксида серы (IV) в исходном металлургическом газе более 25÷30% необходимо три слоя катализатора с промежуточным охлаждением газа между слоями. После прохождения последнего слоя восстановленный газ подают в конденсатор серы для ее конденсации и затем на установку Клауса для переработки, образующегося в каталитическом реакторе сероводорода по реакции (7):
Figure 00000013
В связи с этим подачу газа, содержащего монооксид углерода и водород, дополнительно корректируют по содержанию сероводорода и непрореагировавшего оксида серы (IV) в восстановленном газе на выходе из каталитического реактора, поддерживая соотношение сероводорода и оксида серы (IV) 2:1.
Способ осуществляют следующим образом: как показано на фиг. 1, отходящие металлургические газы, содержащие после мокрой очистки от пыли 10÷50% SO2 и 4÷12% О2 смешивают с газом, содержащим монооксид углерода и водород, и подают в полый высокотемпературный реактор 1, который предварительно разогревают до температуры 1100÷1300°С сжиганием газа, содержащего монооксид углерода и водород, на воздухе. При этой температуре происходит взаимодействие кислорода, содержащегося в исходном металлургическом газе с монооксидом углерода и водородом газа, содержащего монооксид углерода и водород, в соответствии с реакциями 1 и 2.
Таким образом количество газа, содержащего монооксид углерода и водород, для обескислороживания исходного металлургического газа определяется из соотношения (VCO+VH2)/VO2=2, где VCO, VH2 - объем окиси углерода и водорода в газе, содержащем монооксид углерода и водород соответственно и VO2 - объем кислорода в исходном металлургическом газе.
При последующем увеличении подачи газа, содержащего монооксид углерода и водород, в полый реактор происходит процесс восстановления оксида серы (IV) с образованием серы и сероводорода, а также в небольших количествах карбонилсульфида. Процесс восстановления сопровождается протеканием химических реакций 3, 4 и 5, 6, которые также приводят к дополнительному разогреву газовой смеси в полом реакторе. Количество газа, содержащего монооксид углерода и водород, подаваемого на восстановление SO2 регулируется по температуре газов на выходе из полого реактора, которая должна быть в интервале 1250÷1350°С. Восстановленный газ при этой температуре затем подают в котел-утилизатор для охлаждения до температуры 350÷450°С.
После охлаждения газа в котле-утилизаторе его подают в смеси с дополнительным количеством газа, содержащего монооксид углерода и водород, на каталитическое восстановление в каталитический реактор 2, включающий два или три слоя катализатора в зависимости от исходной концентрации SO2 в исходном металлургическом газе. Предварительно первый слой катализатора разогревают до температуры 400÷450°С дымовыми газами, полученными от сжигания газа, содержащего монооксид углерода и водород, на воздухе.
Количество газа, содержащего монооксид углерода и водород, подаваемое на первый слой катализатора, регулируется по температуре газа на выходе из слоя, которая должна быть в интервале 500÷900°С в зависимости от концентрации SO2 в газе на входе в каталитический реактор.
Процесс каталитического восстановления ведут при объемной скорости 150÷500 час-1, предпочтительно 250 час-1. Количество катализатора, загружаемого в каталитический реактор, определяют с учетом объемной скорости по уравнению:
VK=VГ/W, где VK - объем катализатора, м3,
VГ - количество исходного газа, нм3/час,
W - объемная скорость процесса, час-1.
При содержании SO2 в исходном металлургическом газе 25÷30% потребуется три слоя катализатора. В этом случае газ после первого слоя катализатора охлаждают в экономайзере до температуре 400÷450°С и подают на второй слой катализатора в смеси с дополнительным количеством газа, содержащего монооксид углерода и водород. При этом температура во втором слое катализатора должна быть в интервале 500÷600°С. В случае превышения этой температуры необходим третий слой катализатора (санитарный слой) для завершения процесса восстановления SO2. После второго слоя катализатора восстановленный газ охлаждают в экономайзере по аналогии с охлаждением газа после первого слоя до температуры 400÷450°С и подают на третий слой. Содержание H2S и SO2 в газе после прохождения третьего слоя должно соответствовать соотношению VH2S/VSO2=2, что необходимо для эффективной работы стадии Клауса. Это соотношение обеспечивается регулированием подачи газа, содержащего монооксид углерода и водород, на второй слой катализатора. Восстановленный газ после третьего слоя катализатора 450÷550°С поступает в конденсатор серы 3 и затем подается на установку Клауса для доработки - H2S.
ПРИМЕР 1
Отходящие металлургические газы в количестве - 68000 нм3/час после мокрой очистки от пыли, содержащие 8% О2 и 28,3% SO2 подаются в полый высокотемпературный реактор, который предварительно разогревают до температуры 1100÷1200°С дымовыми газами от сжигания газа, содержащего монооксид углерода и водород, на воздухе. Газ, содержащий монооксид углерода и водород, содержащий около 40% СО и 50% Н2, получают из угля методом пароводяной конверсией.
Одновременно с подачей в полый реактор металлургического газа подают газ, содержащий монооксид углерода и водород. При этом происходит обескислороживание исходного металлургического газа за счет взаимодействия окиси углерода и водорода, содержащихся в газе, содержащем монооксид углерода и водород, по реакциям 1 и 2. Одновременно с этим протекает процесс восстановления SO2 избытком газа, содержащего монооксид углерода и водород, по реакциям 3, 4 и 5, 6, что приводит к дополнительному разогреву газовой смеси. Количество подаваемого газа, содержащего монооксид углерода и водород, в полый реактор регулируют по температуре восстановленного газа, которая не должна превышать 1350°С. При этом в полом реакторе обеспечивается полное обескислороживание газа и частичное восстановление SO2 с образованием серы в соответствии с равновесным выходом. На основании технологических расчетов и проведенных полупромышленных испытаний установлено, что для заданного состава и количества исходного газа полное обескислороживание обеспечивается при подаче в полый реактор 6200 нм3/час при повышении температуры в реакторе до 1070°С.
Восстановленный газ, содержащий пары серы и непрореагировавший сернистый ангидрид, затем поступает в котел-утилизатор для охлаждения газа до температуры 350÷450°С, после чего его подают в каталитический реактор, имеющий три слоя алюмооксидного катализатора. Загрузка катализатора в каталитический реактор рассчитывается с учетом обеспечения объемной скорости процесса 500 час-1. Одновременно на первый и второй слои катализатора подают газ, содержащий монооксид углерода и водород. Восстановление SO2 монооксидом углерода и водородом в каталитическом реакторе также протекает с выделением тепла, вызывая повышение температуры газа после прохождения каждого слоя катализатора.
Общий разогрев газа при степени конверсии оксида серы (IV) в серу 50% составляет 600°С. Как уже указывалось выше, при восстановлении оксида серы (IV) в полом реакторе повышение температуры газов составит 1350-1070=280°С. Тогда повышение температуры газов в каталитическом реакторе составит 320°С. Количество подаваемого газа, содержащего монооксид углерода и водород, на первый слой катализатора регулируют по температуре газа на выходе из слоя, которая должна быть в интервале 600÷650°С, а температуру газов на выходе из второго слоя поддерживают в интервале 500÷550°С также изменением расхода газа, содержащего монооксид углерода и водород, подаваемого на второй слой. Количество газа, содержащего монооксид углерода и водород, подаваемого на второй слой катализатора, корректируют по составу восстановленного газа, в котором содержание сероводорода и непрореагировавшего оксида серы (IV) должно соответствовать соотношению 1:2, что, как указывалось выше, необходимо для последующей переработки восстановленного газа на установке Клауса. Для охлаждения газа между слоями катализатора до температуры 400÷450°С используют пароводяные экономайзеры.
Третий слой катализатора обеспечивает завершение процесса восстановления оксида серы (IV) монооксидом углерода и водородом. Повышение температуры газа после прохождения третьего слоя катализатора будет незначительным в пределах колебания концентрации SO2 в исходном металлургическом газе. Температура газа после третьего слоя катализатора должна быть в интервале 500÷550°С. Восстановленный газ после каталитического реактора при начальной концетрации SO2 27,0% в металлургическом газе будет содержать H2S 4,5%, SO2 2,5% и COS 1,5%. Образование COS объясняется протеканием реакции взаимодействия монооксида углерода с парами серы. Монооксид углерода и водород практически полностью отсутствуют. Это свидетельствует о нормальной работе каталитического реактора и оптимальном расходе газа, содержащего монооксид углерода и водород, подаваемого на первый и второй слои катализатора.
Определение основных размеров каталитического реактора
При объеме металлургического газа 60000 нм3/час объем газа, поступающего на каталитическое восстановление, составляет 66400 нм3/час. Устанавливаем два параллельно работающих реактора, перерабатывающих по 33200 нм3/час. При объемной скорости 500 час-1 объем катализатора составит 33200/500=66,4 м3.
При высоте трех слоев катализатора 1,5 м сечение реактора будет 33,2 м2, соответственно диаметр реактора составит 6,5 м.
Figure 00000014

Claims (14)

1. Способ получения серы из отходящих металлургических газов, содержащих оксид серы (IV) (SO2) и кислород (О2), в котором
(а) восстанавливают SO2 газом, содержащим монооксид углерода (СО) и водород (Н2), в полом реакторе при температуре 1100÷1350°С,
(б) перерабатывают восстановленный газ, полученный на стадии (а), в каталитическом реакторе с алюмооксидным катализатором, в который при этом подают дополнительное количество газа, содержащего монооксид углерода и водород, с получением газа, содержащего сероводород (H2S), карбонилсульфид (COS), СО, воду (Н2О), Н2 и непрореагировавший SO2,
(в) подают полученный на стадии (б) газ в конденсатор серы для ее конденсации, а затем на установку получения серы методом Клауса,
характеризующийся тем, что в нем
(б1) упомянутую температуру в полом реакторе на стадии (а) поддерживают изменением расхода газа, содержащего монооксид углерода и водород, а
(б2) перед подачей упомянутого восстановленного газа, полученного на стадии (а), в упомянутый каталитический реактор его охлаждают в котле-утилизаторе до температуры 350÷450°С
(б3) каталитическое восстановление SO2 газом, содержащим монооксид углерода и водород, проводят при объемной скорости 250÷500 час-1 и температуре в слое катализатора 400÷500°С.
2. Способ по п. 1, характеризующийся тем, что в нем при переработке газов с содержанием SO2 более 10% каталитическое восстановление на стадии (б) осуществляют посредством упомянутого реактора с многослойным катализатором, при этом между упомянутыми слоями газ дополнительно охлаждают до температуры 350÷450°С.
3. Способ по п. 1, характеризующийся тем, что в нем при переработке газов с содержанием SO2 более 10% каталитическое восстановление на стадии (б) осуществляют посредством упомянутого реактора с многослойным катализатором, при этом между упомянутыми слоями газ дополнительно охлаждают до температуры 500÷950°С посредством изменения расхода упомянутого газа, содержащего монооксид углерода и водород.
4. Способ по п. 1, характеризующийся тем, что в нем при пуске упомянутого реактора катализатор предварительно разогревают до температуры 350÷450°С дымовым газом от сжигания газа, содержащего монооксид углерода и водород, в кислородовоздушной смеси.
5. Способ по п. 1, характеризующийся тем, что в нем каталитическое восстановление SO2 газом, содержащим монооксид углерода и водород, на стадии (б) осуществляют при объемной скорости 200÷500 час-1.
6. Способ по п. 1, характеризующийся тем, что в нем количество газа, содержащего монооксид углерода и водород, подаваемого в упомянутый реактор на стадии (б), корректируют по содержанию сероводорода и непрореагировавшего оксида серы (IV) в восстановленном газе на выходе из каталитического реактора, поддерживая соотношение сероводорода и оксида серы (IV) 2:1.
7. Способ по п. 1, характеризующийся тем, что в нем газ, содержащий монооксид углерода и водород, содержит монооксид углерода в количестве 35÷40% и водород в количестве 47÷52%.
RU2016102829A 2016-01-28 2016-01-28 Способ получения серы из отходящих металлургических газов RU2612481C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016102829A RU2612481C1 (ru) 2016-01-28 2016-01-28 Способ получения серы из отходящих металлургических газов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016102829A RU2612481C1 (ru) 2016-01-28 2016-01-28 Способ получения серы из отходящих металлургических газов

Publications (1)

Publication Number Publication Date
RU2612481C1 true RU2612481C1 (ru) 2017-03-09

Family

ID=58459561

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016102829A RU2612481C1 (ru) 2016-01-28 2016-01-28 Способ получения серы из отходящих металлургических газов

Country Status (1)

Country Link
RU (1) RU2612481C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2137705C1 (ru) * 1998-07-06 1999-09-20 АО "Норильский горно-металлургический комбинат" Способ восстановления кислородсодержащего сернистого технологического газа природным газом
RU2221742C2 (ru) * 2002-02-08 2004-01-20 Открытое акционерное общество "Институт Гипроникель" Способ получения элементной серы из отходящих газов, содержащих диоксид серы
RU2275325C2 (ru) * 2004-05-11 2006-04-27 ОАО "Институт Гипроникель" Способ получения элементной серы из сернистого газа
RU2356832C2 (ru) * 2007-06-28 2009-05-27 ООО "Институт Гипроникель" Способ получения элементной серы из кислородсодержащего металлургического сернистого газа
EA013217B1 (ru) * 2004-04-22 2010-04-30 Флуор Текнолоджиз Корпорейшн Установка для обработки отходящего газа и метод обработки отходящего газа
WO2010112501A1 (en) * 2009-03-30 2010-10-07 Shell Internationale Research Maatschappij B.V. Process for producing purified synthesis gas
RU2445162C2 (ru) * 2010-03-23 2012-03-20 Российская Федерация в лице Министерства промышленности и торговли Российской Федерации Катализатор (варианты) и способ восстановления диоксида серы из серосодержащих газов (варианты)
US8361421B2 (en) * 2008-11-28 2013-01-29 Shell Oil Company Method of treating a syngas stream and an apparatus therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2137705C1 (ru) * 1998-07-06 1999-09-20 АО "Норильский горно-металлургический комбинат" Способ восстановления кислородсодержащего сернистого технологического газа природным газом
RU2221742C2 (ru) * 2002-02-08 2004-01-20 Открытое акционерное общество "Институт Гипроникель" Способ получения элементной серы из отходящих газов, содержащих диоксид серы
EA013217B1 (ru) * 2004-04-22 2010-04-30 Флуор Текнолоджиз Корпорейшн Установка для обработки отходящего газа и метод обработки отходящего газа
RU2275325C2 (ru) * 2004-05-11 2006-04-27 ОАО "Институт Гипроникель" Способ получения элементной серы из сернистого газа
RU2356832C2 (ru) * 2007-06-28 2009-05-27 ООО "Институт Гипроникель" Способ получения элементной серы из кислородсодержащего металлургического сернистого газа
US8361421B2 (en) * 2008-11-28 2013-01-29 Shell Oil Company Method of treating a syngas stream and an apparatus therefor
WO2010112501A1 (en) * 2009-03-30 2010-10-07 Shell Internationale Research Maatschappij B.V. Process for producing purified synthesis gas
RU2445162C2 (ru) * 2010-03-23 2012-03-20 Российская Федерация в лице Министерства промышленности и торговли Российской Федерации Катализатор (варианты) и способ восстановления диоксида серы из серосодержащих газов (варианты)

Similar Documents

Publication Publication Date Title
US7485281B2 (en) Process for the production of sulfur from sulfur dioxide
EA017978B1 (ru) Способ получения железа прямого восстановления
JP6395516B2 (ja) 高炉シャフト部供給水素ガスの製造方法および装置
NO133705B (ru)
KR102135521B1 (ko) 고로 샤프트부로의 수소 함유 환원 가스 공급 방법
CN103822217A (zh) 一种酸性气预处理工艺
CA2093390C (en) Treatment of gas streams
US20100162852A1 (en) Method and apparatus for the direct reduction of iron ores utilizing syngas
JP2017172026A (ja) 高炉シャフト部への水素含有還元ガス供給方法
US20120321548A1 (en) Thermal reduction of sulfur dioxide to sulfur with temperature controlled furnace
AU2018201480A1 (en) Improved sulphur dioxide treatment
US5139764A (en) Sulfur recovery process for ammonia-containing feed gas
RU2474533C1 (ru) Способ получения элементной серы из отходящего газа, содержащего диоксид серы
CN108884503B (zh) 用于生产海绵铁的方法和设备
CN101193690A (zh) 燃料气体的处理
US8425874B2 (en) Process for the production of sulfur from sulfur dioxide with tail gas recycle
Valera-Medina et al. Ammonia from steelworks
RU2612481C1 (ru) Способ получения серы из отходящих металлургических газов
RU2221742C2 (ru) Способ получения элементной серы из отходящих газов, содержащих диоксид серы
Asadi et al. An investigation of reaction furnace temperatures and sulfur recovery
RU2356832C2 (ru) Способ получения элементной серы из кислородсодержащего металлургического сернистого газа
CN111295358B (zh) 扩展热反应段硫回收方法
RU2630118C1 (ru) Способ переработки углеродсодержащего сырья в реакторе с расплавом металла
US8617509B1 (en) Thermal reduction of sulfur dioxide to sulfur in a single reaction furnace
US20160059187A1 (en) Method For Removing Sulphur Dioxide From Gas Streams, Using Titanium Dioxide As Catalyst

Legal Events

Date Code Title Description
HE4A Change of address of a patent owner

Effective date: 20190528