RU2605520C2 - Сцинтилляторный блок, содержащий поглощающую рентгеновские лучи оболочку, и рентгеновская детекторная матрица, содержащая такой сцинтилляторный блок - Google Patents

Сцинтилляторный блок, содержащий поглощающую рентгеновские лучи оболочку, и рентгеновская детекторная матрица, содержащая такой сцинтилляторный блок Download PDF

Info

Publication number
RU2605520C2
RU2605520C2 RU2014126371/28A RU2014126371A RU2605520C2 RU 2605520 C2 RU2605520 C2 RU 2605520C2 RU 2014126371/28 A RU2014126371/28 A RU 2014126371/28A RU 2014126371 A RU2014126371 A RU 2014126371A RU 2605520 C2 RU2605520 C2 RU 2605520C2
Authority
RU
Russia
Prior art keywords
scintillator
ray
pixels
ray absorbing
shell
Prior art date
Application number
RU2014126371/28A
Other languages
English (en)
Other versions
RU2014126371A (ru
Inventor
Симха ЛЕВЕН
ВЕН Николас Йоханнес Антониус ВАН
Лев ГРЕГОРИАН
ЛАТ Антониус Вильхельмус Мария ДЕ
Герардус Францискус Корнелис Мария ЛИЙТЕН
Рафаэль ГОШЕН
Original Assignee
Конинклейке Филипс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Н.В. filed Critical Конинклейке Филипс Н.В.
Publication of RU2014126371A publication Critical patent/RU2014126371A/ru
Application granted granted Critical
Publication of RU2605520C2 publication Critical patent/RU2605520C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2008Measuring radiation intensity with scintillation detectors using a combination of different types of scintillation detectors, e.g. phoswich
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20183Arrangements for preventing or correcting crosstalk, e.g. optical or electrical arrangements for correcting crosstalk
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20187Position of the scintillator with respect to the photodiode, e.g. photodiode surrounding the crystal, the crystal surrounding the photodiode, shape or size of the scintillator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • G01T1/2019Shielding against direct hits

Landscapes

  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

Изобретение относится к сцинтилляторному блоку, который может быть использован в рентгеновской детекторной матрице для компьютерной томографии (СТ). Сцинтилляторный блок содержит матрицу пикселей сцинтиллятора, причем каждый из пикселей сцинтиллятора имеет верхнюю поверхность, нижнюю поверхность и боковые поверхности и причем пиксели сцинтиллятора размещены так, что боковые поверхности соседних пикселей сцинтиллятора обращены друг к другу, и поглощающую рентгеновские лучи оболочку, содержащую электрически изолирующий, сильно поглощающий рентгеновские лучи материал, причем сильно поглощающий рентгеновские лучи материал имеет атомное число больше чем 50; причем поглощающая рентгеновские лучи оболочка размещена на нижней поверхности пикселей сцинтиллятора; поглощающая рентгеновские лучи оболочка содержит частицы сильно поглощающего рентгеновские лучи материала, причем частицы включены в связующий материал; 90% частиц имеют размер между 1 и 50 мкм; и поглощающая рентгеновские лучи оболочка покрывает по меньшей мере 80% нижней поверхности каждого из пикселей сцинтиллятора. Технический результат - повышение помехозащищенности электронной схемы сцинтилляторного блока. 3 н. и 9 з.п. ф-лы, 2 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к сцинтилляторному блоку, который может быть использован в рентгеновской детекторной матрице для компьютерной томографии (СТ). Кроме того, изобретение относится к рентгеновской детекторной матрице, содержащей такой сцинтилляторный блок.
УРОВЕНЬ ТЕХНИКИ
Рентгеновские детекторные матрицы могут быть использованы в различных применениях для регистрации рентгеновского излучения, прошедшего через тело человека, например, при медицинской диагностической визуализации. Обычная рентгеновская детекторная матрица, используемая в СТ сканерах, содержит сцинтилляторный блок, в котором множество сцинтилляторов размещаются как матрица пикселей сцинтиллятора. Сцинтилляторы могут быть в виде кристаллов, или в виде керамических сцинтилляторов, или могут быть композитными сцинтилляторами. Рентгеновское излучение, попадающее в один из пикселей сцинтиллятора, создает сцинтилляционное излучение, например, свет в видимом диапазоне спектра. Свет регистрируется с использованием матрицы связанных фотодетекторов, размещенных как смежные с пикселями сцинтиллятора. Фотодетектор может быть связан с каждым из пикселей сцинтиллятора. Когда рентгеновский фотон поглощается, свет всенаправленно испускается сцинтиллятором, и всеми поверхностями элемента сцинтиллятора, за исключением той, что ориентирована на фотодетектор и, поэтому, покрыта отражательным слоем, который обычно представляет собой белый порошок, введенный в полимер, для направления этого света на фотодетектор. Для эффективного отражения этот отражающий слой должен быть достаточно толстым.
Матрица фотодетекторов может быть соединена с электронной схемой, которая служит, например, для усиления, оцифровки и/или мультиплексирования электрических сигналов от детекторной матрицы.
Как правило, не все падающие на сцинтилляторный блок рентгеновские лучи поглощаются. Остаточное рентгеновское излучение может быть пропущено не только через сами пиксели сцинтиллятора, но и особенно через отражательный слой в областях между ними внутри сцинтиллятора. Это облучение может оказаться вредным для находящихся в основании электронных схем.
Обычный сцинтиллятор описан в Патенте США 7,310,405 B2. В нем отражательный слой, расположенный в областях внутри сцинтиллятора между пикселями сцинтиллятора, содержит поглощающий рентгеновские лучи материал. Поглощающий рентгеновские лучи слой действует для поглощения рентгеновских лучей, тем самым защищая находящиеся в основании области из областей внутри сцинтиллятора.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Как объект настоящего изобретения можно рассматривать предоставление альтернативного сцинтилляторного блока для использования в рентгеновской детекторной матрице сцинтилляторного блока, позволяющего, среди прочего, простое изготовление и хорошую защиту от рентгеновского излучения для смежной электронной схемы.
Такой объект может быть реализован посредством сцинтилляторного блока и рентгеновской детекторной матрицы в соответствии с независимыми пунктами формулы. Преимущественные варианты реализации определены в зависимых пунктах формулы.
В соответствии с первым объектом настоящего изобретения, предлагается сцинтилляторный блок, причем сцинтилляторный блок содержит матрицу пикселей сцинтиллятора и поглощающую рентгеновские лучи оболочку. Пиксели сцинтиллятора, каждый, имеют верхнюю поверхность, нижнюю поверхность и боковые поверхности. При этом, пиксели сцинтиллятора размещаются так, что боковые поверхности соседних пикселей сцинтиллятора обращены друг к другу. Поглощающая рентгеновские лучи оболочка содержит электрически изолирующий, сильно поглощающий рентгеновские лучи материал. Этот сильно поглощающий рентгеновские лучи материал имеет атомный номер, больший, чем 50, предпочтительно - больше, чем 70, и более предпочтительно - больше, чем 80. Поглощающая рентгеновские лучи оболочка размещается на нижней поверхности пикселей сцинтиллятора.
В соответствии со вторым объектом настоящего изобретения, предлагается рентгеновская детекторная матрица. Рентгеновская детекторная матрица содержит вышеупомянутый сцинтилляторный блок в соответствии с вариантом реализации первого объекта изобретения и дополнительно содержит матрицу детекторов сцинтилляционного излучения и электронную схему. Каждый из детекторов сцинтилляционного излучения размещается рядом с соответствующим пикселем сцинтиллятора сцинтилляторного блока для регистрации сцинтилляционного излучения, созданного в пикселе сцинтиллятора. Электронная схема электрически связана с матрицей детекторов сцинтилляционного излучения. Поглощающая рентгеновские лучи оболочка сцинтилляторного блока размещается между матрицей пикселей сцинтиллятора сцинтилляторного блока и электронной схемой.
Суть настоящего изобретения заключается в идее предоставления сцинтилляторного блока со специальной областью, которая приспособлена для сильного поглощения излучаемых рентгеновских лучей. В рентгеновской детекторной матрице, рентгеновские лучи обычно падают на сцинтилляторный блок на верхней поверхности пикселей сцинтиллятора. Часть падающих рентгеновских лучей поглощается в пределах пикселей сцинтиллятора. Однако, существенная часть падающих рентгеновских лучей может или быть пропущенной через пиксели сцинтиллятора, или может пройти сцинтилляторный блок через области зазора между соседними пикселями сцинтиллятора, и такие области зазора обычно предоставляются для разделения соседних пикселей сцинтиллятора и включают в себя отражательный материал для отражения оптического излучения, создаваемого в каждом из пикселей сцинтиллятора, по направлению к соответствующему оптическому детектору.
Предлагается разместить поглощающую рентгеновские лучи область, которая в данном случае обозначается как "поглощающая рентгеновские лучи оболочка", под пикселями сцинтиллятора, то есть на нижней поверхности пикселей сцинтиллятора. Поглощающая рентгеновские лучи оболочка содержит материал, который имеет свойства сильного поглощения рентгеновских лучей благодаря тому, что этот материал содержит в себе вещество с атомным номером, также называемым "Z-числом", большим, чем 50.
Если поглощающая рентгеновские лучи оболочка размещается под пикселями сцинтиллятора, то имеется достаточное пространство, доступное для предоставления поглощающей рентгеновские лучи оболочки достаточной толщины, такой, чтобы по существу рентгеновские лучи, предварительно пропущенные через матрицу пикселей сцинтиллятора, дополнительно не проходили бы через поглощающую рентгеновские лучи оболочку, но по существу полностью поглощались бы в оболочке. Пропускание рентгеновских лучей таким слоем может быть, например, приблизительно 3% при 50КэВ и 10% при 100КэВ. Соответственно, электронная схема, размещенная под поглощающей рентгеновские лучи оболочкой, оказывается защищенной от повреждения рентгеновскими лучами.
Вследствие электроизолирующих свойств материала для поглощающей рентгеновские лучи оболочки, электрические соединения от электронной схемы на сцинтилляторные детекторы излучения могут быть проведены через область оболочки, не требуя дополнительных усилий для электрического разделения таких соединений для предотвращения, например, коротких замыканий.
Сильно поглощающий рентгеновские лучи материал, содержащийся в поглощающей рентгеновские лучи оболочке, может содержать оксид висмута (Bi2O3). Висмут имеет атомное число 83 и, поэтому, сильно поглощает рентгеновские лучи. Кроме того, оксид висмута нетоксичен, является электрическим изолятором и может быть предоставлен за низкую цену.
Поглощающая рентгеновские лучи оболочка может содержать от 20 до 70 об. % (объемные проценты), предпочтительно от 30 до 60 об. %, и более предпочтительно - 50+/-5 об. % сильно поглощающего рентгеновские лучи материала, такого, как оксид висмута. Было показано, что такое содержание поглощающего рентгеновские лучи материала обеспечивает достаточное поглощение рентгеновских лучей. Остаток от объема поглощающей рентгеновские лучи оболочки может быть предоставлен для других целей. Например, материал для формирования поглощающей рентгеновские лучи оболочки может быть предоставлен с полимером, тем самым, в неотвержденном вязком состоянии, позволяя, при достаточно малой вязкости, применение его в качестве оболочки.
Например, поглощающая рентгеновские лучи оболочка может содержать частицы сильно поглощающего рентгеновские лучи материала, например, включенные в связующий материал частицы оксида висмута. Частицы могут обеспечить необходимое поглощение рентгеновских лучей благодаря содержащимся в них тяжелых элементам. Связующий материал может заключать в себе частицы и обеспечивать структурную стабильность сильно поглощающего рентгеновские лучи материала. Связующий материал может быть отверждаемым материалом, который в начальном состоянии является флюидом и который может затем быть отвержден и переведен в стабильное твердое состояние. И частицы, и связующий материал могут быть электрически изолирующими.
Большая часть частиц, например, по меньшей мере, 90%, предпочтительно, по меньшей мере, 95% частиц, могут иметь размер между 1 и 50 микрометрами, предпочтительно между 3 и 20 микрометрами. Было показано, что такое распределение размеров имеет преимущественные свойства, например, относительно реологических параметров неотвержденной смеси частицы/связующий материал смеси во время заполнения пустых пространств для создания поглощающей рентгеновские лучи оболочки при адекватных параметрах поглощения рентгеновских лучей.
Частицы могут быть введены в связующий материал, содержащий, например, эпоксидную смолу. Эпоксидная смола является электрически изолирующей и может иметь достаточно низкую вязкость перед отверждением, проста в обработке и может быть предоставлена за низкую цену.
Соответственно, материал, используемый для заполнения объема поглощающей рентгеновские лучи оболочки, может быть приготовлен смешиванием порошка частиц сильно поглощающего рентгеновские лучи материала со связующим материалом, который, на начальной стадии, является жидким и может впоследствии быть отвержден. Например, частицы оксида висмута могут быть примешаны в эпоксидную смолу, и смесь затем заполняет объем поглощающей рентгеновские лучи оболочки и впоследствии затвердевает. К смеси может быть добавлена диспергирующая добавка для способствования дисперсии порошковых частиц в эпоксидной смоле. Соответственно, такая поглощающая рентгеновские лучи оболочка для сцинтилляторного блока может быть легко изготовлена и может быть предоставлена за низкую цену.
Например, поглощающая рентгеновские лучи оболочка может покрыть, по меньшей мере, 80%, более предпочтительно, по меньшей мере, 95% нижней поверхности каждого из пикселей сцинтиллятора, содержащегося в сцинтилляторном блоке. Соответственно, в зоне сцинтилляторного блока, где, например, находящаяся в основании электронная схема должна быть защищена от повреждения рентгеновским излучением, по меньшей мере, главный участок нижней поверхности пикселей сцинтиллятора покрыт достаточно толстым слоем поглощающей рентгеновские лучи оболочки. Предпочтительно, вся зона, защищаемая от повреждения рентгеновским излучением, покрыта поглощающей рентгеновские лучи оболочкой, или одной, или в комбинации с другим поглощающим рентгеновское излучение средством, так что электронная схема полностью защищена от повреждения рентгеновским излучением.
Отделяющие пространство между соседними пикселями сцинтиллятора могут быть, по меньшей мере, частично заполнены материалом, который в наименьшей степени поглощает рентгеновское излучение. Иначе говоря, хотя любой материал обнаруживает определенное поглощение рентгеновского излучения, материал, предоставленный в местах, отделяющих соседние пиксели сцинтиллятора, может иметь существенно более слабое поглощение рентгеновских лучей, чем материал, используемый для поглощающей рентгеновские лучи оболочки. Например, отделяющее пространство между соседними пикселями сцинтиллятора может быть предоставлено с таким материалом, как диоксид титана (TiО2), дающий большее отражение для света, создаваемого рентгеновскими лучами, поглощенными пикселями сцинтиллятора, но обеспечивающий только слабое поглощение рентгеновских лучей. Однако в предлагаемом сцинтилляторном блоке такое слабое поглощение рентгеновских лучей в местах между соседними пикселями сцинтиллятора не приводит к пропусканию рентгеновского излучения к находящейся в основании электронной схеме, если дополнительная, поглощающая рентгеновские лучи оболочка, размещаемая под такими разделяющими промежутками, будет поглощать такие рентгеновские лучи благодаря содержащемуся в ней сильно поглощающему рентгеновские лучи материалу. В отличие от материала, предоставляемого в местах, отделяющих соседние пиксели сцинтиллятора, сильно поглощающий рентгеновские лучи материал, содержащийся в оболочке, не должен быть сильно отражающим для света. Таким образом, различные материалы могут быть использованы для поглощающей рентгеновские лучи оболочки, с одной стороны, и для отражающего слоя в отделяющих пространствах, с другой стороны, так, что нет необходимости в компромиссах или заменах в связи с поглощением рентгеновского излучения и отражением света, соответственно.
Предложенный сцинтилляторный блок в рентгеновской детекторной матрице может быть особенно полезным, когда электронная схема детектора рентгеновского излучения содержит интегральную схему, предоставленную посредством технологии CMOS. Хотя электронный чип, содержащий CMOS схему, может быть произведен за низкую цену и при высокой степени интеграции, CMOS структуры могут быть чувствительны к рентгеновскому повреждению. Однако, благодаря поглощающей рентгеновские лучи оболочке, содержащейся в предлагаемом сцинтилляторном блоке, такая CMOS схема хорошо защищена относительно рентгеновского излучения.
Преимущественно, электронная схема может содержать чип ASIC на перевернутом кристалле (специализированная интегральная микросхема). Специализированная интегральная микросхема может быть изготовлена при низкой стоимости, например, по CMOS технологии, и тогда может быть соединена с подложкой и/или с матрицей детекторов сцинтилляционного излучения, используя технологию перевернутого кристалла. Вследствие того, что сильно поглощающая рентгеновские лучи оболочка может быть предоставлена с отверждаемой смолой в качестве связующего материала, электрические соединения между ASIC и каждым из детекторов сцинтилляционного излучения могут быть легко проведены через оболочки, поскольку электрическое соединение может быть приготовлено вначале, и оболочка может быть приготовлена посредством последующего введения отверждаемого поглощающего рентгеновские лучи материала в пространство между такими электрическими соединениями.
В соответствии с вариантом реализации предложенной рентгеновской детекторной матрицы, поверхность детектирования сцинтилляционного излучения каждого из детекторов сцинтилляционного излучения размещается вдоль боковой поверхности соответствующего пикселя сцинтиллятора. Иначе говоря, для каждого пикселя сцинтилляторного блока может быть предоставлен соответствующий фотодетектор, и его поверхность детектирования может быть размещена не на стороне основания, а на боковой поверхности соответствующего пикселя сцинтиллятора. Однако специалисты в данной области техники поймут, что использование поглощающего рентгеновские лучи материала оболочки или некоторого заполнения, может оказаться предпочтительным в других конфигурациях детекторной матрицы, причем, поверхность фотодетектора располагается на нижней стороне, а не на боковой поверхности ее соответствующего пикселя сцинтиллятора.
Соответственно, рентгеновское излучение может попасть на пиксель сцинтиллятора на верхней поверхности и может создать сцинтилляционное излучение, которое может быть затем зарегистрировано поверхностью детектирования излучения со стороны пикселя сцинтиллятора, тогда как непоглощенные рентгеновские лучи, пропущенные через пиксель сцинтиллятора, будут затем поглощены нижележащей поглощающей рентгеновские лучи оболочкой, тем самым предотвращая любое повреждение рентгеновским излучением нижележащей электронной схемы.
Рентгеновская детекторная матрица может дополнительно содержать промежуточную пластину, расположенную между поглощающей рентгеновские лучи оболочкой сцинтилляторного блока и электронной схемой. Задача такой промежуточной пластины может заключаться в том, чтобы обеспечить механически устойчивую сеть электрических соединений между вертикальными оптическими детекторами и внешними электронными устройствами, расположенными с нижней стороны промежуточной пластины.
Следует отметить, что возможные признаки и преимущества вариантов реализации настоящего изобретения описаны здесь частично относительно предложенного сцинтилляторного блока и частично относительно предложенной рентгеновской детекторной матрицы. Специалист в данной области техники поймет, что описанные признаки могут быть заменены или скомбинированы различным образом, тем самым приводя к альтернативным вариантам реализации настоящего изобретения и, возможно, тем самым реализуя синергетические эффекты.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Варианты реализации настоящего изобретения рассматриваются ниже в связи с сопровождающими чертежами, причем ни описание, ни чертежи не следует интерпретировать как ограничение объема притязаний изобретения.
Фиг. 1 изображает пример обычной рентгеновской детекторной матрицы.
Фиг. 2 - вариант реализации рентгеновской детекторной матрицы в соответствии с настоящим изобретением.
Чертежи выполнены только схематично и не в масштабе.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Предоставляется рентгеновская детекторная матрица, такая, как показана на фиг. 1, например, для компьютерной томографии.
Рентгеновская детекторная матрица 101 содержит сцинтилляторный блок 102. В этом сцинтилляторном блоке 102 множество пикселей 103 сцинтиллятора размещается в матрице. Каждый пиксель 103 сцинтиллятора содержит кристаллы 105, 107 сцинтиллятора, которые могут преобразовывать проникающие рентгеновские лучи в сцинтилляционное излучение, возможно в видимом спектральном диапазоне. Имеется два слоя сцинтилляторов - верхний слой, то есть ближайший относительно источника рентгеновского излучения, для регистрации только более мягких рентгеновских лучей, и нижний слой, то есть более удаленный от источника рентгеновского излучения, для регистрации более жестких рентгеновских лучей. Каждый из сцинтилляторов в каждом слое связан с фотодиодом. Спектральное изображение рентгеновского излучения создается обработкой и сравнением данных, выводимых из этих двух слоев матрицы фотодиодов. Более обширное описание этой конфигурации сцинтиллятора дается в Патенте США 7968853 B2 и Патенте США 2010/0220833, совместные с патентообладателем настоящей заявки.
Детектор 109 сцинтилляционного излучения размещается как смежный с каждым из пикселей 103 сцинтиллятора на боковой его поверхности. Детектор 109 сцинтилляционного излучения может быть предоставлен как вертикальный фотодиод. За исключением боковой поверхности, которая противостоит детектору 109 сцинтилляционного излучения, все поверхности кристаллов сцинтиллятора покрыты слоем 111 отражающей краски, которая является сильно отражающей для сцинтилляционного излучения и которая может отражать сцинтилляционное излучение, создаваемое в кристаллах сцинтиллятора, по направлению к соответствующей поверхности детектора сцинтилляционного излучения. Каждый из детекторов 109 сцинтилляционного излучения соединяется с подложкой 117 электрическим соединением 115 на нижнем его краю. На поверхности подложки 117, противостоящей поверхности, ориентированной к сцинтилляторному блоку 102, размещаются электронные схемы 118. Кроме того, предоставляется дополнительный гибкий входной/выходной кабель 121 для электрического контакта с электронной схемой 118.
Электронная схема 118 может служить для усиления, оцифровывания и/или мультиплексирования и размещается ниже подложки 117. Поскольку электронная схема 118 может содержать аналоговую специализированную секцию, например, для усиления быстро изменяющихся токов в диапазоне пикоамперов, то эту секцию может быть необходимо задать так, чтобы защитить ее от прямого облучения рентгеновскими лучами, поскольку рентгеновское излучение может привести к прямому преобразованию и, тем самым, к ложным сигналам. Кроме того, длительная экспозиция может привести к повреждению, например, полупроводникового материала, используемого для интегральной схемы, реализующей аналоговую секцию, и может, тем самым, усилить токи утечки.
Для защиты электронной схемы 118 и специальной защиты ее аналоговой секции, между подложкой 117 и электронной схемой 118 помещается пластина 120, выполненная из вольфрама или любого другого подходящего материала с большим атомным номером Z. При этом подходе, электронная схема 118 устанавливается ее задней стороной на пластине 120, и взаимосвязи могут быть реализованы с помощью проводного соединения.
Однако, при таком подходе все сигналы, вероятно, придется направить к периферии электронной схемы 118. В детекторной матрице с большим количеством пикселей 103, может оказаться невозможным направить все сигналы к периферии матрицы.
Поэтому может быть предпочтительным установить чип, реализующий электронную схему 113, используя технологию монтажа методом перевернутого кристалла. Таким образом, маршрутизация сигнала может быть короче, а также разводкой питания по чипу можно управлять лучшим образом. Однако, при таком подходе оказывается необходимым отыскать новое решение для защиты электронной схемы 118.
Поэтому, хотя в рентгеновской детекторной матрице 101 на Фиг. 1 пространство 112 ниже сцинтилляторов 105, 107 пусто, предлагается использовать это пространство для дополнительной защиты от рентгеновского излучения.
На Фиг. 2 показан вариант реализации рентгеновской детекторной матрицы 1 в соответствии с настоящим изобретением.
Сцинтилляторный блок 2 содержит множество пикселей 3 сцинтиллятора каждого содержащегося сцинтиллятора 5, 7. Каждый из сцинтилляторов 5, 7 покрыт слоем 11 отражательной краски для отражения сцинтилляционного излучения, создаваемого в пределах соответствующего пикселя 3 сцинтиллятора, по направлению к его боковой поверхности. На этой боковой поверхности вертикальный фотодиод служит детектором 9 сцинтилляционного излучения. Каждый детектор 9 сцинтилляционного излучения связан с помощью электрического соединения 15 с промежуточной пластиной 17. На противоположной стороне промежуточной пластины 17 специализированные интегральные микросхемы размещаются для предоставления электронной схемы 19. Специализированные интегральные микросхемы устанавливаются по технологии монтажа методом перевернутого кристалла и соединяются с входным/выходным кабелем 21.
В рентгеновских применениях, верхняя поверхность 27 пикселей 3 сцинтиллятора ориентирована по направлению к источнику рентгеновского излучения. Рентгеновские лучи могут попасть на сцинтилляторы 5, 7 и могут быть, по меньшей мере, частично поглощены для создания в них сцинтилляционного излучения. Боковые поверхности 29 пикселей 3 сцинтиллятора покрываются слоем 11 отражательной краски или соответствующим детектором 9 сцинтилляционного излучения.
На нижней поверхности 31 пикселей 3 сцинтиллятора, объем между кристаллами 7 сцинтиллятора и промежуточной пластиной 17 заполняется сильно поглощающим рентгеновские лучи материалом, тем самым, формируя поглощающую рентгеновские лучи оболочку 13. Эта поглощающая рентгеновские лучи оболочка 13 содержит большой объемный процент сильно поглощающего рентгеновские лучи материала, имеющий большой атомный номер, больший, чем 50. Благодаря этому сильно поглощающему рентгеновские лучи материалу, оболочка 13 может служить защитным барьером от рентгеновского излучения для находящейся в основании электронной схемы 19. По существу, рентгеновские лучи, пропущенные через пиксели 3 сцинтиллятора, не могут быть пропущены далее через оболочку 13 вследствие эффекта сильного поглощения рентгеновских лучей.
Оболочка 13 может не только действовать как барьер для рентгеновских лучей, но может также служить для механической стабилизации фотодиодов, формирующих детекторы 9 сцинтилляционного излучения на верхней части промежуточной пластины 17.
Материалом наполнителя, используемым для оболочки 13, может быть, например, оксид висмута (Bi2О3). Большой атомный номер висмута обеспечивает хорошие свойства поглощения рентгеновского излучения такого материала наполнителя. Наблюдалось, что поглощающая рентгеновские лучи оболочка 13, содержащая, например, большую концентрацию оксида висмута, и имеющая толщину 1мм, может демонстрировать подобные же свойства поглощения рентгеновского излучения, что и вольфрамовая пластина толщиной 0,25 мм. Кроме того, оксид висмута является экологически приемлемым, нетоксичным и дешевым материалом.
Поскольку висмут предоставляется в окисленной форме, материал наполнителя является достаточно электрически изолирующим, так что, например, нежелательные электрические закорачивания между электрическими соединениями 15 могут быть предотвращены. Поскольку фотодиоды детекторов 9 сцинтилляционного излучения могут предоставить фототоки порядка пикоамперов, такая электрическая изоляция может быть критически важной. Можно достичь электрического сопротивления, большего, чем сотни мегомов (>100ΜОм) между соседними электрическими соединениями.
Как альтернатива оксиду висмута в качестве материала наполнителя, могут быть использованы другие материалы наполнителя, включающие в себя элементы с большим номером Z, например, оксид свинца (PbxOy), окись тантала (Ta2О5), окись урана (UO2), окись лютеция (Lu2О3), окись гадолиния (Gd2О3) или другие подходящие окиси. Как дополнительная альтернатива, в поглощающей рентгеновские лучи оболочке 13 могут быть использованы вольфрамовые металлические частицы, покрытые изолирующим слоем для поддержания электрической изоляции.
Материал наполнителя, хотя и не обязательно, должен иметь возможность обеспечения эффективного отражения сцинтилляционного излучения. Например, оксид висмута демонстрирует некоторое поглощение в видимом спектре, которое особенно проявляется в желтой части спектра. Однако, в предлагаемой здесь рентгеновской детекторной матрице такое поглощение не имеет значения, поскольку наполнитель в оболочке 13 не должен служить для отражения сцинтилляционного излучения, поскольку этот эффект обеспечивается слоем 11 отражательной краски.
Материал наполнителя для оболочки 13 может включать в себя частицы сильно поглощающего рентгеновские лучи материала, например, частицы оксида висмута, причем такие частицы вводятся в полимерную матрицу. Степень заполнения делается предпочтительно настолько высокой, насколько это возможно, но по практическим причинам может быть приблизительно 50% по объему или 90% по весу. При такой ситуации, вязкость может все еще быть достаточно малой, так что смесь частиц с полимером может быть использована в процессе заполнения для заполнения пространства под пикселями 3 сцинтиллятора, для создания поглощающей рентгеновские лучи оболочки 13.
Например, порошок, содержащий частицы оксида висмута со средним размером 10 микрометров, может быть смешан с эпоксидным связующим малой вязкости. Для получения малой вязкости наполнителя с большим содержанием оксида висмута, необходим эффективный диспергатор для рассредоточения частиц оксида висмута в материале наполнителя. Максимальное содержание частиц может дополнительно зависеть от свойств частиц, например от размера, распределения размеров и от формы. Свойства материала наполнителя, в частности его вязкость и содержание в нем частиц оксида висмута, могут быть подобраны так, что, с одной стороны, материал наполнителя может быть легко введен в пространство под пикселями 3 сцинтиллятора, для создания поглощающей рентгеновские лучи оболочки 13 и, с другой стороны, обеспечить достаточное поглощение рентгеновских лучей такой оболочкой 13. Хотя большое содержание поглощающих рентгеновские лучи частиц, то есть, частиц оксида висмута, обеспечивает сильное поглощение рентгеновских лучей, столь большое содержание может привести к большой вязкости. Соответственно, содержание поглощающих рентгеновские лучи частиц в пределах полимерной матрицы материала наполнителя должно быть оптимизировано.
Следует отметить, что термин "содержащий" не исключает другие элементы или этапы и что выражения в единственном числе не исключают множества. Также, элементы, описанные в связи с различными вариантами реализации, могут быть объединены. Следует также отметить, что символьные обозначения в формуле изобретения не должны рассматриваться как ограничение объема притязаний формулы изобретения.
СПИСОК ОБОЗНАЧЕНИЙ
1 рентгеновская детекторная матрица
2 сцинтилляторный блок
3 пиксель сцинтиллятора
5 сцинтиллятор
7 сцинтиллятор
9 детектор сцинтилляционного излучения
11 слой отражательной краски
13 поглощающая рентгеновские лучи оболочка
15 электрическое соединение
17 промежуточная пластина
19 электронная схема
21 входной/выходной кабель
27 верхняя поверхность
29 боковая поверхность
31 нижняя поверхность
101 детекторная матрица
102 сцинтилляторный блок
103 пиксель сцинтиллятора
105 сцинтиллятор
107 сцинтиллятор
109 детектор сцинтилляционного излучения
111 слой отражательной краски
112 пустое пространство
115 электрическое соединение
117 пластина
118 электронная схема
121 входной/выходной кабель

Claims (12)

1. Сцинтилляторный блок (2), содержащий:
матрицу пикселей (3) сцинтиллятора, причем каждый из пикселей сцинтиллятора имеет верхнюю поверхность (27), нижнюю поверхность (31) и боковые поверхности (29) и причем пиксели сцинтиллятора размещены так, что боковые поверхности соседних пикселей сцинтиллятора обращены друг к другу; и
поглощающую рентгеновские лучи оболочку (13), содержащую электрически изолирующий, сильно поглощающий рентгеновские лучи материал, причем сильно поглощающий рентгеновские лучи материал имеет атомное число больше чем 50;
причем поглощающая рентгеновские лучи оболочка (13) размещена на нижней поверхности (31) пикселей (3) сцинтиллятора;
поглощающая рентгеновские лучи оболочка содержит частицы сильно поглощающего рентгеновские лучи материала, причем частицы включены в связующий материал;
90% частиц имеют размер между 1 и 50 мкм; и
поглощающая рентгеновские лучи оболочка покрывает по меньшей мере 80% нижней поверхности каждого из пикселей сцинтиллятора.
2. Сцинтилляторный блок по п. 1, в котором сильно поглощающий рентгеновские лучи материал содержит оксид висмута.
3. Сцинтилляторный блок по одному из п. 1 или 2, в котором поглощающая рентгеновские лучи оболочка содержит от 20 до 70 об.% сильно поглощающего рентгеновские лучи материала.
4. Сцинтилляторный блок по п. 1, в котором связующий материал представляет собой эпоксидную смолу.
5. Сцинтилляторный блок по п. 1, в котором разделительные промежутки между соседними пикселями сцинтиллятора, по меньшей мере, частично заполнены слабо поглощающим рентгеновские лучи материалом.
6. Сцинтилляторный блок по п. 1, в котором поглощающий рентгеновские лучи материал содержит смесь материалов, имеющих различные атомные номера.
7. Рентгеновская детекторная матрица (1), содержащая:
сцинтилляторный блок (2) по одному из пп. 1-6,
матрицу детекторов (9) сцинтилляционного излучения, причем каждый из детекторов сцинтилляционного излучения размещен рядом с соответствующим пикселем (3) сцинтиллятора сцинтилляторного блока для обнаружения сцинтилляционного излучения, создаваемого в пикселе сцинтиллятора, и
электронную схему (19), электрически соединенную с матрицей детекторов сцинтилляционного излучения;
причем поглощающая рентгеновские лучи оболочка (13) сцинтилляторного блока (2) размещена между матрицей пикселей (3) сцинтиллятора сцинтилляторного блока и электронной схемой (19).
8. Рентгеновская детекторная матрица по п. 7, в которой электронная схема содержит интегральную микросхему, произведенную по технологии CMOS.
9. Рентгеновская детекторная матрица по п. 7 или 8, в которой электронная схема содержит специализированную интегральную микросхему (ASIC) по технологии flip-chip.
10. Рентгеновская детекторная матрица по п. 7, в которой поверхность обнаружения сцинтилляционного излучения каждого из детекторов сцинтилляционного излучения размещена вдоль боковой поверхности соответствующего пикселя сцинтиллятора.
11. Рентгеновская детекторная матрица по п. 10, дополнительно содержащая промежуточную пластину (17), вставленную между поглощающей рентгеновские лучи оболочкой сцинтилляторного блока и электронной схемой.
12. Сканер СТ, содержащий рентгеновскую детекторную матрицу по любому из пп. 7-11.
RU2014126371/28A 2011-11-29 2012-11-23 Сцинтилляторный блок, содержащий поглощающую рентгеновские лучи оболочку, и рентгеновская детекторная матрица, содержащая такой сцинтилляторный блок RU2605520C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161564407P 2011-11-29 2011-11-29
US61/564,407 2011-11-29
PCT/IB2012/056665 WO2013080105A2 (en) 2011-11-29 2012-11-23 Scintillator pack comprising an x-ray absorbing encapsulation and x-ray detector array comprising such scintillator pack

Publications (2)

Publication Number Publication Date
RU2014126371A RU2014126371A (ru) 2016-01-27
RU2605520C2 true RU2605520C2 (ru) 2016-12-20

Family

ID=47603861

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014126371/28A RU2605520C2 (ru) 2011-11-29 2012-11-23 Сцинтилляторный блок, содержащий поглощающую рентгеновские лучи оболочку, и рентгеновская детекторная матрица, содержащая такой сцинтилляторный блок

Country Status (8)

Country Link
US (1) US9599728B2 (ru)
EP (1) EP2751595B1 (ru)
JP (1) JP6114300B2 (ru)
CN (1) CN103959098B (ru)
BR (1) BR112014012699A8 (ru)
IN (1) IN2014CN03832A (ru)
RU (1) RU2605520C2 (ru)
WO (1) WO2013080105A2 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2015104180A (ru) * 2013-09-05 2017-10-10 Конинклейке Филипс Н.В. Элемент детектора излучения
CN106663685A (zh) * 2014-06-06 2017-05-10 夏普株式会社 半导体装置及其制造方法
JP6739423B2 (ja) * 2014-09-25 2020-08-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光を発生させるセラミック材料
JP6671839B2 (ja) * 2014-10-07 2020-03-25 キヤノン株式会社 放射線撮像装置及び撮像システム
WO2017052443A1 (en) * 2015-09-24 2017-03-30 Prismatic Sensors Ab Modular x-ray detector
WO2018053778A1 (en) 2016-09-23 2018-03-29 Shenzhen Xpectvision Technology Co.,Ltd. Packaging of semiconductor x-ray detectors
EP3399344B1 (en) * 2017-05-03 2021-06-30 ams International AG Semiconductor device for indirect detection of electromagnetic radiation and method of production
CN109709594B (zh) * 2018-12-18 2020-12-11 北京纳米维景科技有限公司 闪烁屏封装结构制造方法、闪烁屏封装结构及影像探测器
CN111697109A (zh) * 2020-07-09 2020-09-22 上海大学 一种柔性x射线探测器的制备方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181647A1 (en) * 2001-05-30 2002-12-05 Venkataramani Venkat Subramaniam High-Z cast reflector compositions and method of manufacture
WO2004027454A1 (en) * 2002-09-18 2004-04-01 Koninklijke Philips Electronics N.V. X-ray detector with a plurality of detector units
RU2251124C1 (ru) * 2003-10-14 2005-04-27 ГОУ ВПО Уральский государственный технический университет-УПИ СЦИНТИЛЛЯЦИОННЫЙ ДАТЧИК ЭЛЕКТРОННОГО И β-ИЗЛУЧЕНИЯ
US20060165214A1 (en) * 2003-01-06 2006-07-27 Mattson Rodney A Radiation detector with shielded electronics for computed tomography
US20070221858A1 (en) * 2006-03-27 2007-09-27 Analogic Corporation Modular X-Ray measurement system
US7405408B2 (en) * 2003-12-09 2008-07-29 Koninklijke Philips Electronics N.V. Shielding for an x-ray detector

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122492A (ja) 1994-10-19 1996-05-17 Sumitomo Electric Ind Ltd 放射線遮蔽材及びその製造方法
EP1051643B1 (en) * 1998-10-28 2005-09-14 Koninklijke Philips Electronics N.V. Method of manufacturing a layered scintillation detector
JP2001099941A (ja) 1999-09-30 2001-04-13 Hitachi Metals Ltd 放射線遮蔽板、放射線検出器及び放射線遮蔽板の製造方法
US6298113B1 (en) * 2000-02-07 2001-10-02 General Electric Company Self aligning inter-scintillator reflector x-ray damage shield and method of manufacture
AU2001274544A1 (en) * 2000-06-20 2002-01-02 Kanebo Gohsen Limited Radiation shielding material
JP2003084066A (ja) 2001-04-11 2003-03-19 Nippon Kessho Kogaku Kk 放射線検出器用部品、放射線検出器および放射線検出装置
JP2003028986A (ja) 2001-07-12 2003-01-29 Mitsubishi Plastics Ind Ltd 放射線遮蔽材料
AU2003250429A1 (en) * 2002-09-18 2004-04-08 Koninklijke Philips Electronics N.V. Radiation detector
JP2004219318A (ja) * 2003-01-16 2004-08-05 Hamamatsu Photonics Kk 放射線検出器
CN1751543B (zh) * 2003-02-20 2011-02-02 因普有限公司 集成的x射线源模块
JP4500010B2 (ja) 2003-06-16 2010-07-14 株式会社日立メディコ X線検出器及びこれを用いたx線ct装置
US7166849B2 (en) * 2004-08-09 2007-01-23 General Electric Company Scintillator array for use in a CT imaging system and method for making the scintillator array
CN101142497B (zh) 2005-03-16 2011-06-01 皇家飞利浦电子股份有限公司 具有像素内处理电路的x射线检测器
WO2006114716A2 (en) 2005-04-26 2006-11-02 Koninklijke Philips Electronics, N.V. Double decker detector for spectral ct
RU2386981C2 (ru) * 2005-04-26 2010-04-20 Конинклейке Филипс Электроникс Н.В. Улучшенная детекторная матрица для спектральной компьютерной томографии
WO2007105288A1 (ja) 2006-03-13 2007-09-20 Hitachi Metals, Ltd. 放射線検出装置とその製造方法
EP2005475A2 (en) * 2006-03-30 2008-12-24 Koninklijke Philips Electronics N.V. Radiation detector array
US20080068815A1 (en) * 2006-09-18 2008-03-20 Oliver Richard Astley Interface Assembly And Method for Integrating A Data Acquisition System on a Sensor Array
JP5587788B2 (ja) * 2007-12-21 2014-09-10 コーニンクレッカ フィリップス エヌ ヴェ 複合樹脂におけるシンチレータを備えた放射線感受性検出器
JP2010096616A (ja) 2008-10-16 2010-04-30 Fujifilm Corp 放射線画像検出器
US8373132B2 (en) * 2009-02-06 2013-02-12 Koninklijke Philips Electronics N. V. Radiation detector with a stack of scintillator elements and photodiode arrays
WO2011089528A2 (en) 2010-01-22 2011-07-28 DenCT Ltd Methods and apparatus for multi-camera x-ray flat panel detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181647A1 (en) * 2001-05-30 2002-12-05 Venkataramani Venkat Subramaniam High-Z cast reflector compositions and method of manufacture
WO2004027454A1 (en) * 2002-09-18 2004-04-01 Koninklijke Philips Electronics N.V. X-ray detector with a plurality of detector units
US20060165214A1 (en) * 2003-01-06 2006-07-27 Mattson Rodney A Radiation detector with shielded electronics for computed tomography
RU2251124C1 (ru) * 2003-10-14 2005-04-27 ГОУ ВПО Уральский государственный технический университет-УПИ СЦИНТИЛЛЯЦИОННЫЙ ДАТЧИК ЭЛЕКТРОННОГО И β-ИЗЛУЧЕНИЯ
US7405408B2 (en) * 2003-12-09 2008-07-29 Koninklijke Philips Electronics N.V. Shielding for an x-ray detector
US20070221858A1 (en) * 2006-03-27 2007-09-27 Analogic Corporation Modular X-Ray measurement system

Also Published As

Publication number Publication date
RU2014126371A (ru) 2016-01-27
BR112014012699A2 (pt) 2017-06-13
CN103959098B (zh) 2017-04-26
JP2015503096A (ja) 2015-01-29
IN2014CN03832A (ru) 2015-07-03
WO2013080105A3 (en) 2013-12-27
US20140321609A1 (en) 2014-10-30
EP2751595A2 (en) 2014-07-09
EP2751595B1 (en) 2017-07-05
WO2013080105A2 (en) 2013-06-06
BR112014012699A8 (pt) 2017-06-20
CN103959098A (zh) 2014-07-30
US9599728B2 (en) 2017-03-21
JP6114300B2 (ja) 2017-04-12

Similar Documents

Publication Publication Date Title
RU2605520C2 (ru) Сцинтилляторный блок, содержащий поглощающую рентгеновские лучи оболочку, и рентгеновская детекторная матрица, содержащая такой сцинтилляторный блок
JP6010051B2 (ja) シングル又はマルチエネルギー縦型感放射線検出器アレイおよび放射線検出方法
JP5587788B2 (ja) 複合樹脂におけるシンチレータを備えた放射線感受性検出器
CN109891269B (zh) 具有整体通孔互连件的辐射探测器闪烁体
US11275187B2 (en) Detector array for a radiation system, and related system
JP2015521283A (ja) 少なくとも2つのシンチレータアレイ層間に配置される少なくとも1つの薄型フォトセンサを有する多層型水平コンピュータ断層撮影(ct)検出器アレイ
JP2014510902A5 (ru)
US6452186B1 (en) Detector for the detection for electromagnetic radiation
JP2007311454A (ja) 固体撮像装置
US7211801B2 (en) Radiation detector
JP2004317300A (ja) 放射線平面検出器及びその製造方法
KR20170113264A (ko) 방사선 검출 장치 및 방사선 촬상 시스템
CN115530861A (zh) 辐射检测器模块和成像***
JP2009025258A (ja) 放射線検出器
CN116031271B (zh) 一种伪三能探测器及其制备方法
KR101914133B1 (ko) X선 디텍터 제조방법
KR101914132B1 (ko) X선 디텍터 및 이의 제조방법
WO2015005671A1 (ko) 엑스선 검출장치 및 이를 포함한 엑스선 영상장치
JP2019163937A (ja) 放射線検出器、及びその製造方法
WO1997038328A1 (en) Improved solid state detector