RU2603717C1 - СПОСОБ ОЦЕНКИ БИОИНЕРТНОСТИ МЕДИЦИНСКИХ ИМПЛАНТОВ in vivo - Google Patents

СПОСОБ ОЦЕНКИ БИОИНЕРТНОСТИ МЕДИЦИНСКИХ ИМПЛАНТОВ in vivo Download PDF

Info

Publication number
RU2603717C1
RU2603717C1 RU2015143742/14A RU2015143742A RU2603717C1 RU 2603717 C1 RU2603717 C1 RU 2603717C1 RU 2015143742/14 A RU2015143742/14 A RU 2015143742/14A RU 2015143742 A RU2015143742 A RU 2015143742A RU 2603717 C1 RU2603717 C1 RU 2603717C1
Authority
RU
Russia
Prior art keywords
tissue
bioinertness
wound
samples
thickness
Prior art date
Application number
RU2015143742/14A
Other languages
English (en)
Inventor
Сергей Валентинович Шкодкин
Владимир Федорович Куликовский
Олег Владимирович Мирошниченко
Ксения Александровна Бочарова
Александр Яковлевич Колпаков
Вадим Николаевич Дмитриев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Priority to RU2015143742/14A priority Critical patent/RU2603717C1/ru
Application granted granted Critical
Publication of RU2603717C1 publication Critical patent/RU2603717C1/ru

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к медицине, в частности к экспериментальной хирургии, и может быть использовано для оценки биоинертности материалов для изготовления медицинских имплантов. Для этого имплантируют в печень и почки крыс по два образца исследуемого материала с последующим послойным ушиванием раны без дренажа. Затем на 14 и 30 сутки животных выводят из эксперимента и берут образцы ткани для гистологического исследования, вырезая поперечно к направлению имплантата через всю толщу органа. Измеряют толщину формирующихся реактивных тканевых зон и капсул, после чего проводят подсчет относительного количества клеточных элементов, характеризующих различные стадии раневого процесса. Для этого исследуют полиморфноядерные лейкоциты всех типов, лимфоциты, гистиоциты, фибробласты. Устанавливают биологическую инертность материала на основании выраженности лейкоцитарной инфильтрации, отсутствии в инфильтратах полиморфноядерных лейкоцитов, определяемой толщине соединительнотканной капсулы и завершенности коллагеногенеза. 1 пр.

Description

Изобретение относится к медицине, а именно к экспериментальной хирургии, и может быть использовано для оценки биоинертности материалов для изготовления медицинских имплантов в эксперименте in vivo путем анализа тканевой реакции.
Известен способ оценки биоинертности на модели повреждения сустава и применения полигидроксибутирата (ПГА) в эксперименте, в котором после обработки кожи спиртом производился разрез кожи в области передней поверхности левого коленного сустава длиной 1 см. После вскрытия суставной капсулы, стоматологическим бором диаметром 2 мм при медленных оборотах повреждали хрящ суставной поверхности большеберцовой кости на глубину 1-2 мм. В просвет сустава для прикрытия дефекта хряща помещалась пленка из ПГА диаметром 5 мм. Несколькими узловыми викриловыми швами («00» с атравматическими иглами) ушивалась суставная капсула, на кожу накладывался непрерывный викриловый шов. Фрагменты костей бедра и голени вместе со структурами коленного сустава, имплантированным материалом и окружающими тканями, фиксировали в 4%-ном растворе параформальдегида на фосфатном буфере (рН 7,4) не менее 24 часов, декальцинировали в растворе «Биодек R» (Bio Optica Milano, Италия) в течение 24 часов, обезвоживали в серии этанола возрастающей концентрации, просветляли в ксилоле и заключали в парафин. Срезы толщиной 5-7 мкм окрашивали гематоксилином и эозином, изучали на световом микроскопе Axioimager М1 (Carl Zeiss, Германия) при увеличении до 1200 раз. При световой микроскопии производилась оценка макрофагальной и лейкоцитарной инфильтрации, признаков гранулематозной воспалительной реакции, степени выраженности фиброзного процесса вокруг импланта. Используя полученные данные, анализировали степень биоинертности исследуемого материала (Имплантация биодеградируемого полигидроксиалканоата в полость поврежденного сустава крысы. Майбородин И.В., Шевела А.И., Береговой Е.А., Дровосеков М.Н., Матвеева В.А., Баранник М.И., Кузнецова И.В. Scientific Journal ISSN 1812-7339. - №10 of 2011 -1. - p. 107-112).
Недостатками метода являются: узкий спектр анализируемых тканей (только суставной хрящ), сравнительная трудоемкость.
Известен способ оценки биоинертности медицинских материалов, заключающийся в том, что под нембуталовым наркозом (доза 40 мг/кг) на наружной поверхности верхней трети бедра крысы делается разрез кожи длиной около 1 см. Анатомическим глазным пинцетом расчленяется бедренная мышца (вдоль волокон), в которой при помощи того же пинцета формируется карман. Изучаемый материал помещается в этот карман. На мышцу накладывается один шов, на кожу два шва. Применяется хирургический шелк высоких номеров. Одной из контрольных групп животных имплантируется биосовместимый материал, другой производится ложная операция (те же манипуляции без имплантации материала). После выведения животных из эксперимента производится забор регионарных лимфатических узлов и на основании анализа цитологических изменений лимфоидной ткани оценивается степень биоинертности материала (Методика определения биосовместимости полимерных материалов и изделий для эндопротезирования по их влиянию на лимфоидную ткань. Утв. минздравом СССР 27.11.1985).
Недостатком аналога является косвенная оценка биоинертности, только на основании изменений лимфоидной ткани, а не местных тканевых реакций.
Известен способ определения биоинертности, связанный с подкожной имплантацией образцов материалов из серебросодержащего трикальцийфосфата (ТКФ) с различной степенью замещения серебром (ТКФ-Ag) - 0,04, 0,2 и 0,5. По результатам гистологического исследования образцов тканей с подкожно введенным ТКФ-Ag по содержанию в образцах тканей клеток лейкоцитарного ряда, лимфоцитов, макрофагов оценивали признаки воспалительной реакции и реакции отторжения, что позволяло оценить биосовместимость исследуемого материала (Исследование биосовместимости и антибактериальных свойств серебросодержащего трикальцийфосфата in vivo. Вестник травматологии и ортопедии им.Н.Н.Приорова /Хон В.Э., Загородный Н.В., Мамонов В.Е., Гласко Е.Н., Петракова Н.В., Шальнев А.Н., Пхакадзе Т.Я., Комлев В.С. //2014. - N 3. - С.56-61).
Недостатками известного способа являются отсутствие в исследовании помимо подкожной жировой клетчатки других тканей, в том числе паренхиматозных органов, что не позволяет делать вывод о специфичности воспалительных изменений в тканях.
Задачей предлагаемого изобретения является разработка способа оценки биоинертности материалов, используемых при производстве медицинских имплантов, в эксперименте in vivo.
Поставленная задача решается с помощью предлагаемого способа оценки биоинертности медицинских имплантов in vivo, включающего моделирование течения раневого процесса путем срединной лапаротомией, при которой через рану в печень и почки имплантируют по два образца исследуемого материала в виде фрагментов проволоки, затем рану послойно ушивают без дренажа и на 14 и 30 сутки животных выводят из эксперимента, берут образцы ткани для гистологического исследования из печени и почек, вырезая поперечно к направлению имплантата через всю толщу органа, затем измеряют толщину формирующихся реактивных тканевых зон и капсул, после чего проводят подсчет относительного количества клеточных элементов, характеризующих различные стадии раневого процесса: полиморфноядерные лейкоциты всех типов, лимфоциты, гистиоциты, фибробласты.
Способ осуществляют следующим образом. Под наркозом у половозрелых белых крыс выполняют срединную лапаротомию, через рану в печень и почки имплантируют по 2 образца исследуемого материала в виде фрагментов проволоки. Рана послойно ушивается без дренажа. Выведение животных из эксперимента производится на 14 и 30 сутки. Производится извлечение исследуемых органов. Для морфологического исследования извлеченные органы после макроскопического исследования фиксируются в 10% растворе формалина. Кусочки для гистологического исследования из печени и почек вырезаются поперечно к направлению имплантата через всю толщу органа. Морфометрия должна включать измерение толщины формирующихся реактивных тканевых зон и капсул, подсчет относительного количества клеточных элементов, характеризующих различные стадии раневого процесса: полиморфноядерные лейкоциты всех типов, лимфоциты, гистиоциты, фибробласты.
Пример конкретного выполнения. Изучение локальной воспалительной реакции при имплантации исследуемых материалов в паренхиматозные органы животных выполнено на 70 белых лабораторных крысах линии Wistar обоего пола, которым из срединного лапаротомного доступа выполняли имплантацию стерильных отрезков проволоки (для металлических имплантов) или нити (для полиуретана) длиной 7 и диаметром 0,25 мм путем введения в толщу ткани печени и почки (по два импланта). В настоящей серии опытов исследована биоинертность четырех экспериментальных и трех контрольных материалов: медицинская сталь, полиуретан, сплавы на основе титана (сплав титана с эффектом памяти формы на основе Ti-Ni-(X) и β-сплав), а так же наноструктурных покрытий на основе аморфного углерода, азота и атомарного серебра (нпС, нпСN и нпСАg№2). В каждую группу входило по 10 животных.
Из эксперимента животных выводили в равном количестве на 14-е и 30-е сутки после имплантации. Данные сроки выбраны с учетом стандартной динамики течения раневого процесса. К 14 суткам нивелируются неспецифические воспалительные изменения, обусловленные хирургической травмой, и морфологические тканевые реакции в большей степени зависят от биоинертных свойств материала имплантов. На 30 сутки в целом завершаются клеточные иммунные реакции, стабилизируются процессы коллагеногенеза и образования отграничительной капсулы с видимой спецификой реакции тканей в зависимости от природы импланта.
Для морфологического исследования извлеченные органы после макроскопического исследования фиксировали в 10% растворе формалина. После внешнего осмотра из фиксированных органов извлекали имплантаты. Кусочки для гистологического исследования из печени и почек вырезали поперечно к направлению имплантата через всю толщу органа. Морфометрия включала измерение толщины формирующихся реактивных тканевых зон и капсул, подсчет относительного количества клеточных элементов, характеризующих различные стадии раневого процесса: полиморфноядерные лейкоциты всех типов, лимфоциты, гистиоциты, фибробласты.
Основными клеточно-тканевыми реакциями, характеризующими степень биологической инертности исследуемых материалов, явились выраженность лейкоцитарной инфильтрации и цитологический состав этих инфильтратов, а так же толщина и зрелость соединительно-тканой капсулы. Причем последний показатель, а именно выраженность капсулы, степень завершенности коллагеногенеза и дифференцировки коллаген продуцирующих клеток, больше коррелировал с видом имплантируемого материала.
Несмотря на различную выраженность клеточных реакций паренхимы печени и почек, причины которой рассмотрены выше, тканевые изменения тесно коррелировали с видом имплантируемого материала. Таким образом, уже с 14 суток нивелировались последствия хирургической травмы, связанной с имплантацией материалов. К 30 суткам во всех группах наблюдения снижалась интенсивность воспалительной реакции, изменялся цитологический спектр воспалительных инфильтратов, регистрировались процессы организации коллагена в соединительно-тканной капсуле. Причем характер этих процессов определялся видом имплантируемого материала и имел идентичные тенденции как в печени, так и в почке.
Наименьшие показатели биоинертности зарегистрированы в группе медицинской стали. Характерным морфологическим признаком для этой группы на 14 сутки послеоперационного периода явилась выраженная гранулоцитарная (нейтрофильная) инфильтрация с образованием воспалительного вала по периферии соединительно-тканной капсулы. На этом сроке наблюдения отсутствовали статистически достоверные различия по содержанию нейтрофилов при имплантации медицинской стали в паренхиму почки 317±83,5 кл. в п/з, и печени 386±57,8 кл. в п/з (р>0,05). Подобная тенденция отмечена по содержанию гистиоцитов и фибробластов, данный факт указывает на то, что выраженный провоспалительный эффект медицинской стали нивелирует орган специфичность тканевой реакции. К 30 суткам в обеих сериях опытов сохранялась лейкоцитарная инфильтрация, изменился характер инфильтратов за счет преобладания малых лимфоцитов. Количество последних в серии с печенью достоверно выше по сравнению с почкой и составило 362±49,8 и 138±25,7 кл. в п/з соответственно (р<0,01). На данном сроке наблюдения отсутствуют статистические различия по содержанию в инфильтратах нейтрофилов, фибробластов и фиброцитов (р>0,05).
При имплантации полиуретана в паренхиму почки и печени к 14 суткам наблюдения так же зарегистрировано образование воспалительного вала к периферии от соединительно-тканной капсулы и гранулоцитарной (нейтрофильной) инфильтрации без статистически достоверных различий в сериях опытов:107±21,8 и 148±39,1 кл. в п/з соответственно (р>0,05). Но уже на этом сроке наблюдения основу инфильтратов в обеих сериях составляют малые лимфоциты, содержание которых при имплантации в печень составляет 365±44,2 кл. в п/з, что достоверно больше по сравнению с почкой 171±25,8 кл. в п/з (р<0,01). К 30 суткам регистрируются тенденции, отмеченные в группе с медицинской сталью и заключающиеся в рассасывании воспалительного вала, отсутствии гранулоцитарной инфильтрации и возрастании орган специфичности воспалительной тканевой реакции, характеризующейся ее большей выраженностью в печени. В группах с медицинской сталью и полиуретаном к 30 суткам, наряду с уплощением и упорядочиванием коллагеновых волокон центральной части капсулы, было характерно наличие рыхлой незрелой соединительной ткани к периферии капсулы, густо инфильтрированной клеточными элементами.
Для остальных групп наблюдения отмечена строгая орган специфичность воспалительных изменений, что, как уже упоминалось, связано с локальными условиями при имплантации и указывает на большую биоинертность данных материалов. В группах сплавы титана, покрытия на основе аморфного углерода и нпСАg№2 зарегистрировано прогрессивное статистически значимое снижение выраженности воспалительной инфильтрации и соединительно-тканной капсулы в обеих сериях опытов и на обоих сроках наблюдения. В группе сплавы титана процесс организации соединительно-тканной капсулы не завершен, ее периферия составлена из незрелой рыхлой соединительной ткани и воспалительного диффузного инфильтрата. Для металлов, защищенных наноразмерными покрытиями, в особенности для нпСАg№2, характерно отсутствие в почке и минимальная диффузная лимфоидная инфильтрация в печени, завершенность коллагеногенеза с отсутствием фибробластной реакции и наличием умеренного количества дифференцированных фиброцитов.
Таким образом, к основным морфологическим критериям биологической инертности материалов на сроках до 1 месяца следует отнести: выраженность лейкоцитарной инфильтрации; отсутствие в инфильтратах полиморфноядерных лейкоцитов; толщину соединительно-тканной капсулы и завершенность коллагеногенеза. Наилучшие показатели биоинертности отмечены у защищенных металлов, при этом лидером стало нпСАg№2. Данный результат можно объяснить инертностью углерода, составляющего основу покрытия, к тканям организма и антипролиферативными свойствами серебра. Среди контрольных материалов лучшие показатели биоинертности имел сплав титана с эффектом памяти формы на основе Ti-Ni-(X), что связано с образованием пленки из оксида титана, покрывающей поверхность импланта, не являющейся полярной и тем самым подавляющей эффекты гальванизации.

Claims (1)

  1. Способ оценки биоинертности медицинских имплантов in vivo, отличающийся тем, что имплантируют в печень и почки крыс по два образца исследуемого материала с последующим послойным ушиванием раны без дренажа, затем на 14 и 30 сутки животных выводят из эксперимента, берут образцы ткани для гистологического исследования, вырезая поперечно к направлению имплантата через всю толщу органа, затем измеряют толщину формирующихся реактивных тканевых зон и капсул, после чего проводят подсчет относительного количества клеточных элементов, характеризующих различные стадии раневого процесса: полиморфноядерные лейкоциты всех типов, лимфоциты, гистиоциты, фибробласты, и устанавливают биологическую инертность материала при наличии выраженности лейкоцитарной инфильтрации, отсутствии в инфильтратах полиморфноядерных лейкоцитов, определяемой толщине соединительнотканной капсулы и завершенности коллагеногенеза.
RU2015143742/14A 2015-10-13 2015-10-13 СПОСОБ ОЦЕНКИ БИОИНЕРТНОСТИ МЕДИЦИНСКИХ ИМПЛАНТОВ in vivo RU2603717C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015143742/14A RU2603717C1 (ru) 2015-10-13 2015-10-13 СПОСОБ ОЦЕНКИ БИОИНЕРТНОСТИ МЕДИЦИНСКИХ ИМПЛАНТОВ in vivo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015143742/14A RU2603717C1 (ru) 2015-10-13 2015-10-13 СПОСОБ ОЦЕНКИ БИОИНЕРТНОСТИ МЕДИЦИНСКИХ ИМПЛАНТОВ in vivo

Publications (1)

Publication Number Publication Date
RU2603717C1 true RU2603717C1 (ru) 2016-11-27

Family

ID=57774619

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015143742/14A RU2603717C1 (ru) 2015-10-13 2015-10-13 СПОСОБ ОЦЕНКИ БИОИНЕРТНОСТИ МЕДИЦИНСКИХ ИМПЛАНТОВ in vivo

Country Status (1)

Country Link
RU (1) RU2603717C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701884C1 (ru) * 2018-10-01 2019-10-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный медицинский университет имени академика Е.А. Вагнера" Министерства здравоохранения Российской Федерации Способ имплантации образцов синтетических материалов медико-биологического назначения при исследовании их биосовместимости

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2361622C1 (ru) * 2008-04-09 2009-07-20 Государственное образовательное учреждение высшего профессионального образования Саратовский государственный технический университет (СГТУ) Способ получения биопокрытия на имплантатах из титана и его сплавов
US20120010599A1 (en) * 2010-07-06 2012-01-12 The Regents Of The University Of California Inorganically surface-modified polymers and methods for making and using them
EP2508212A1 (en) * 2011-04-05 2012-10-10 Universitätsklinikum Freiburg Biocompatible and biodegradable gradient layer system for regenerative medicine and for tissue support
RU145527U1 (ru) * 2013-09-05 2014-09-20 ООО НПЦ "Технополис"директор Исмайлова С.М Имплантируемое медицинское изделие
RU2558101C2 (ru) * 2009-04-23 2015-07-27 Пюрак Биокем Б.В. Рассасывающиеся и биологически совместимые композиции стекловолокна и их применения

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2361622C1 (ru) * 2008-04-09 2009-07-20 Государственное образовательное учреждение высшего профессионального образования Саратовский государственный технический университет (СГТУ) Способ получения биопокрытия на имплантатах из титана и его сплавов
RU2558101C2 (ru) * 2009-04-23 2015-07-27 Пюрак Биокем Б.В. Рассасывающиеся и биологически совместимые композиции стекловолокна и их применения
US20120010599A1 (en) * 2010-07-06 2012-01-12 The Regents Of The University Of California Inorganically surface-modified polymers and methods for making and using them
EP2508212A1 (en) * 2011-04-05 2012-10-10 Universitätsklinikum Freiburg Biocompatible and biodegradable gradient layer system for regenerative medicine and for tissue support
RU145527U1 (ru) * 2013-09-05 2014-09-20 ООО НПЦ "Технополис"директор Исмайлова С.М Имплантируемое медицинское изделие

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
N10, p. 107-112. *
МАЙБОРОДИН И.В. и др. Имплантация биодеградируемого полигидроксиалканоата в полость поврежденного сустава крысы. Scientific Journal *
ХОН В.Э и др. Исследование биосовместимости и антибактериальных свойств серебросодержащего трикальцийфосфата in vivo. Вестник травматологии и ортопедии им.Н.Н.Приорова, 2014, N 3, С.56-61. PROWANS P et al. The influence of new polyester block copolymer on morphology of hepatocytes of rats liver. Polim Med. 1999;29(3-4):41-8,abstr. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701884C1 (ru) * 2018-10-01 2019-10-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный медицинский университет имени академика Е.А. Вагнера" Министерства здравоохранения Российской Федерации Способ имплантации образцов синтетических материалов медико-биологического назначения при исследовании их биосовместимости

Similar Documents

Publication Publication Date Title
Nie et al. In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds
Zhang et al. Biodegradation behavior of magnesium and ZK60 alloy in artificial urine and rat models
Wu et al. Preclinical animal study and human clinical trial data of co-electrospun poly (L-lactide-co-caprolactone) and fibrinogen mesh for anterior pelvic floor reconstruction
CN101478995A (zh) 用于治疗开放性和闭合性创伤脊髓损伤的方法和组合物
Mali Nanotechnology for surgeons
Zharikov et al. Early morphological changes in tissues when replacing abdominal wall defects by bacterial nanocellulose in experimental trials
Sun et al. 3D printing and biocompatibility study of a new biodegradable occluder for cardiac defect
Pierucci et al. Peripheral nerve regeneration through biodegradable conduits prepared using solvent evaporation
CN112546291B (zh) 一种用于负重区域的多孔骨缺损修复金属支架材料及其制备方法和用途
RU2603717C1 (ru) СПОСОБ ОЦЕНКИ БИОИНЕРТНОСТИ МЕДИЦИНСКИХ ИМПЛАНТОВ in vivo
Meng et al. In vivo biodegradation and biological properties of a Mg-Zn-Ca amorphous alloy for bone defect repair
US11944725B2 (en) Pro-healing, pro-regenerative nanofibrous coating for medical implants
Villarreal-Gómez et al. In vivo biocompatibility of dental scaffolds for tissue regeneration
Qin et al. Chest wall reconstruction with two types of biodegradable polymer prostheses in dogs
Meyer et al. A new biocompatible material (Lyoplant®) for the therapy of congenital abdominal wall defects: first experimental results in rats
Zaworonkow et al. Evaluation of TiNi-based wire mesh implant for abdominal wall defect management
Guo et al. Effect of Pore Size of Porous‐Structured Titanium Implants on Tendon Ingrowth
Okazaki et al. Osteocompatibility of Stainless Steel, Co–Cr–Mo, Ti–6Al–4V and Ti–15Zr–4Nb–4Ta Alloy Implants in Rat Bone Tissue
Goad et al. Biomedical materials and devices
Mukhamadiyarov et al. A novel technique for preparation, staining, and visualization of tissue with metal implants and extraskeletal calcification areas
Ramesh et al. Biocomposites for biomedical devices
RU2808880C1 (ru) Биорезорбируемый имплантат кровеносных сосудов на основе нановолокон
Lin et al. Study on surface hydrogenated Ti6Al4V alloy for orthopedic implants
Erwin et al. Evaluation of Stainless-Steel 316L Wire and Alternative Stainless-Steel Wire Usage as Internal Fixation: Comparative Study on Rat.
Al Fauzi et al. Clinical Trial and Preparation of Amniotic Membrane as Dura Mater Artificial

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171014