RU2603404C1 - Способ производства высокотвердого износостойкого листового проката - Google Patents

Способ производства высокотвердого износостойкого листового проката Download PDF

Info

Publication number
RU2603404C1
RU2603404C1 RU2015122344/02A RU2015122344A RU2603404C1 RU 2603404 C1 RU2603404 C1 RU 2603404C1 RU 2015122344/02 A RU2015122344/02 A RU 2015122344/02A RU 2015122344 A RU2015122344 A RU 2015122344A RU 2603404 C1 RU2603404 C1 RU 2603404C1
Authority
RU
Russia
Prior art keywords
steel
temperature
tempering
strength
production
Prior art date
Application number
RU2015122344/02A
Other languages
English (en)
Inventor
Павел Петрович Полецков
Марина Сергеевна Гущина
Галина Андреевна Бережная
Даниил Юрьевич Алексеев
Original Assignee
Открытое акционерное общество "Магнитогорский металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Магнитогорский металлургический комбинат" filed Critical Открытое акционерное общество "Магнитогорский металлургический комбинат"
Priority to RU2015122344/02A priority Critical patent/RU2603404C1/ru
Application granted granted Critical
Publication of RU2603404C1 publication Critical patent/RU2603404C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к черной металлургии, в частности к производству нового высокоэффективного вида металлопродукции - толстолистового износостойкого проката из низколегированной стали для тяжелой подъемно-транспортной техники. Для обеспечения высокой твердости и прочности при сохранении достаточной пластичности и ударной вязкости способ включает получение слябов из стали, содержащей, мас.%: 0,20-0,28 С, 0,15-0,30 Si, 0,75-1,30 Μn, 0,30-0,65 Cr, 0,85-1,55 Ni, 0,25-0,40 Mo, 0,02-0,06 V, 0,02-0,05 Al, 0,001-0,010 N, 0,10-0,20 Cu, 0,002-0,060 Nb, 0,002-0,010 Ti, 0,001-0,005 В, не более 0,005 S, не более 0,010 Ρ, остальное - Fe, нагрев, многопроходную горячую прокатку листов, закалку водой при температуре 930-980°С, отпуск при температуре 150-250°С. 4 табл., 1 пр.

Description

Изобретение относится к черной металлургии, в частности к производству нового высокоэффективного вида металлопродукции - толстолистового износостойкого листового проката из низколегированной стали для тяжелой подъемно-транспортной техники.
Горячекатаные листы, используемые при изготовлении сварных металлоконструкций транспортных и горнодобывающих машин, должны обладать высокой прочностью и твердостью, чтобы выдерживать интенсивный износ в течение длительного ударного и абразивного воздействия, и достаточной вязкостью, чтобы подвергаться гибке без растрескивания. Требуемый комплекс свойств горячекатаных листов в состоянии поставки приведен в табл. 1.
Известен способ производства высокопрочной толстолистовой стали, включающий непрерывную разливку стали в слябы, их нагрев, многопроходную горячую прокатку листов в регламентированном температурном интервале, закалку водой и отпуск, согласно которому непрерывной разливке подвергают сталь следующего химического состава, мас. %: углерод 0,13-0,18, кремний 0,40-0,60, марганец 0,70-0,90, хром 1,3-1,6, алюминий 0,02-0,07, ниобий 0,03-0,06, титан 0,01-0,06, кальций 0,002-0,030, никель не более 0,30, медь не более 0,30, азот не более 0,010, железо и примеси - остальное, при этом отлитые слябы перед нагревом подвергают отжигу при температуре 640-660°С, нагрев слябов производят до температуры 1200-1260°С и подвергают горячей прокатке в температурном интервале до 870-950°С (Патент РФ №2533244, МПК C21D 8/02, С22С 38/50, 2013).
Изделия, изготовленные из данной стали, имеют предел прочности σв не менее 690Н/мм2, предел текучести σт не менее 590Н/мм2, относительное удлинение δ5 не менее 14%, ударную вязкость KCV-40 не менее 30 Дж/см2 и твердость по Бринеллю в пределах 340-400 НВ.
Недостаток известного способа состоит в том, что горячекатаные листы после термического улучшения (закалки с отпуском) имеют низкие вязкостные свойства и недостаточную твердость.
Наиболее близким по технической сущности и достигаемому результату является способ производства листовой стали с высокой износостойкостью, включающий изготовление слябов из стали, содержащей, мас. %: 0,14-0,19 С; 0,17-0,37 Si; 1,10-1,60 Μn; 0,70-1,10 Cr; 0,50-1,00 Ni; 0,10-0,35 Mo; 0,06-0,12 V; 0,02-0,06 Al; 0,02-0,05 Ti;0,001-0,005 В; 0,002-0,030 Ca; не более 0,015 Ρ; не более 0,008 S; железо - остальное, их нагрев, многопроходную горячую прокатку листов в регламентированном температурном интервале, закалку водой и отпуск. Горячую прокатку ведут в температурном интервале от 1280°С до 800°С, закалку водой осуществляют в два этапа, вначале от температуры 940-970°С, после чего листы повторно нагревают и закаливают от температуры 840-870°С, отпуск осуществляют при температуре 500-560°С (Патент РФ №2533469, МПК C21D 8/02, С22С 38/54, С22С 38/58, 2013).
Изделия, изготовленные из данной стали, имеют предел прочности σв не менее 1050 Н/мм2, предел текучести σт не менее 950 Н/мм2, относительное удлинение не менее 11%, ударную вязкость KCV-40 не менее 30 Дж/см2, твердость по Бринеллю в пределах 340-400 НВ.
Недостаток прототипа состоит в том, что он не обеспечивает получения требуемого уровня механических свойств, а именно листовая сталь не обладает достаточной твердостью и вязкостью.
Технический результат изобретения состоит в повышении прочностных свойств и твердости экономнолегированной толстолистовой стали при сохранении достаточной пластичности и ударной вязкости.
Указанный технический результат достигается тем, что в известном способе производства высокотвердого износостойкого листового проката, включающем непрерывную разливку стали в слябы, их нагрев, многопроходную горячую прокатку листов, закалку водой и отпуск, в отличие от ближайшего аналога непрерывной разливке подвергают сталь следующего химического состава, мас. %:
углерод 0,20-0,28
кремний 0,15-0,30
марганец 0,75-1,30
хром 0,30-0,65
никель 0,85-1,55
молибден 0,25-0,40
ванадий 0,02-0,06
алюминий 0,02-0,05
азот 0,001-0,010
медь 0,10-0,20
ниобий 0,002-0,060
титан 0,002-0,010
бор 0,001-0,005
сера не более 0,005
фосфор не более 0,010
железо остальное,
при этом закалку осуществляют при температуре 930-980°С, отпуск проводят при температуре 150-250°С.
Сущность изобретения состоит в том, что конечные механические и функциональные свойства листовой стали определяются как ее химическим составом, так и температурными режимами закалки и отпуска. В процессе проведения экспериментальных исследований осуществляли варьирование всех значимых факторов, добиваясь стабильного получения заданного уровня твердости толстолистовой стали при сохранении достаточно высоких показателей пластичности и вязкости.
Содержание углерода в стали предложенного состава определяет ее прочность. При концентрации углерода менее 0,20% не достигается требуемая прочность и твердость стали. Увеличение содержания углерода более 0,28% ухудшает пластические и вязкостные свойства закаленной и отпущенной листовой стали.
При содержании кремния менее 0,15% ухудшается раскисленность стали, снижается прочность листового проката. Увеличение содержания кремния более 0,30% приводит к возрастанию количества силикатных включений, снижает ударную вязкость металла.
Марганец раскисляет и упрочняет сталь, связывает серу. При содержании марганца менее 0,75% прочность и твердость стали недостаточны. Увеличение содержания марганца более 1,30% приводит к снижению ударной вязкости закаленной стали.
Хром повышает прочность стали. При его концентрации менее 0,30% прочностные свойства не достигают оптимальных значений. Увеличение содержания хрома более 0,65% приводит к потере пластичности.
Никель способствует повышению пластических и вязкостных свойств листовой стали при пониженных температурах эксплуатации. При содержании никеля менее 0,85% показатели пластичности и ударной вязкости снижаются, уменьшается выход годного. При содержании никеля более 1,55% происходит интенсивная коалесценция карбидов и их рост до размеров, снижающих положительное влияние никеля на пластичность. Кроме того, в микроструктуре реечного мартенсита повышается содержание остаточного аустенита, что дополнительно снижает пластичность и повышает склонность стали к хрупкому разрушению.
Добавление молибдена в указанном диапазоне способствует получению требуемых прочностных характеристик стали, а также улучшает ее прокаливаемость. При содержании молибдена менее 0,25% прочностные свойства стали не достигают требуемого уровня, а увеличение его содержания более 0,40% ухудшает свариваемость и пластичность закаленной стали.
Содержание ванадия более 0,06% приводит к ухудшению свариваемости стали и экономически нецелесообразно ввиду повышения расходов на легирование. При содержании ванадия менее 0,02% прочностные свойства стали ниже требуемого уровня.
Алюминий раскисляет и модифицирует сталь. Связывая азот в нитриды, подавляет его негативное воздействие на свойства листов. При содержании алюминия менее 0,02% снижается комплекс механических свойств листового проката. Увеличение его концентрации более 0,05% приводит к ухудшению вязкостных свойств горячекатаных листов.
Азот способствует образованию нитридов в стали. Верхний предел содержания азота 0,010% обусловлен необходимостью получения заданного уровня пластичности и вязкости стали, а нижний предел 0,001% - вопросами технологичности производства.
Добавление меди в пределах 0,10-0,20% повышает прочность и коррозионную стойкость стали. Большее содержание меди экономически нецелесообразно.
Добавки ниобия в указанных пределах служат целям дисперсионного упрочнения, а также препятствуют росту аустенитного зерна и способствуют появлению при охлаждении субзеренной структуры, закрепляемой и стабилизируемой дисперсными карбидными частицами. При содержании ниобия менее 0,002% не обеспечивается достаточное упрочнение. Увеличение содержания ниобия более 0,060% приводит к ухудшению свариваемости стали и экономически нецелесообразно ввиду повышения расходов на легирование.
Титан является сильным карбидообразующим элементом, упрочняющим сталь. При содержании титана менее 0,002% не обеспечивается достаточное упрочнение. Повышение содержания титана сверх 0,010% приводит к снижению вязкостных свойств металла.
Легирование бором повышает прочностные свойства после закалки и низкого отпуска, не изменяя или несколько снижая вязкость и пластичность. Бор, добавляемый в пределах 0,001-0,005%, значительно повышает прокаливаемость стали, способствуя образованию потенциально упрочняющих компонентов - бейнита или мартенсита, и одновременно замедляя образование более мягких ферритных и перлитных компонентов во время охлаждения стали от высоких температур до температур окружающей среды. Бор в количестве более 0,005% может способствовать образованию охрупчивающих частиц Fe23(C, В)6 (форма борокарбида железа). Для получения максимального влияния на закаливаемость желательна концентрация бора не менее 0,001%.
Сера и фосфор в данной стали являются вредными примесями, увеличение их содержания приводит к ухудшению пластических и вязкостных свойств. Однако при концентрации серы не более 0,005% и фосфора не более 0,010% их отрицательное влияние на свойства стали незначительно. В то же время более глубокая десульфурация и дефосфорация стали существенно удорожат ее производство, что нецелесообразно.
Нагрев горячекатаных листов под закалку до температуры выше 980°С приводит к недопустимому снижению ударной вязкости листовой стали. Снижение этой температуры менее 930°С не обеспечивает стабильного получения заданных прочностных свойств, что снижает выход годного.
Отпуск закаленных листов при температуре выше 250°С снижает их прочностные свойства ниже допустимого уровня. Уменьшение температуры отпуска ниже 150°С приводит к потере пластических и вязкостных свойств высокопрочных листов.
Таким образом, полное использование ресурса свойств, соответствующего низколегированной стали данного химического состава, обеспечивается режимами термообработки толстолистового проката.
Пример осуществления способа
С применением индукционной плавильной печи ИСТ 0,03/0,05 И1 произвели выплавку сталей различного химического состава (табл. 2).
Полученные слитки нагревали в камерной печи ПКМ 3.6.2/12,5 до температуры 1200°С. Далее осуществляли обжатие слитков с применением гидравлического пресса П6334 (моделирование черновой прокатки) и на одноклетьевом реверсивном стане горячей прокатки 500 «ДУО» (чистовая прокатка). Температура окончания обжатия составляла от 850 до 950°С. Слитки прокатывали до толщины 6, 10, 20, 30 мм. Полученные раскаты охлаждали на воздухе.
Термическая обработка образцов проката заключалась в закалке при температуре 900-1000°С и последующем отпуске при температуре 150-300°С (табл. 3), после чего произвели раскрой полученных раскатов для проведения испытаний.
Механические свойства определяли на поперечных образцах в соответствии с общепринятыми условиями:
- испытания на растяжение проводили на плоских образцах по ГОСТ 1497;
- испытания на твердость по методу Бринелля проводили в соответствии с ГОСТ 9012;
- испытания на ударный изгиб проводили в соответствии с ГОСТ 9454 на образцах с V-образным надрезом при температуре -40°С;
- испытание на изгиб проводились в соответствии с ГОСТ 14019.
Результаты испытаний показали, что в листовой стали, полученной по предложенному способу (варианты №2-5, табл.4), достигается сочетание наиболее высоких прочностных, пластических и вязкостных свойств.
В случаях запредельных значений заявленных параметров (варианты №1 и №6), а также при использовании способа-прототипа не обеспечивается заданный комплекс механических свойств.
Таким образом, применение заявленного способа обеспечивает достижение требуемого результата - получение высокотвердого износостойкого листового проката со сложным комплексом механических свойств: условный предел текучести σ0,2 не менее 1100 Н/мм2, временное сопротивление разрыву σв не менее 1400 Н/мм2, твердость 420-480 HBW, относительное удлинение δ5 не менее 9%, ударная вязкость KCV-40 не менее 45 Дж/см2.
Figure 00000001
Figure 00000002

Claims (1)

  1. Способ производства высокотвердого износостойкого листового проката, включающий непрерывную разливку стали в слябы, их нагрев, многопроходную горячую прокатку листов, нагрев листа, закалку водой и отпуск, отличающийся тем, что осуществляют непрерывную разливку стали, содержащей, мас. %:
    углерод 0,20-0,28 кремний 0,15-0,30 марганец 0,75-1,30 хром 0,30-0,65 никель 0,85-1,55 молибден 0,25-0,40 ванадий 0,02-0,06 алюминий 0,02-0,05 азот 0,001-0,010 медь 0,10-0,20 ниобий 0,002-0,060 титан 0,002-0,010 бор 0,001-0,005 сера не более 0,005 фосфор не более 0,010 железо остальное,

    при этом нагрев листа под закалку ведут до температуры 930-980°С, а отпуск проводят при температуре 150-250°С.
RU2015122344/02A 2015-06-10 2015-06-10 Способ производства высокотвердого износостойкого листового проката RU2603404C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015122344/02A RU2603404C1 (ru) 2015-06-10 2015-06-10 Способ производства высокотвердого износостойкого листового проката

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015122344/02A RU2603404C1 (ru) 2015-06-10 2015-06-10 Способ производства высокотвердого износостойкого листового проката

Publications (1)

Publication Number Publication Date
RU2603404C1 true RU2603404C1 (ru) 2016-11-27

Family

ID=57774615

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015122344/02A RU2603404C1 (ru) 2015-06-10 2015-06-10 Способ производства высокотвердого износостойкого листового проката

Country Status (1)

Country Link
RU (1) RU2603404C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2765047C1 (ru) * 2020-12-28 2022-01-25 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Способ производства листов толщиной 2-20 мм из высокопрочной износостойкой стали (варианты)
CN115074641A (zh) * 2022-06-30 2022-09-20 鞍钢股份有限公司 一种hb400级别高耐磨可冷弯钢板及其生产方法
RU2784908C1 (ru) * 2021-12-28 2022-11-30 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства горячекатаной листовой конструкционной стали

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2433191C1 (ru) * 2010-10-25 2011-11-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства высокопрочной листовой стали
RU2442831C1 (ru) * 2010-10-15 2012-02-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ производства высокопрочной листовой стали
US20120175028A1 (en) * 2009-07-30 2012-07-12 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
RU2533469C1 (ru) * 2013-08-05 2014-11-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства листовой стали с высокой износостойкостью

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120175028A1 (en) * 2009-07-30 2012-07-12 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
RU2442831C1 (ru) * 2010-10-15 2012-02-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ производства высокопрочной листовой стали
RU2433191C1 (ru) * 2010-10-25 2011-11-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства высокопрочной листовой стали
RU2533469C1 (ru) * 2013-08-05 2014-11-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства листовой стали с высокой износостойкостью

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2765047C1 (ru) * 2020-12-28 2022-01-25 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Способ производства листов толщиной 2-20 мм из высокопрочной износостойкой стали (варианты)
RU2784908C1 (ru) * 2021-12-28 2022-11-30 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства горячекатаной листовой конструкционной стали
CN115074641A (zh) * 2022-06-30 2022-09-20 鞍钢股份有限公司 一种hb400级别高耐磨可冷弯钢板及其生产方法
RU2806645C1 (ru) * 2023-01-30 2023-11-02 Публичное акционерное общество "Магнитогорский металлургический комбинат" Способ производства высокопрочного хладостойкого листового проката

Similar Documents

Publication Publication Date Title
CN110100034B (zh) 高硬度耐磨钢以及制造该高硬度耐磨钢的方法
US20190338402A1 (en) Method for manufacturing railway vehicle wheel
US10000833B2 (en) Thick, tough, high tensile strength steel plate and production method therefor
KR102119959B1 (ko) 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
JP5871109B1 (ja) 厚鋼板及びその製造方法
KR101988144B1 (ko) 재질 균일성이 우수한 후육 고인성 고장력 강판 및 그 제조 방법
CN111479945B (zh) 具有优秀硬度和冲击韧性的耐磨损钢及其制造方法
WO2018168248A1 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
RU2593567C2 (ru) Высокопрочная стальная полоса с высокой ударной вязкостью и пределом текучести 700 мпа и способ ее производства
EP2592168B1 (en) Abrasion resistant steel plate with excellent impact properties and method for producing said steel plate
KR20140020351A (ko) 초-고강도 및 내마모성 강판 및 이의 제조방법
WO2011061812A1 (ja) 高靱性耐摩耗鋼およびその製造方法
US20160304985A1 (en) Super bainite steel and method for manufacturing it
JP2022177108A (ja) 少なくとも100mmの厚さを有する鋼セクション及びその製造方法
RU2631063C1 (ru) Способ производства инструментального высокопрочного листового проката
RU2583229C9 (ru) Способ производства сверхвысокопрочной листовой стали
RU2625861C1 (ru) Способ производства листовой стали с высокой износостойкостью
RU2533469C1 (ru) Способ производства листовой стали с высокой износостойкостью
RU2603404C1 (ru) Способ производства высокотвердого износостойкого листового проката
RU2703008C1 (ru) Способ производства листов из криогенной конструкционной стали
RU2358024C1 (ru) Способ производства штрипсов из низколегированной стали
KR102339890B1 (ko) 강판 및 그 제조 방법
JP4828321B2 (ja) 低サイクル疲労特性に優れた高周波焼入れ鋼材及び高周波焼入れ部品
RU2530078C1 (ru) Способ производства толстолистового проката для судостроения
RU2674797C1 (ru) Способ производства высокопрочного хладостойкого листового проката из низколегированной стали

Legal Events

Date Code Title Description
RH4A Copy of patent granted that was duplicated for the russian federation

Effective date: 20190410