RU2603196C2 - Магнитоэлектрореологический эластомер - Google Patents

Магнитоэлектрореологический эластомер Download PDF

Info

Publication number
RU2603196C2
RU2603196C2 RU2014152893/07A RU2014152893A RU2603196C2 RU 2603196 C2 RU2603196 C2 RU 2603196C2 RU 2014152893/07 A RU2014152893/07 A RU 2014152893/07A RU 2014152893 A RU2014152893 A RU 2014152893A RU 2603196 C2 RU2603196 C2 RU 2603196C2
Authority
RU
Russia
Prior art keywords
rubber
magnetic
filler
magnetoelectro
shell
Prior art date
Application number
RU2014152893/07A
Other languages
English (en)
Other versions
RU2014152893A (ru
Inventor
Геннадий Владимирович Степанов
Дмитрий Юрьевич Борин
Елена Юльевна Крамаренко
Алексей Ремович Хохлов
Штефан Оденбах
Антон Велитович Бахтияров
Лилия Вадимовна Свиридова
Павел Аркадьевич Стороженко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2014152893/07A priority Critical patent/RU2603196C2/ru
Publication of RU2014152893A publication Critical patent/RU2014152893A/ru
Application granted granted Critical
Publication of RU2603196C2 publication Critical patent/RU2603196C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Изобретение относится к области композиционных магнитных материалов, конкретно к магнитоэлектрореологическим эластомерам, обратимо изменяющим свои физические характеристики под действием магнитного и электрического поля, и может быть использовано в машиностроении, электротехнике, приборостроении. Увеличение силы взаимодействия между частицами под действием магнитного и электрического поля, и как следствие повышение чувствительности модуля упругости эластомера в зависимости от воздействия магнитного и электрического полей, является техническим результатом изобретения. Технический результат достигается в композиционном магнитном эластомере, который состоит из полимерной матрицы и наполнителя из магнитных частиц, при этом каждая частица магнитного наполнителя покрыта, по крайней мере, одной диэлектрической оболочкой, и/или, по крайней мере, одной зарядополяризующейся оболочкой. Материал диэлектрической оболочки предпочтительно выбирают из ряда оксидов, фосфатов, сульфатов, сульфидов материала наполнителя. В качестве материала для изготовления поляризуемой оболочки могут использоваться полимеры, в том числе имеющие в своем составе полярные группы, в результате чего в целом оболочка будет обладать поляризуемыми свойствами. 6 з.п. ф-лы, 3 ил., 1 табл.

Description

Изобретение относится к области композиционных магнитных материалов, конкретно к магнитоэлектрореологическим эластомерам, обратимо изменяющих свои физические характеристики под действием магнитного и электрического поля, и может быть использовано в машиностроении, электротехнике, приборостроении.
Управляемые материалы, в частности, магнитореологические и электрореологические материалы могут использоваться для создания управляемых демпфирующих устройств, устройства крепления с переменной жесткостью двигателя в автомобиле, управления и подстройки зеркал в автомобиле, могут применяться в электроприводах и использоваться при создании искусственных мышц в роботостроении.
Основным свойством магнитоэлектрореологического эластомера (МЭР-эластомера) является его способность значительно изменять вязкоупругие свойства при воздействии на него магнитного и/или электрического полей.
При одновременном воздействии магнитных и электрических полей эластомер в большей степени изменяет свои вязкоупругие свойства, чем при раздельном воздействии на него магнитного и электрического поля. Кроме того, существуют технические устройства, в которых невозможно использовать магнитные или электрические поля максимально возможной величины. Например, когда существуют ограничения по массо-габаритным параметрам, например в авиации или космических аппаратах, когда размеры и вес электромагнита в конструкции с магнитореологическим эластомером ограничен, а устройства с электрореологическим эластомером не показывают достаточного реологического эффекта.
Известен электрореологический эластомер (Заявка на изобретение Китая CN 102250471 (А), опубликована 23.11.2011 г.) на основе трансформаторного масла, силиконового каучука и крахмала. Электрореологическую жидкость, состоящую из частиц крахмала и трансформаторного масла, диспергируют в смеси жидкого силиконового каучука и силиконового масла. Электрореологический эластомер получается полимеризацией смеси с или без электрического поля, которое прикладывается к форме. Материал отличается тем, что трансформаторное масло всегда представляет собой жидкую фазу в процессе затвердевания силиконовой резины. Одной из особенностей данного композита является то, что капли трансформаторного масла всегда находятся внутри композита в жидком состоянии. Эластомер обладает хорошими электрореологическими свойствами. Модуль упругости в электрическом поле возрастает в 5 раз.
Недостатком технического решения является отсутствие магнитореологического эффекта, т.е. эластомер не изменяет свои упругие свойства под действием магнитных полей.
Известен магнитореологический эластомер (патент США US 7261834, опубликован 28.08.2007), который содержит намагничиваемые частицы с размером от приблизительно 0,01 до 700 мкм в матрице в количестве примерно от 10 до 95% по массе. Намагничивающиеся частицы могут быть покрыты, чтобы уменьшить коррозию и/или для улучшения сцепления между частицей и матрицей.
Намагничивающиеся частицы могут иметь чешуйчато-образную форму. Эластомер полимерной матрицы должен быть эластичный с величиной удлинения более 200%. Такие полимеры могут включать полиизопрены, гидрированные нитрильные каучуки, бутадиеновые каучуки, акрилонитрил бутадиена, изобутилен, изопрены, полиметилсилоксановые эластомеры, полиуретаны, сополимер этилена, акриловые эластомеры, перфторэластомеры, фторуглероды, фенильные силоксаны и их смеси.
Недостатком материала является то, что он не проявляет электрореологических свойств.
Таким образом, из уровня техники неизвестно материалов, способных изменять вязкоупругие свойства при одновременном воздействии магнитных и электрических полей.
Техническим результатом, на получение которого направлено изобретение, является создание управляемого эластомера, способного изменять вязкоупругие свойства за счет воздействия как магнитных, так и электрических полей, прикладываемых раздельно или совместно.
Технический результат достигается в композиционном магнитном эластомере, который состоит из полимерной матрицы (где полимер выбран из ряда: натуральный каучук, акрилатный каучук, бутадиен-нитрильный каучук, бутадиеновый каучук, бутадиен-стирольный каучук, бутилкаучук, винилпиридиновый каучук, изопреновый каучук, карбоксилатный каучук, кремнийорганический каучук, полисульфидный каучук, уретановый каучук, фторкаучук, хлоропреновый каучук, хлорсульфированный полиэтилен, этилен-пропиленовый каучук) и наполнителя из магнитных проводящих частиц (например, Fe, FeNi, Со, Ni, FeNdB, SmCo, Alniko и т.п.) с размерами от десятков нанометров до десятков микрон. При этом каждая частица магнитного наполнителя покрыта, по крайней мере, одной диэлектрической оболочкой, и/или, по крайней мере, одной полимерной поляризующейся оболочкой. Материал диэлектрической оболочки предпочтительно выбирают из ряда оксидов, фосфатов, сульфатов, сульфидов материала наполнителя. В качестве материала для изготовления диэлектрической оболочки могут использоваться полимеры, в том числе и имеющие в своем составе полярные группы, в результате чего в целом оболочка будет обладать поляризуемыми свойствами. Предпочтительно поляризующуюся оболочку выполнить на основе полимеров с полярными группами.
Благодаря варьированию рецептуры компонентов и их соотношения получаемые эластомеры могут иметь в вулканизованном состоянии различное физическое состояние: от гелеобразного и эластомерного до стеклообразного. В ходе синтеза композитного материала, компоненты подбирают таким образом, чтобы его модуль упругости Юнга лежал в интервале 1-1000 кПа, предпочтительнее 10-200 кПа. Концентрация в композитном материале магнитного наполнителя Сн составляет от 10 до 90% масс. Композитный материал может быть синтезирован с анизотропными свойствами путем наложения магнитного или электрического поля на форму с материалом в процессе полимеризации, что приводит к возникновению предпочтительного направления проявления магнитореологического и электрореологического эффектов при наложении управляющего поля в процессе эксплуатации в том же направлении поля, которое имело поле, приложенное и в процессе изготовления материала.
На Фиг. 1 приведен схематический вид внутренней структуры частиц наполнителя, изготовленных на основе железа, где 1 - железное ядро, 2 - оксидная пленка, 3 - полимерная оболочка.
На фиг. 2 показана зависимость модуля упругости от величины магнитного поля при различных деформациях (А=0,0015-9,23%).
На фиг. 3 приведена зависимость модуля упругости от электрического поля в присутствии магнитного поля величиной 200 мТл.
Изобретение осуществляется следующим образом. Исходный магнитный порошок, например, карбонильного железа, диспергируют в ацетоне или пропаноле с добавлением в смесь перекиси водорода и/или фосфорной кислоты, и/или пиросульфата натрия. После выдержки твердую фазу отфильтровывают и сушат на воздухе при 50 град. Далее порошок магнитного наполнителя с диэлектрической оболочкой диспергируют в растворе полимера и композицию высушивают при постоянном перемешивании, например, в вакуумном барабанном испарителе. На данной стадии используется растимая система полимер-растворитель. В другом варианте дисперсию магнитного наполнителя и полимерного раствора помещают в растворитель, не совмещающийся с раствором полимера. В этом случае получается суспензия композиции в растворителе, и испарение первого растворителя происходит внутри суспензии при нагревании, причем температура кипения второго растворителя должна быть выше температуры кипения первого растворителя, а наносимая полимерная оболочка должна быть нерастворима во втором растворителе. Например, дисперсию магнитного порошка в водном растворе метилцелюлозы или крахмала помещают в ксилол и интенсивно перемешивают. Получается дисперсии-эмульсия в ксилоле. Смесь нагревают при постоянном перемешивании до 110 градусов, при этом вода испаряется, а полимерная оболочка равномерно покрывает магнитную частицу. Полученную дисперсию отфильтровывают на фильтре от ксилола и высушивают в вакуумном шкафу. Подготовленный наполнитель смешивают с жидкой композицией силиконового каучука (например, марки СИЭЛ), разливают в формы и полимеризуют при температуре 150 град С в течение часа. При этом обеспечивается получение магнитоэлектрореологического эластомера.
Пример 1. Получение порошка с диэлектрической оболочкой. Сто грамм карбонильного железа (размером 3-5 мкм) диспергируют в пропаноле, добавляют 10 мл 30% перекиси водорода и 7 гр 40% раствора фосфорной кислоты. Смесь интенсивно перемешивают в течение часа, при этом возможен саморазогрев смеси. После окончания реакции, порошок отфильтровывают и сушат.
Пример 2. Получение порошка с диэлектрической оболочкой. Сто грамм карбонильного железа (размером 3-5 мкм) диспергируют в пропаноле, добавляют 4 мл 30% перекиси водорода и 10 гр пиросульфата натрия 4 гр 40% раствора фосфорной кислоты. Смесь интенсивно перемешивают в течение часа. После окончания реакции, порошок отфильтровывают и сушат.
Пример 3. Получение порошка с полимерной оболочкой. Порошок, полученный по пункту 1 или 2, диспергируют в 30 граммах 8% водного раствора карбоксиметилцелюлозы и сушат при постоянном перемешивании, например, в роторном испарителе.
Пример 4. Получение порошка с полимерной оболочкой. Порошок, полученный по пункту 1 или 2, диспергируют в 30 граммах 10% водного раствора крахмала. Полученную суспезию переносят в стакан с ксилолом и нагревают при постоянном перемешивании до 110 град. После испарения воды дисперсию фильтруют на вакуум-фильтре и сушат на воздухе при 50 градусов в течение суток.
Пример 5. Получение порошка с полимерной оболочкой. Порошок, полученный по пункту 1 или 2, диспергируют в растворе диметилсульфоксида (ДМСО), в котором было растворено 5 гр сополимера - полиакрилнитрил (ПАН). Далее к раствору полимера добавлялась вода с ионами фосфата. В ходе реакции осаждения полимер высаживался из раствора на поверхность порошка. После осаждения полимера на порошок, его отфильтровывали на фильтре и порошок сушили при 130 градусах.
Пример 6. Получение магнитоэлектрореологического эластомера. Активный наполнитель в количестве 100 гр смешивают в механической ступе с 25 граммами жидкого силиконового каучука. Смесь вакуумируют для избавления от пузырьков воздуха, заливают в формы и отверждают при 150 град в течение часа. Полученные цилиндры 25×2 мм исследуют на реологические свойства на реометре Anton Par-301, дополненного магнитоэлектрореологической ячейкой.
Основные зависимости вязкоупругих свойств полученного магнитоэлектрореологического эластомера при воздействии магнитного и электрических полей представлены на рисунках 2 и 3.
Варьирование концентрации магнитоэлектрореологического наполнителя в полимерной матрице осуществляется в интервале 10-90% масс.
Состав и свойства композитных материалов, приготовленных на основе силиконового каучука, и различных концентраций магнитного наполнителя представлены в таблице.
Figure 00000001
где: Ен - модуль упругости в магнитном поле 200 мТл;
Еэ - модуль упругости в электрическом поле 2 кВ/мм;
Енэ - модуль упругости при одновременном воздействии магнитного и электрического полей.
В таблице представлены свойства магнитоэлектрореологического эластомера, а именно, модуль упругости в исходном состоянии, модуль упругости в магнитном поле 200 мТл (Н=200 мТл), модуль упругости в электрическом поле напряженностью 2000 В/мм (Е=2 кВ/мм), модуль упругости (Енэ) в магнитном поле 200 мТл и электрическом поле 2кВ/мм. В последней колонке приведены данные по изменению модуля упругости в магнитном и электрическом полях относительно исходного модуля упругости, в процентах. Как видно из представленных данных, оптимум концентрации наполнителя находится в интервале концентраций 70-80% масс. Максимальное абсолютное и относительное увеличение модуля упругости приходится на концентрацию наполнителя 75% масс. При увеличении и уменьшении концентраций реологический эффект уменьшается. При увеличении концентрации упругость материала увеличивается, и он становится неэластичным, исходный модуль упругости резко возрастает, и относительный реологический эффект уменьшается. При уменьшении концентрации наполнителя, модуль упругости материала уменьшается, эластичность растет, но общий реологический эффект также снижается вследствие малого количества активного наполнителя. Поскольку реологический эффект определяется силой взаимодействия между частицами под действием магнитного и электрического полей, то при малых концентрациях взаимодействие между частицами не происходит, и реологический эффект в полях пропадает.
Таким образом, достигается технический результат изобретения.
Достоинством предлагаемого магнитоэлектрореологического эластомера является универсальный характер применимости материала и высокие реологические эффекты, достигаемые при совместном воздействии на эластомер магнитного и электрического полей.

Claims (7)

1. Магнитоэлектрореологический эластомер, характеризующийся тем, что сформирован в результате полимеризации, состоит из матрицы в виде эластичного полимера и наполнителя из магнитных частиц, в концентрации от 10 до 90% общей массы, причем каждая частица наполнителя покрыта, по крайней мере, одной диэлектрической оболочкой, и/или, по крайней мере, одной поляризующейся оболочкой.
2. Магнитоэлектрореологический эластомер по п. 1, отличающийся тем, что в качестве наполнителя используются частицы из следующего ряда: Fe, FeNi, Со, Ni, FeNdB, FeNbB, FeNbBSi, SmCo, Alniko.
3. Магнитоэлектрореологический эластомер по п. 1, отличающийся тем, что размер частиц наполнителя расположен в диапазоне от десятков нанометров до десятков микрон.
4. Магнитоэлектрореологический эластомер по п. 1, отличающийся тем, что полимеризация осуществлена в присутствии внешнего магнитного поля 0.1-1 Тл.
5. Магнитоэлектрореологический эластомер по п. 1, отличающийся тем, что диэлектрическая оболочка выполнена на основе или фосфатов, или сульфатов, или сульфидов, или оксидов материала частицы.
6. Магнитоэлектрореологический эластомер по п. 1, отличающийся тем, что в качестве матрицы используется или натуральный каучук, или акрилатный каучук, или бутадиен-нитрильный каучук, или бутадиеновый каучук, или бутадиен-стирольный каучук, или бутилкаучук, или винилпиридиновый каучук, или изопреновый каучук, или карбоксилатный каучук, или кремнийорганический каучук, или полисульфидный каучук, или уретановый каучук, или фторкаучук, или хлоропреновый каучук, или хлорсульфированный полиэтилен, или этилен-пропиленовый каучук
7. Магнитоэлектрореологический эластомер по п. 1, отличающийся тем, что поляризующаяся оболочка выполнена на основе полимеров с полярными группами.
RU2014152893/07A 2014-12-25 2014-12-25 Магнитоэлектрореологический эластомер RU2603196C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014152893/07A RU2603196C2 (ru) 2014-12-25 2014-12-25 Магнитоэлектрореологический эластомер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014152893/07A RU2603196C2 (ru) 2014-12-25 2014-12-25 Магнитоэлектрореологический эластомер

Publications (2)

Publication Number Publication Date
RU2014152893A RU2014152893A (ru) 2016-07-20
RU2603196C2 true RU2603196C2 (ru) 2016-11-27

Family

ID=56413206

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014152893/07A RU2603196C2 (ru) 2014-12-25 2014-12-25 Магнитоэлектрореологический эластомер

Country Status (1)

Country Link
RU (1) RU2603196C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU202588U1 (ru) * 2020-11-10 2021-02-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" Магнитоэлектрический трансформатор
RU203507U1 (ru) * 2020-09-21 2021-04-08 Борис Владимирович Григорьев Магнитоуправляемый модуль
RU2781689C1 (ru) * 2022-03-29 2022-10-17 Павел Аркадьевич Стороженко Способ получения антивибрационной магнитной эластичной композиции

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303283A (ja) * 1992-04-27 1993-11-16 Matsushita Electric Ind Co Ltd マグネットロール
US7261834B2 (en) * 2003-05-20 2007-08-28 The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno Tunable magneto-rheological elastomers and processes for their manufacture
CN102250471A (zh) * 2010-05-20 2011-11-23 西北工业大学 一种淀粉/变压器油滴/硅橡胶复合电弹性体材料
KR101191083B1 (ko) * 2011-03-30 2012-10-15 한국과학기술원 자기장 응답형 엘라스토머를 이용한 가변 강성의 구동기
RU2475878C1 (ru) * 2011-08-04 2013-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (ФГБОУ ВПО "КубГУ") Полимерный магнитный материал, содержащий наночастицы кобальта
RU2522546C2 (ru) * 2012-07-16 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Магнитный эластомер

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303283A (ja) * 1992-04-27 1993-11-16 Matsushita Electric Ind Co Ltd マグネットロール
US7261834B2 (en) * 2003-05-20 2007-08-28 The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno Tunable magneto-rheological elastomers and processes for their manufacture
CN102250471A (zh) * 2010-05-20 2011-11-23 西北工业大学 一种淀粉/变压器油滴/硅橡胶复合电弹性体材料
KR101191083B1 (ko) * 2011-03-30 2012-10-15 한국과학기술원 자기장 응답형 엘라스토머를 이용한 가변 강성의 구동기
RU2475878C1 (ru) * 2011-08-04 2013-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (ФГБОУ ВПО "КубГУ") Полимерный магнитный материал, содержащий наночастицы кобальта
RU2522546C2 (ru) * 2012-07-16 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Магнитный эластомер

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU203507U1 (ru) * 2020-09-21 2021-04-08 Борис Владимирович Григорьев Магнитоуправляемый модуль
RU202588U1 (ru) * 2020-11-10 2021-02-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" Магнитоэлектрический трансформатор
RU2781689C1 (ru) * 2022-03-29 2022-10-17 Павел Аркадьевич Стороженко Способ получения антивибрационной магнитной эластичной композиции

Also Published As

Publication number Publication date
RU2014152893A (ru) 2016-07-20

Similar Documents

Publication Publication Date Title
Cvek et al. Synthesis of silicone elastomers containing silyl-based polymer-grafted carbonyl iron particles: an efficient way to improve magnetorheological, damping, and sensing performances
CN106633891B (zh) 一种硅橡胶基多孔介电弹性体复合材料及其制备方法
Khimi et al. The effect of silane coupling agent on the dynamic mechanical properties of iron sand/natural rubber magnetorheological elastomers
Yang et al. Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding
Fan et al. Effect of maleic anhydride on the damping property of magnetorheological elastomers
CN104031297A (zh) 一种石墨烯基介电弹性体复合材料及其制备方法
Khimi et al. Comparison of dynamic properties of magnetorheological elastomers with existing antivibration rubbers
Yang et al. In situ grafting silica nanoparticles reinforced nanocomposite hydrogels
CN104072820B (zh) 一种石墨烯基介电弹性体复合材料及其制备方法
Yang et al. Enhanced dielectric properties and actuated strain of elastomer composites with dopamine-induced surface functionalization
US8123971B2 (en) Magnetorheological elastomers (MREs) with polynorbornene as a carrier medium, processes for producing such elastomer composites and their use
RU2603196C2 (ru) Магнитоэлектрореологический эластомер
Ren et al. Quaternized xylan/cellulose nanocrystal reinforced magnetic hydrogels with high strength
Małecki et al. Influence of carbonyl iron particle coating with silica on the properties of magnetorheological elastomers
Wang et al. Magnetorheological elastomers based on isobutylene–isoprene rubber
Alam et al. Magnetic response properties of natural-rubber-based magnetorhelogical elastomers with different-structured iron fillers
JP3058466B2 (ja) 弾性率可変材料
Yang et al. Enhanced electromechanical performance of natural rubber composites via constructing strawberry-like dielectric nanoparticles
Liu et al. Natural rubber latex reinforced by graphene oxide/zwitterionic chitin nanocrystal hybrids for high-performance elastomers without sulfur vulcanization
Abd Rashid et al. Effects of silica on mechanical and rheological properties of EPDM-based magnetorheological elastomers
Hao et al. Mechanical behavior of starch/silicone oil/silicone rubber hybrid electric elastomer
Rumon et al. Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels
JP2017222824A (ja) 高減衰ゴム組成物および粘弾性ダンパ
Lu et al. Effect of carbon black with large particle size on dynamic mechanical analysis of magnetorheological elastomers (MREs)
Jong Characterization of defatted soy flour and elastomer composites