RU2599413C2 - Канал для охлаждения корпуса - Google Patents

Канал для охлаждения корпуса Download PDF

Info

Publication number
RU2599413C2
RU2599413C2 RU2013152735/06A RU2013152735A RU2599413C2 RU 2599413 C2 RU2599413 C2 RU 2599413C2 RU 2013152735/06 A RU2013152735/06 A RU 2013152735/06A RU 2013152735 A RU2013152735 A RU 2013152735A RU 2599413 C2 RU2599413 C2 RU 2599413C2
Authority
RU
Russia
Prior art keywords
turbine
fluid
cooling
stator
channel
Prior art date
Application number
RU2013152735/06A
Other languages
English (en)
Other versions
RU2013152735A (ru
Inventor
Кевин МОРЕТОН
Кевин СКОТТ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2013152735A publication Critical patent/RU2013152735A/ru
Application granted granted Critical
Publication of RU2599413C2 publication Critical patent/RU2599413C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/323Arrangement of components according to their shape convergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Турбина, в частности газовая турбина, содержит внутренний корпус, предназначенный для установки по меньшей мере одной статорной лопатки турбинной ступени, и наружный корпус, расположенный вокруг внутреннего корпуса таким образом, что образуется наружный охлаждающий канал между внутренним корпусом и наружным корпусом. Наружный охлаждающий канал содержит вход для текучей среды, который предназначен для введения охлаждающей текучей среды из наружного объема турбин в наружный охлаждающий канал. Охлаждающий канал содержит выход для текучей среды, так что охлаждающая текучая среда выпускается во внутренний объем турбины. Вход для текучей среды расположен относительно выхода для текучей среды так, что текучая среда внутри наружного охлаждающего канала имеет направление потока, которое имеет составляющую, которая ориентирована в противоположном направлении относительно основного направления потока рабочей текучей среды турбины. Первый ряд статорных лопаток содержит по меньшей мере одну первую статорную лопатку статорных лопаток и установлен в первой части внутреннего корпуса. По меньшей мере одна первая статорная лопатка содержит канал и установлена на внутреннем корпусе так, что охлаждающая текучая среда проходит из выхода текучей среды в канал. Изобретение направлено на повышение эффективности охлаждения и уменьшение расхода охлаждающей среды. 2 н. и 9 з.п. ф-лы, 3 ил.

Description

Область техники
Данное изобретение относится к турбине и к способу работы турбины.
Уровень техники
В турбинах, в частности в и вокруг секций турбин, турбинные части, такие как корпуса, подвергаются воздействию горячей текучей среды турбины. Поэтому применяются охлаждающие системы для охлаждения турбинных частей.
С целью охлаждения устанавливаются воздушные охлаждающие системы для подачи потока охлаждающего воздуха на горячие части турбины. Пространство для установки охлаждающих воздушных частей и для обеспечения надежного охлаждения наружных и внутренних турбинных частей, таких как части корпуса, ограничено. Кроме того, сложные охлаждающие системы являются дорогостоящими, а их надежность небольшая. Дополнительно к этому, большое количество охлаждающего воздуха может отрицательно влиять на характеристики турбины.
В ЕР 0578639 В1 раскрыт корпус турбины. Турбинный корпус частично закрыт кожухом турбины, так что образован зазор между турбинным корпусом и кожухом для прохождения потока охлаждающего воздуха.
В US 4841726 раскрыта газовая турбина реактивного двигателя многоосевой двухпоточной конструкции. Передний компрессор или вентилятор подает в газовой турбине сжатый воздух во вторичный канал, который расположен коаксиально оси силовой установки и который образован между наружными и внутренними стеночными структурами, из которых отбирается вторичная составляющая воздуха и выдувается на структуры турбинного корпуса с целью охлаждения. Вторичный воздушный канал проходит по существу по всей длине силовой установки или по меньшей мере до зоны вблизи структуры турбинного корпуса, в то время как вторичная составляющая воздуха отбирается из вторичного потока через отверстия в структуре внутренней стенки, которая расположена в непосредственной близости от соответствующей структуры турбинного корпуса.
В US 4242042 раскрыто управление температурой корпуса двигателя с целью управления зазором. Впрыск охлаждающего воздуха в кольцевое пространство задается с помощью двойной стеночной конструкции, состоящей из корпуса и наружных воздухонепроницаемых уплотнений, служащих для управления утечкой в и из пространства и температурой двигателя. Разница температур между потоком горячего газа и охлаждающего воздуха, воздействующим на корпус двигателя, управляет сжатием и расширением корпуса, которые в свою очередь позиционируют уплотнение относительно вершин вращающихся лопаток, что отражается на мощности двигателя или других параметрах.
В US 2004/0018081 А1 раскрыт корпус турбины низкого давления с конической кольцевой оболочкой вокруг центральной оси. Передний фланец расположен на переднем конце кольцевой оболочки. От переднего фланца проходит назад передний крюк. Первая и вторая направляющие, имеющие первый и второй крюки, проходят назад от кольцевой оболочки. Первое и второе охлаждающие отверстия проходят через первую и вторую направляющие, соответственно. Подающие охлаждающий воздух отверстия проходят через первый фланец. Первое и второе охлаждающие отверстия расположены с радиальным прохождением через первую и вторую направляющие, соответственно, относительно центральной оси или же проходят через первую и вторую направляющие косо относительно центральной оси. Корпус турбины низкого давления и бандажный узел дополнительно содержат первую кольцевую полость, соединенную по текучей среде с первыми охлаждающими отверстиями и вторыми охлаждающими отверстиями.
В GB 2108686 раскрыто управление зазором между вершинами роторных лопаток турбины и окружающим корпусом. Охлаждающий воздух может направляться через трубопровод к корпусу турбины низкого давления.
В US 6227800 В1 раскрыт корпус турбины, на который опирается ряд сопловых лопаток, через которые могут проходить горячие газы сгорания. Корпус окружает экран для создания охлаждающего канала. Корпус окружает гондола для образования отсека, имеющего вход для приема воздуха в отсек и выход для выпуска воздуха. Охлаждающий канал включает вход, который принимает воздух из отсека для направления вдоль турбинного корпуса, с целью его селективного охлаждения.
В US 6625989 В2 раскрыты способ и устройство для охлаждения корпуса турбин реактивных двигателей, в котором охлаждающий воздух отводится из потока во втором контуре и подается на наружную сторону корпуса через входной канал, снабженный закрывающим элементом. Охлаждающий воздух подается в первую камеру, в которой он разделяется по объему. Одна часть охлаждающего воздуха направляется к корпусу через дросселирующие отверстия, в то время как другая часть направляется через несколько труб во вторую камеру, которая кольцеобразно окружает корпус в зоне турбины низкого давления.
В ЕР 0618349 А1 раскрыт турбинный блок для газотурбинного двигателя, который содержит чередующиеся кольцевые ряды роторных лопаток и статорных лопаток, закрытых кольцевым корпусом. Каждая статорная лопатка закреплена с помощью платформы на своем радиально наружном конце. Через фланец на платформе проходит болт для позиционирования статорной лопатки относительно корпуса и предотвращения любого окружного перемещения статорной лопатки. Болт проходит радиально через корпус для вхождения в контакт с кольцевым охлаждающим каналом. Кольцевой охлаждающий канал окружает корпус с образованием полости, через которую при работе проходит охлаждающий воздух для охлаждения корпуса.
Сущность изобретения
Задачей данного изобретения является обеспечение эффективного охлаждения горячих частей турбины.
Эта задача решена с помощью турбины, в частности газовой турбины, и с помощью способа работы турбины, в частности газовой турбины, согласно признакам независимых пунктов формулы изобретения.
Согласно первому аспекту данного изобретения, предлагается турбина, в частности газовая турбина. Турбина содержит внутренний корпус, предназначенный для установки по меньшей мере одной статорной лопатки турбинной ступени, т.е. секции турбины. Кроме того, турбина содержит наружный корпус, который расположен вокруг внутреннего корпуса так, что образуется наружный охлаждающий канал между внутренним корпусом и наружным корпусом. Наружный охлаждающий канал содержит вход для текучей среды, который предназначен для вдувания охлаждающей текучей среды из наружного объема турбины в наружный охлаждающий канал. Охлаждающий канал содержит выход для текучей среды, так что охлаждающая текучая среда выпускается во внутренний объем турбины. Вход для текучей среды расположен относительно выхода для текучей среды так, что текучая среда внутри наружного охлаждающего канала имеет направление потока, которое имеет составляющую, которая ориентирована в противоположном направлении относительно направления основного потока рабочей текучей среды турбины.
Согласно другому аспекту данного изобретения, предлагается способ работы турбины, в частности газовой турбины. Турбина содержит внутренний корпус, предназначенный для установки по меньшей мере одной статорной лопатки турбинной ступени, т.е. секции турбины, и наружный корпус, который расположен вокруг внутреннего корпуса так, что образуется наружный охлаждающий канал между внутренним корпусом и наружным корпусом. Согласно способу, охлаждающая текучая среда вдувается через вход для текучей среды наружного охлаждающего канала из наружного объема турбины в наружный охлаждающий канал. Кроме того, охлаждающая текучая среда выходит через выход для текучей среды охлаждающего канала во внутренний объем турбины. Вход для текучей среды расположен относительно выхода для текучей среды так, что текучая среда внутри наружного охлаждающего канала имеет направление потока, которое имеет составляющую, которая ориентирована в противоположном направлении относительно направления основного потока рабочей текучей среды турбины.
Турбина может быть газовой турбиной, которая может содержать также камеру сгорания и, например, компрессор.
Обычно турбина содержит вращающийся турбинный вал. Вращающийся вал вращается вокруг оси вращения, которая задает осевое направление турбины. Направление снаружи к оси вращения турбинного вала задает радиальное направление турбины.
Турбина содержит различные части корпуса, которые имеют задачу поддержки функциональных элементов турбины и/или которые используются для направления потоков текучей среды турбины. В частности, внутренний корпус предназначен для опоры ряда статорных лопаток, который содержит множество закрепленных по окружности статорных лопаток. Кроме того, к внутреннему корпусу могут быть прикреплены различные направляющие текучую среду части турбины, такие как дефлекторы воздуха. Дефлекторы воздуха могут быть выполнены в виде экранов и/или теплозащитных экранов.
В частности, внутренний корпус отделяет рабочую текучую среду турбины от окружения. В частности, внутренний корпус отделяет внутренний объем турбины от наружного объема турбины. Внутри внутреннего объема рабочая текучая среда проходит вдоль основного направления текучей среды, при этом основное направление потока ориентировано, в частности, в осевом направлении относительно турбинного вала.
Во внутреннем объеме установлены ряды роторных лопаток и ряды статорных лопаток. В частности, поток горячего сжатого газа проходит во внутреннем объеме в основном направлении потока. Вторичный поток текучей среды или вторичный поток воздуха (стравливаемого воздуха) проходит внутри наружного объема, который окружает внутренний корпус и тем самым внутренний объем. Вторичный поток текучей среды можно использовать для целей охлаждения.
Указанный наружный корпус окружает по меньшей мере частично внутренний корпус. Между внутренним корпусом и наружным корпусом образован наружный охлаждающий канал. Наружный корпус образован внутри наружного объема. Наружный корпус содержит входное отверстие и выходное отверстие и/или зазор на своих краях с целью обеспечения входа текучей среды из наружного объема внутрь наружного охлаждающего канала. Внутренний корпус обеспечивает выход текучей среды с помощью выходных отверстий или зазоров на своих краях, с целью выпуска охлаждающего воздуха во внутренний объем и/или внутрь канала внутри статорных лопаток ряда статорных лопаток, которые установлены на внутреннем корпусе.
Как указывалось выше, внутренний корпус и наружный корпус могут быть расположены в турбинной секции турбины. В частности, они могут быть расположены в силовой части турбины, которая предназначена для привода присоединенного роторного оборудования. В качестве альтернативного решения, они могут быть расположены в компрессорной части турбины, которая приводит в действие роторы компрессора. Внутри турбинной секции рабочая текучая среда (первичная текучая среда) расширяется вдоль основного направления потока, т.е. в осевом направлении или вниз по потоку. Внутренний корпус и наружный корпус могут иметь форму конуса или усеченного конуса, при этом диаметр и размер внутреннего корпуса и наружного корпуса увеличиваются в основном направлении потока и в осевом направлении, соответственно. Кроме того, внутренний корпус и/или наружный корпус образует кольцевой канал или зазор в окружном направлении вокруг вала турбины. Внутренний корпус и/или наружный корпус могут проходить вдоль всей окружности турбинной ступени/секции и/или могут быть разделены в окружном направлении на несколько окружных сегментов.
В указанной выше турбине, наружный охлаждающий канал образован с помощью внутреннего корпуса и наружного корпуса так, что направление потока охлаждающей текучей среды внутри наружного охлаждающего канала проходит частично вверх по потоку относительно основного направления потока рабочей текучей среды внутри внутреннего корпуса. В частности, поток охлаждающей текучей среды проходит внутри наружного объема в радиальном направлении и вдоль параллельного и противоположного направления относительно основного направления потока. С помощью наружного охлаждающего канала охлаждающая текучая среда изменяет направление из направления вниз по потоку (относительно потока горячего газа) внутри наружного охлаждающего канала относительно основного направления потока в направление вверх по потоку (относительно потока горячего газа) внутри охлаждающего канала. Кроме того, при выходе охлаждающей текучей среды во внутренний объем или в канал статорных лопаток текучая среда снова изменяет направление в направлении вниз по потоку по существу перпендикулярно основному направлению потока рабочей текучей среды во внутреннем объеме турбины. Поэтому перед вдуванием охлаждающей текучей среды во внутренний объем по меньшей мере два раза изменяется направление охлаждающей текучей среды при прохождении через охлаждающий канал.
Это приводит к техническому эффекту, заключающемуся в том, что охлаждающий воздух, который входит в наружный охлаждающий канал, проходит в тепловом контакте вдоль радиально наружной поверхности внутреннего корпуса, которая образует часть наружного охлаждающего канала. Кроме того, охлаждающая текучая среда может проходить по радиально внутренней поверхности внутреннего корпуса, которая обращена к внутреннему объему. Поэтому, поскольку поток охлаждающего воздуха проходит вверх по потоку (относительно потока горячего газа) вдоль радиально наружной поверхности внутреннего корпуса, то охлаждающий воздух можно дополнительно использовать для охлаждения других частей, таких как статорные лопатки или радиально внутренняя поверхность внутреннего корпуса, поскольку охлаждающий воздух покидает наружный охлаждающий канал в положении вверх по потоку и тем самым входит во внутренний объем в положении вверх по потоку. После вхождения во внутренний объем на охлаждающий воздух оказывает влияние рабочая текучая среда внутри внутреннего объема. Например, при направлении охлаждающего воздуха в наружный охлаждающий канал сначала в направлении вверх по потоку охлаждающая текучая среда может охлаждать обе поверхности внутреннего корпуса после изменения направления на направление вниз по потоку во внутреннем объеме. Поэтому, поскольку охлаждающий воздух проходит по большим площадям поверхности (в частности, по внутренней поверхности и наружной поверхности) внутреннего корпуса, то может обеспечиваться хорошая тепловая конвекция и тем самым хорошая эффективность охлаждения. Кроме того, давление во внутреннем объеме газовой турбины уменьшается в основном направлении потока, что приводит к более высокой разнице давления между потоком охлаждающего воздуха и потоком горячего газа, вызывая более высокий расход охлаждающего воздуха, если он сначала снаружи корпуса не проходит в противоположном направлении относительно основного потока горячего газа. Противопоток между охлаждающим воздухом и потоком горячего газа обеспечивает высокую эффективность при заданной имеющейся в распоряжении площади поверхности, передающей тепло с компонента в охлаждающий воздух.
Кроме того, поскольку эффективность охлаждения улучшается за счет данного изобретения, то может быть уменьшен расход охлаждающей текучей среды (т.е. вторичной текучей среды/воздуха). Кроме того, более высокая эффективность охлаждения позволяет дополнительно выполнять внутренний корпус из материала, который можно применять лишь при низких температурах. В частности, температура внутреннего корпуса может быть понижена во время работы турбины ниже примерно 450°С, так что может отпадать необходимость использования дорогостоящих никелевых корпусов. Если достигается температура внутреннего корпуса ниже примерно 450°С, например, за счет применения данного изобретения, то внутренний корпус можно изготавливать, например, из более дешевой стали. Кроме того, уменьшенная рабочая температура внутреннего корпуса может дополнительно улучшать эффективность турбины, например, посредством уменьшения просвета у вершин лопаток, посредством уменьшения расхода воздуха, посредством использования более простой конструкции канала и посредством использования более дешевого материала для корпуса.
Согласно другому примеру выполнения данного изобретения, вход для текучей среды выполнен в наружном корпусе. Вход для текучей среды может быть выполнен, например, с помощью входных отверстий, образованных в наружном корпусе.
Согласно другому примеру выполнения, выход для текучей среды образован во внутреннем корпусе, например, с помощью входных отверстий или входных каналов, образованных во внутреннем корпусе.
Согласно другому примеру выполнения, наружный охлаждающий канал выполнен с сужающейся формой для ускорения охлаждающей текучей среды внутри наружного канала.
За счет выполнения наружного охлаждающего канала посредством окружения внутреннего корпуса достигается изменение радиального расстояния или радиальной высоты охлаждающего канала, и можно управлять характеристиками потока охлаждающей текучей среды (в особенности увеличением скорости). Поэтому можно согласовывать форму наружного охлаждающего канала и использовать для управления расходом потока, скоростью, направлением, массой, распределением и/или давлением охлаждающей текучей среды.
В частности, если внутренний корпус и наружный корпус имеют коническую форму в осевом направлении турбины, то угол конуса обоих корпусов может различаться так, что диаметр и размер поперечного сечения (гидравлический диаметр) охлаждающего канала изменяется в осевом направлении. В частности, поперечное сечение охлаждающего канала уменьшается в осевом направлении вверх по потоку. В частности, гидравлический диаметр (площадь поперечного сечения) охлаждающего канала у входа для текучей среды больше гидравлического диаметра (площади поперечного сечения) у выхода для текучей среды. Поэтому можно использовать сужающуюся форму для ускорения охлаждающей текучей среды внутри наружного охлаждающего канала.
За счет ускорения охлаждающей текучей среды с помощью наружного охлаждающего канала охлаждающая текучая среда имеет у входа для текучей среды меньшую скорость, чем у выхода для текучей среды. Охлаждающая текучая среда нагревается в направлении потока между входом текучей среды и выходом текучей среды. Поэтому за счет обеспечения ускоренной охлаждающей текучей среды за счет сужающейся формы наружного охлаждающего канала может быть улучшена эффективность охлаждения турбины.
Согласно другому примеру выполнения, турбина дополнительно содержит первый ряд статорных лопаток, который содержит по меньшей мере одну первую статорную лопатку, при этом первый ряд статорных лопаток установлен в первой части внутреннего корпуса. Турбина дополнительно содержит второй ряд статорных лопаток, который содержит по меньшей мере одну вторую статорную лопатку, при этом второй ряд статорных лопаток установлен во второй части внутреннего корпуса. Относительно основного направления потока, вторая часть расположена по потоку ниже первой части.
Охлаждающий канал и наружный корпус могут присутствовать лишь на части внутреннего корпуса, так что наружный корпус не полностью покрывает внутренний корпус. Описание примеров выполнения приводится ниже. Например, первый ряд статорных лопаток и второй ряд статорных лопаток являются рядами статорных лопаток, которые расположены в средней части турбинной секции, так что другие ряды статорных лопаток турбинной секции расположены по потоку выше и/или по потоку ниже первого ряда статорных лопаток и второго ряда статорных лопаток. Поэтому наружный охлаждающий канал образован с помощью наружного корпуса вдоль средней части и не закрывает внутренний корпус вдоль всей осевой длины турбинной секции. Кроме того, турбинная секция может содержать по меньшей мере один дополнительный ряд статорных лопаток между первым рядом статорных лопаток и вторым рядом статорных лопаток. Поэтому наружный охлаждающий канал образован с помощью наружного корпуса вдоль группы статорных лопаток, содержащей первый ряд статорных лопаток, расположенный посредине ряд (ряды) статорных лопаток и второй ряд статорных лопаток.
Согласно другому примеру выполнения, первый ряд статорных лопаток содержит другую первую статорную лопатку, при этом первая статорная лопатка и другая первая статорная лопатка расположены относительно друг друга вдоль окружного направления турбины. Наружный корпус расположен вокруг внутреннего корпуса так, что наружный охлаждающий канал проходит по меньшей мере между первой статорной лопаткой и другой первой статорной лопаткой.
В большинстве случаев наружный корпус покрывает всю окружность внутреннего корпуса. Установка локальных выступов массы в качестве разделительного фланца в основном направлении потока корпуса для отделения секторов может вызывать локальные деформации, приводящие к овальности и тем самым к увеличению зазора у вершин, что влечет за собой ухудшение характеристик.
Согласно другому примеру выполнения, второй ряд статорных лопаток содержит другую вторую статорную лопатку, при этом вторая статорная лопатка и другая вторая статорная лопатка расположены относительно друг друга вдоль окружного направления турбины. Наружный корпус расположен вокруг внутреннего корпуса так, что наружный охлаждающий канал проходит по меньшей мере между второй статорной лопаткой и другой второй статорной лопаткой.
Согласно другому примеру выполнения, по меньшей мере одна первая статорная лопатка содержит канал, при этом первая статорная лопатка установлена на внутреннем корпусе так, что охлаждающая текучая среда может протекать из выхода текучей среды в канал. Вторые статорные лопатки могут содержать другие каналы, через которые может также проходить охлаждающий воздух.
В окружном направлении вокруг турбинного вала предусмотрена возможность установки множества первых статорных лопаток, имеющих каналы. При этом канал каждой первой статорной лопатки соединен с наружным охлаждающим каналом так, что охлаждающая текучая среда может полностью или частично проходить от выхода текучей среды внутри каждой из множества первых статорных лопаток.
В частности, за счет указанного выше примера выполнения ряд первых статорных лопаток может быть рядом первых статорных лопаток силовой турбинной секции, где рабочая текучая среда входит в турбинную ступень. Ряд вторых статорных лопаток может быть расположенным ниже по потоку последним рядом статорных лопаток, где рабочая охлаждающая текучая среда выходит из турбинной секции. С помощью указанного выше примера выполнения показано, что охлаждающий канал может проходить вдоль всей площади поверхности внутреннего корпуса в осевом направлении или в окружном направлении. Поэтому охлаждающая текучая среда предназначена для охлаждения всей площади поверхности внутреннего корпуса, например, турбинной секции, при прохождении через наружный охлаждающий канал.
Охлаждающий воздух может входить в канал статорной лопатки по потоку ниже первой статорной лопатки турбины, и/или охлаждающий воздух входит в наружный охлаждающий канал по потоку выше выхода турбинной секции.
Согласно другому примеру выполнения, турбина дополнительно содержит внутренний охлаждающий канал, который образован между первым радиально наружным концом первой статорной лопатки (лопаток), вторым радиально наружным концом второй статорной лопатки (лопаток) и радиально внутренней поверхностью внутреннего корпуса. Внутренний охлаждающий канал соединен с выходом текучей среды так, что часть потока охлаждающей текучей среды протекает через внутренний охлаждающий канал, при этом часть охлаждающей текучей среды имеет направление потока, которое имеет составляющую, которая ориентирована параллельно основному направлению потока рабочей текучей среды турбины.
Поэтому с помощью указанного выше примера выполнения создан внутренний канал, который проходит вдоль внутренней поверхности внутреннего корпуса в основном в осевом направлении турбины. Поэтому охлаждающая текучая среда, которая проходит через наружный охлаждающий канал вдоль наружной поверхности внутреннего корпуса, может изменять направление при выходе из наружного охлаждающего канала во внутренний объем и может проходить вдоль внутренней поверхности внутреннего корпуса по существу в направлении вниз по потоку. В частности, часть охлаждающей текучей среды содержит составляющую, которая ориентирована параллельно основному направлению потока рабочей текучей среды турбины, охлаждая ротор.
Поэтому внутренний корпус может быть в тепловом соединении с помощью обеих поверхностей, а именно внутренней поверхности и наружной поверхности, с охлаждающей текучей средой, так что улучшается эффективность охлаждения внутреннего корпуса.
Согласно другому примеру выполнения, турбина содержит первую полость, которая образована у первого радиально внутреннего конца по меньшей мере одной первой статорной лопатки. Кроме того, турбина содержит вторую полость, которая образована у второго радиально внутреннего конца второй статорной лопатки (лопаток). Первая статорная лопатка содержит отверстие у первого радиально внутреннего конца так, что охлаждающая текучая среда проходит из канала первой статорной лопатки в первую полость. Первая полость и вторая полость соединены друг с другом так, что охлаждающая текучая среда может проходить из первой полости во вторую полость. Поэтому с помощью указанного выше примера выполнения обеспечивается эффективный путь прохождения охлаждающей текучей среды, так что можно эффективно охлаждать части турбины с помощью охлаждающей текучей среды.
Согласно другому примеру выполнения, турбина дополнительно содержит несколько других рядов статорных лопаток, которые расположены между первым рядом статорных лопаток и последним рядом вторых статорных лопаток. Каждый ряд первых статорных лопаток содержит множество первых статорных лопаток, которые расположены друг за другом в окружном направлении. Статорные лопатки статорного ряда могут быть установлены на одной общей неподвижной опоре лопаток. Поэтому, в частности, три, четыре, пять или более рядов статорных лопаток могут быть расположены в осевом направлении между первым рядом статорных лопаток и вторым рядом статорных лопаток. Охлаждающий канал проходит вдоль всех рядов статорных лопаток в осевом направлении или же может проходить лишь частично между заданными рядами статорных лопаток. Поэтому нет необходимости в дополнительных сооружениях для создания других охлаждающих каналов за счет продления наружного охлаждающего канала вдоль всей турбинной ступени.
Следует отметить, что выше было приведено описание вариантов выполнения применительно к различным предметам изобретения. В частности, описание некоторых вариантов выполнения дано применительно к устройству, в то время как описание других вариантов выполнения приведено относительно способа. Однако для специалистов в данной области техники из приведенного выше и последующего описания понятно, что, если не указано обратное, то дополнительно к любой комбинации признаков, относящихся к одному типу предмета изобретения, также любую комбинацию между признаками, относящимися к другому предмету изобретения, в частности, между признаками относящихся к устройству пунктов формулы изобретения и признаками относящихся к способу пунктов формулы изобретения, следует рассматривать как раскрытые в данной заявке.
Краткое описание чертежей
Указанные выше аспекты и другие аспекты данного изобретения следуют из приведенного ниже описания и пояснения в качестве примера вариантов выполнения. Ниже приводится более подробное описание в качестве примера вариантов выполнения, которыми, однако, не ограничивается изобретение, со ссылками на прилагаемые чертежи, на которых изображено:
фиг. 1 - турбина, согласно одному примеру выполнения данного изобретения;
фиг. 2 - внутренний корпус, согласно одному примеру выполнения данного изобретения; и
фиг. 3 - наружный корпус, согласно одному примеру выполнения данного изобретения.
Подробное описание
Иллюстрации на чертежах даны схематично. Следует отметить, что на различных фигурах аналогичные или идентичные элементы обозначены одинаковыми позициями.
На фиг. 1 показана турбина 100, в частности газовая турбина. Турбина 100 содержит внутренний корпус 101, на котором установлена по меньшей мере одна статорная лопатка турбинной ступени. Кроме того, турбина 100 содержит наружный корпус 102, который расположен вокруг внутреннего корпуса 101 так, что между внутренним корпусом 101 и наружным корпусом 102 образован наружный охлаждающий канал 103. Наружный охлаждающий канал 103 содержит вход 104 для текучей среды, через который охлаждающая текучая среда вдувается из наружного объема Vo в наружный охлаждающий канал 103. Охлаждающий канал 103 содержит выход 105 для текучей среды, так что охлаждающая текучая среда выходит во внутренний объем Vi турбины 100. Вход 104 текучей среды расположен относительно выхода 105 текучей среды так, что охлаждающая текучая среда внутри наружного охлаждающего канала 103 содержит направление 110 потока, которое имеет составляющую, которая ориентирована в противоположном направлении относительно основного направления 106 потока рабочей текучей среды турбины 100.
На фиг. 1 показано осевое направление 107, которое обозначает, в частности, направление оси вращения турбинного вала (не изображен). Перпендикулярно осевому направлению 107 показано радиальное направление 108, которое обозначает направление, которое проходит, например, через центральную точку турбинного вала.
Внутри наружной части внутреннего объема Vi рабочая текучая среда проходит вдоль основного направления 106 потока. Во время прохождения через наружную часть внутреннего объема Vi рабочая текучая среда сначала проходит через первый и второй ряды 111, 112 статорных лопаток. Множество первых статорных лопаток первого ряда 111 статорных лопаток может быть расположено в окружном направлении вокруг турбинного вала. Множество вторых статорных лопаток второго ряда 112 статорных лопаток может быть расположено в окружном направлении вокруг турбинного вала. Между соответствующими рядами 111, 112 статорных лопаток расположены ряды 113 роторных лопаток, которые установлены на и вокруг турбинного вала. Рабочая текучая среда, которая проходит через наружную часть внутреннего объема, расширяется вдоль основного направления 106 потока и отдает энергию в ряды 113 роторных лопаток. Обычно рабочая текучая среда является горячим газом или потоком, который нагревает ряды 111-113 статорных и роторных лопаток и внутренний корпус 101. Поэтому внутренний корпус 101, а также части турбины во внутреннем объеме Vi необходимо охлаждать с помощью охлаждающей текучей среды.
Охлаждающая текучая среда является, например, отбираемым от компрессора воздухом. Охлаждающая текучая среда может вдуваться прежде всего в наружный объем Vo турбины 100. Наружный объем Vo может быть полостью, которая образована с помощью другого наружного корпуса 114 и внутреннего корпуса 101. Наружный объем Vo может быть образован с помощью канала, который образован с помощью наружного корпуса 102 и другого наружного корпуса 114, при этом корпус проходит в осевом направлении 107 и по меньшей мере частично окружает в окружном направлении турбинную ступень.
Наружный объем Vo может иметь тороидальную форму в окружном направлении, вблизи или точнее над входом 104 текучей среды. Это является особенно предпочтительным расположением, когда другой наружный корпус 114 отсутствует в конструкции.
Охлаждающая текучая среда проходит из наружного объема Vo к входу 104 текучей среды внутри наружного охлаждающего канала 103. Наружный охлаждающий канал 103 окружен наружной поверхностью внутреннего корпуса 101 и внутренней поверхностью наружного корпуса 102. В одном примере выполнения наружный охлаждающий канал 103 может иметь сужающуюся форму по меньшей мере в одной части вдоль длины охлаждающего канала 103, так что охлаждающая текучая среда ускоряется внутри наружного охлаждающего канала 103.
Кроме того, наружный охлаждающий канал 103 содержит выход 105 для текучей среды, через который охлаждающая текучая среда может выходить из наружного охлаждающего канала 103 во внутренний объем Vi и, в частности в первую статорную лопатку, имеющую канал, или во внутренний охлаждающий канал 109. Наружный охлаждающий канал 103 может проходить по площади поверхности внутреннего корпуса 101, который проходит между первым рядом 111 полых статорных лопаток и вторым рядом 112 статорных лопаток. Кроме того, наружный охлаждающий канал 103 может проходить вдоль окружности наружной поверхности внутреннего корпуса 101. Поэтому охлаждающая текучая среда внутри наружного охлаждающего канала 103 проходит вдоль большей части наружной поверхности внутреннего корпуса 101, так что достигается хорошая тепловая конвекция и тем самым высокая эффективность охлаждения внутреннего корпуса 101.
В частности, вход 104 текучей среды и выход 105 текучей среды расположены так, что охлаждающая текучая среда внутри охлаждающего канала 103 проходит по меньшей мере с одной составляющей в противоположном направлении относительно основного направления 106 потока рабочей текучей среды во внутреннем объеме Vi.
Кроме того, поток охлаждающей текучей среды внутри внутреннего охлаждающего канала 109 направлен по меньшей мере частично в направлении основного направления 106 потока. Поэтому наружная поверхность внутреннего корпуса 101 и внутренняя поверхность внутреннего корпуса 101 окружены охлаждающей текучей средой так, что повышается эффективность охлаждения.
В частности, внутренний охлаждающий канал 109 образован между первым радиально наружным концом первого ряда 111 статорных лопаток, вторым радиально наружным концом второго ряда 112 статорных лопаток и (радиально) внутренней поверхностью внутреннего корпуса 101.
Охлаждающая текучая среда, которая протекает через канал первой статорной лопатки, выходит далее в первую полость 115, которая расположена во внутренней части внутреннего объема Vi у радиально внутреннего конца первой статорной лопатки. Из внутренней полости 115 охлаждающая текучая среда может проходить внутри внутренней части внутреннего объема Vi турбины 100 или же может проходить через зазор или канал для прохождения через расположенный промежуточно ряд 113 роторных лопаток во вторую полость 116, которая расположена у радиально внутреннего конца второй статорной лопатки второго ряда 112 статорных лопаток, который расположен ниже по потоку относительно первого ряда 111 полых статорных лопаток. Из второй полости 116 охлаждающая текучая среда может протекать далее внутри внутренней части внутреннего объема Vi перед выходом в наружную часть внутреннего объема Vi или может протекать внутри канала второй статорной лопатки второго ряда 112 статорных лопаток. Поэтому образуется эффективный путь охлаждения охлаждающей текучей среды.
На фиг. 2 показан в изометрической проекции внутренний корпус 101. Для лучшей ориентации показано основное направление 106 потока. Кроме того, вдоль радиально наружной поверхности внутреннего корпуса 101 показано направление 110 потока охлаждающей текучей среды внутри наружного охлаждающего канала 103. В месте выше по потоку или у края внутреннего корпуса 101 относительно основного направления 106 потока показаны отверстия, которые образуют выход 105 для текучей среды. Через отверстия выхода 105 текучей среды охлаждающая текучая среда может вдуваться во внутренний объем Vi турбины 100.
На фиг. 2 показано, что внутренний корпус 101 имеет коническую форму, при этом поперечное сечение увеличивается вдоль основного направления 106 потока. Внутренний корпус 101 может проходить вдоль окружности турбинной секции турбины 100 или может быть разделен в окружном направлении турбины 100 на несколько частей, которые могут быть соединены друг с другом. За счет эффективного охлаждения, согласно данному изобретению, внутренний корпус 101 может охлаждаться до температуры в диапазоне примерно 400-450°С при работе турбины, так что дорогостоящие никелевые корпуса могут быть заменены более дешевыми стальными корпусами в качестве внутренних корпусов 101.
На фиг. 3 показан в изометрической проекции наружный корпус 102, согласно данному изобретению. Для лучшей ориентации показано основное направление 106 потока. Наружный корпус 102 может быть установлен над внутренним корпусом 101. Наружный корпус 102 имеет коническую форму, при этом диаметр наружного корпуса 102 увеличивается вдоль основного направления 106 потока. Если внутренний корпус 101 и наружный корпус 102 имеют различные углы при вершине конуса, то изменяющийся размер поперечного сечения наружного охлаждающего канала 103 вдоль основного направления 106 потока может создавать сужающуюся форму для ускорения охлаждающей текучей среды внутри наружного охлаждающего канала 103.
Как показано на фиг. 3, наружный корпус 102 содержит отверстия, которые образуют вход 104 для текучей среды. Как показано на фиг. 3, отверстия, образующие вход 104 текучей среды, выполнены в месте ниже по потоку или у края, относительно отверстий, которые образуют выход 105 текучей среды во внутреннем корпусе 101. Поэтому охлаждающая текучая среда, которая вдувается через отверстия, которые образуют вход 104 текучей среды наружного корпуса 102, проходит в направлении вверх по потоку относительно основного направления 106 потока и выходит из наружного охлаждающего канала 103 через отверстия, образующие выход 105 для текучей среды внутреннего корпуса 101.
Наружный корпус 102 может проходить вдоль окружности турбины 100. Кроме того, наружный корпус 102 может быть разделен на кольцевые сегменты, которые вместе образуют кольцевой наружный корпус 102.
Следует отметить, что понятие «содержит» не исключает другие элементы или стадии, а неопределенный артикль «а» или «an» не исключает множественности. Кроме того, элементы, указанные в описании различных вариантов выполнения, можно комбинировать друг с другом. Следует также отметить, что указание позиций в формуле изобретения не следует рассматривать в качестве ограничения объема формулы изобретения.

Claims (11)

1. Турбина (100), в частности газовая турбина, содержащая:
внутренний корпус (101), предназначенный для установки по меньшей мере одной статорной лопатки турбинной ступени, и
наружный корпус (102), расположенный вокруг внутреннего корпуса (101) таким образом, что образуется наружный охлаждающий канал (103) между внутренним корпусом (101) и наружным корпусом (102),
при этом наружный охлаждающий канал (103) содержит вход (104) для текучей среды, который предназначен для введения охлаждающей текучей среды из наружного объема (Vo) турбины (100) в наружный охлаждающий канал (103),
причем охлаждающий канал (103) содержит выход (105) для текучей среды, так что охлаждающая текучая среда выпускается во внутренний объем (Vi) турбины (100),
при этом вход (104) для текучей среды расположен относительно выхода (105) для текучей среды так, что текучая среда внутри наружного охлаждающего канала (103) имеет направление потока, которое имеет составляющую, которая ориентирована в противоположном направлении относительно основного направления (106) потока рабочей текучей среды турбины (100),
первый ряд (111) статорных лопаток, который содержит по меньшей мере одну первую статорную лопатку, причем первый ряд (111) статорных лопаток установлен в первой части внутреннего корпуса (101),
при этом по меньшей мере одна первая статорная лопатка содержит канал, причем первая статорная лопатка установлена на внутреннем корпусе (101) так, что охлаждающая текучая среда проходит из выхода (105) текучей среды в канал.
2. Турбина (100) по п. 1, в которой вход (104) для текучей среды выполнен в наружном корпусе (102).
3. Турбина (100) по п. 1 или 2, в которой выход (105) для текучей среды образован во внутреннем корпусе (101).
4. Турбина (100) по п. 1 или 2, в которой наружный охлаждающий канал (103) выполнен с сужающейся формой для ускорения охлаждающей текучей среды внутри наружного канала (103).
5. Турбина (100) по п. 1 или 2, дополнительно содержащая
второй ряд (112) статорных лопаток, который содержит по меньшей мере одну вторую статорную лопатку, при этом второй ряд (112) статорных лопаток установлен во второй части внутреннего корпуса (101),
при этом, относительно основного направления потока, вторая часть расположена по потоку ниже первой части.
6. Турбина (100) по п. 5, в которой наружный корпус (102) расположен вокруг внутреннего корпуса (101) так, что наружный охлаждающий канал (103) проходит по меньшей мере между первой частью первого ряда (111) статорных лопаток и второй частью второго ряда (112) статорных лопаток.
7. Турбина (100) по п. 5, в которой
второй ряд (112) статорных лопаток содержит другую вторую статорную лопатку, при этом вторая статорная лопатка и другая вторая статорная лопатка расположены относительно друг друга вдоль окружного направления турбины (100),
при этом наружный корпус (102) расположен вокруг внутреннего корпуса (101) так, что наружный охлаждающий канал (103) проходит, по меньшей мере, между второй статорной лопаткой и другой второй статорной лопаткой.
8. Турбина (100) по п. 5, дополнительно содержащая
внутренний охлаждающий канал (109), который образован между первым радиально наружным концом первой статорной лопатки, вторым радиально наружным концом второй статорной лопатки и радиально внутренней поверхностью внутреннего корпуса (101),
при этом внутренний охлаждающий канал (109) соединен с выходом (105) текучей среды так, что часть потока охлаждающей текучей среды протекает через внутренний охлаждающий канал (109),
при этом часть охлаждающей текучей среды имеет направление потока, которое имеет составляющую, которая ориентирована параллельно основному направлению (106) потока рабочей текучей среды турбины (100).
9. Турбина (100) по п. 8, дополнительно содержащая
первую полость (115), которая образована у первого радиально внутреннего конца первой статорной лопатки, и
вторую полость (116), которая образована у второго радиально внутреннего конца второй статорной лопатки,
при этом по меньшей мере одна первая статорная лопатка содержит отверстие у первого радиально внутреннего конца так, что охлаждающая текучая среда проходит из канала первой
статорной лопатки в первую полость (115),
при этом первая полость (115) и вторая полость (116) соединены друг с другом так, что охлаждающая текучая среда может проходить из первой полости (115) во вторую полость (116).
10. Турбина (100) по п. 5, дополнительно содержащая несколько других рядов статорных лопаток, которые расположены между первым рядом (111) статорных лопаток и вторым рядом (112) статорных лопаток.
11. Способ эксплуатации турбины (100), в частности газовой турбины, при этом турбина содержит внутренний корпус (101), предназначенный для установки по меньшей мере одной статорной лопатки турбинной ступени, и наружный корпус (102), который расположен вокруг внутреннего корпуса (101) таким образом, что образуется наружный охлаждающий канал (103) между внутренним корпусом (101) и наружным корпусом (102), первый ряд (111) статорных лопаток, который содержит по меньшей мере одну первую статорную лопатку, причем первый ряд (111) статорных лопаток установлен в первой части внутреннего корпуса (101), и по меньшей мере одна первая статорная лопатка содержит канал, при этом первая статорная лопатка установлена на внутреннем корпусе (101) так, что охлаждающая текучая среда проходит из выхода (105) текучей среды в канал, при этом способ включает
вдувание охлаждающей текучей среды через вход (104) для текучей среды наружного охлаждающего канала (103) из наружного объема (Vo) турбины (100) в наружный охлаждающий канал (103) и
выпуск охлаждающей текучей среды через выход (105) для текучей среды охлаждающего канала (103) во внутренний объем (Vi) турбины (100) и через канал,
при этом вход (104) для текучей среды расположен относительно выхода (105) для текучей среды так, что текучая среда внутри наружного охлаждающего канала (103) содержит направление потока, которое имеет составляющую, которая ориентирована в противоположном направлении относительно основного направления (106) потока рабочей текучей среды турбины (100).
RU2013152735/06A 2011-04-28 2012-04-11 Канал для охлаждения корпуса RU2599413C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11164130.4 2011-04-28
EP11164130A EP2518278A1 (en) 2011-04-28 2011-04-28 Turbine casing cooling channel with cooling fluid flowing upstream
PCT/EP2012/056546 WO2012146481A1 (en) 2011-04-28 2012-04-11 Casing cooling duct

Publications (2)

Publication Number Publication Date
RU2013152735A RU2013152735A (ru) 2015-06-10
RU2599413C2 true RU2599413C2 (ru) 2016-10-10

Family

ID=44359756

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013152735/06A RU2599413C2 (ru) 2011-04-28 2012-04-11 Канал для охлаждения корпуса

Country Status (5)

Country Link
US (1) US9759092B2 (ru)
EP (2) EP2518278A1 (ru)
CN (1) CN103597170B (ru)
RU (1) RU2599413C2 (ru)
WO (1) WO2012146481A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777405C2 (ru) * 2018-02-28 2022-08-03 Нуово Пиньоне Текнолоджи Срл Газовая турбина авиационного типа с улучшенным терморегулированием

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508713A1 (en) * 2011-04-04 2012-10-10 Siemens Aktiengesellschaft Gas turbine comprising a heat shield and method of operation
US9828880B2 (en) 2013-03-15 2017-11-28 General Electric Company Method and apparatus to improve heat transfer in turbine sections of gas turbines
GB201417150D0 (en) * 2014-09-29 2014-11-12 Rolls Royce Plc Carriers for turbine components
US10087801B2 (en) 2015-06-29 2018-10-02 General Electric Company Power generation system exhaust cooling
US10215070B2 (en) * 2015-06-29 2019-02-26 General Electric Company Power generation system exhaust cooling
US9840953B2 (en) 2015-06-29 2017-12-12 General Electric Company Power generation system exhaust cooling
US10060316B2 (en) 2015-06-29 2018-08-28 General Electric Company Power generation system exhaust cooling
US10030558B2 (en) 2015-06-29 2018-07-24 General Electric Company Power generation system exhaust cooling
US9752503B2 (en) 2015-06-29 2017-09-05 General Electric Company Power generation system exhaust cooling
US9752502B2 (en) 2015-06-29 2017-09-05 General Electric Company Power generation system exhaust cooling
US9856768B2 (en) 2015-06-29 2018-01-02 General Electric Company Power generation system exhaust cooling
US9850794B2 (en) 2015-06-29 2017-12-26 General Electric Company Power generation system exhaust cooling
US9938874B2 (en) 2015-06-29 2018-04-10 General Electric Company Power generation system exhaust cooling
US9850818B2 (en) 2015-06-29 2017-12-26 General Electric Company Power generation system exhaust cooling
US10077694B2 (en) 2015-06-29 2018-09-18 General Electric Company Power generation system exhaust cooling
US10975721B2 (en) * 2016-01-12 2021-04-13 Pratt & Whitney Canada Corp. Cooled containment case using internal plenum
US10316759B2 (en) 2016-05-31 2019-06-11 General Electric Company Power generation system exhaust cooling
EP3342991B1 (en) * 2016-12-30 2020-10-14 Ansaldo Energia IP UK Limited Baffles for cooling in a gas turbine
US10612466B2 (en) * 2017-09-11 2020-04-07 United Technologies Corporation Gas turbine engine active clearance control system using inlet particle separator
FR3072711B1 (fr) 2017-10-19 2021-07-16 Safran Aircraft Engines Element de repartition d'un fluide de refroidissement et ensemble d'anneau de turbine associe
US10480322B2 (en) * 2018-01-12 2019-11-19 General Electric Company Turbine engine with annular cavity
IT201800003136A1 (it) * 2018-02-28 2019-08-28 Nuovo Pignone Tecnologie Srl Turbina a gas aero-derivata con gestione termica migliorata
DE102018206259A1 (de) 2018-04-24 2019-10-24 MTU Aero Engines AG Leitschaufel für eine turbine einer strömungsmaschine
DE102018210598A1 (de) * 2018-06-28 2020-01-02 MTU Aero Engines AG Gehäusestruktur für eine Strömungsmaschine, Strömungsmaschine und Verfahren zum Kühlen eines Gehäuseabschnitts einer Gehäusestruktur einer Strömungsmaschine
US10941709B2 (en) * 2018-09-28 2021-03-09 Pratt & Whitney Canada Corp. Gas turbine engine and cooling air configuration for turbine section thereof
FR3112811B1 (fr) * 2020-07-23 2022-07-22 Safran Aircraft Engines Turbine à cavités pressurisées
FR3113925B1 (fr) * 2020-09-04 2022-12-02 Safran Aircraft Engines Dispositif amélioré de refroidissement de turbine de turbomachine d’aéronef
US11566532B2 (en) * 2020-12-04 2023-01-31 Ge Avio S.R.L. Turbine clearance control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974734A2 (en) * 1998-07-18 2000-01-26 ROLLS-ROYCE plc Turbine shroud cooling
RU2159335C1 (ru) * 1999-04-28 2000-11-20 Открытое акционерное общество "А.Люлька-Сатурн" Способ охлаждения рабочего колеса турбины многорежимного турбореактивного двигателя
US6227800B1 (en) * 1998-11-24 2001-05-08 General Electric Company Bay cooled turbine casing
RU2196239C2 (ru) * 2001-04-05 2003-01-10 Открытое акционерное общество "А.Люлька-Сатурн" Система охлаждения турбины турбореактивного двигателя
RU2196896C1 (ru) * 2001-09-13 2003-01-20 Открытое акционерное общество "А.Люлька-Сатурн" Охлаждаемая турбина газотурбинного двигателя
EP2243933A1 (en) * 2009-04-17 2010-10-27 Siemens Aktiengesellschaft Part of a casing, especially of a turbo machine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362681A (en) * 1966-08-24 1968-01-09 Gen Electric Turbine cooling
US3427000A (en) * 1966-11-14 1969-02-11 Westinghouse Electric Corp Axial flow turbine structure
US3689174A (en) * 1971-01-11 1972-09-05 Westinghouse Electric Corp Axial flow turbine structure
GB1519590A (en) * 1974-11-11 1978-08-02 Rolls Royce Gas turbine engine
US4242042A (en) 1978-05-16 1980-12-30 United Technologies Corporation Temperature control of engine case for clearance control
GB2108586B (en) 1981-11-02 1985-08-07 United Technologies Corp Gas turbine engine active clearance control
DE3546839C2 (de) 1985-11-19 1995-05-04 Mtu Muenchen Gmbh Gasturbinenstrahltriebwerk in Mehrwellen-Zweistrombauweise
DE69205568T2 (de) * 1991-04-02 1996-04-11 Rolls Royce Plc Turbinengehaeuse.
GB9306719D0 (en) 1993-03-31 1993-06-02 Rolls Royce Plc A turbine assembly for a gas turbine engine
DE10019437A1 (de) 2000-04-19 2001-12-20 Rolls Royce Deutschland Verfahren und Vorrichtung zum Kühlen der Gehäuse von Turbinen von Strahltriebwerken
GB0029337D0 (en) * 2000-12-01 2001-01-17 Rolls Royce Plc A seal segment for a turbine
GB2378730B (en) * 2001-08-18 2005-03-16 Rolls Royce Plc Cooled segments surrounding turbine blades
US6902371B2 (en) * 2002-07-26 2005-06-07 General Electric Company Internal low pressure turbine case cooling
US7434402B2 (en) * 2005-03-29 2008-10-14 Siemens Power Generation, Inc. System for actively controlling compressor clearances
US7665960B2 (en) * 2006-08-10 2010-02-23 United Technologies Corporation Turbine shroud thermal distortion control
ES2432622T3 (es) * 2008-05-26 2013-12-04 Alstom Technology Ltd Turbina de gas con un álabe de guía

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974734A2 (en) * 1998-07-18 2000-01-26 ROLLS-ROYCE plc Turbine shroud cooling
US6227800B1 (en) * 1998-11-24 2001-05-08 General Electric Company Bay cooled turbine casing
RU2159335C1 (ru) * 1999-04-28 2000-11-20 Открытое акционерное общество "А.Люлька-Сатурн" Способ охлаждения рабочего колеса турбины многорежимного турбореактивного двигателя
RU2196239C2 (ru) * 2001-04-05 2003-01-10 Открытое акционерное общество "А.Люлька-Сатурн" Система охлаждения турбины турбореактивного двигателя
RU2196896C1 (ru) * 2001-09-13 2003-01-20 Открытое акционерное общество "А.Люлька-Сатурн" Охлаждаемая турбина газотурбинного двигателя
EP2243933A1 (en) * 2009-04-17 2010-10-27 Siemens Aktiengesellschaft Part of a casing, especially of a turbo machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777405C2 (ru) * 2018-02-28 2022-08-03 Нуово Пиньоне Текнолоджи Срл Газовая турбина авиационного типа с улучшенным терморегулированием

Also Published As

Publication number Publication date
EP2702251B1 (en) 2016-06-29
EP2702251A1 (en) 2014-03-05
US20140234073A1 (en) 2014-08-21
CN103597170A (zh) 2014-02-19
EP2518278A1 (en) 2012-10-31
CN103597170B (zh) 2016-03-16
RU2013152735A (ru) 2015-06-10
US9759092B2 (en) 2017-09-12
WO2012146481A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
RU2599413C2 (ru) Канал для охлаждения корпуса
RU2462600C2 (ru) Устройство турбины и способ охлаждения бандажа, расположенного у кромки лопатки турбины
EP2576992B1 (en) Turbine arrangement and gas turbine engine
US8186933B2 (en) Systems, methods, and apparatus for passive purge flow control in a turbine
EP2383518A2 (en) Tangential combustor
RU2640144C2 (ru) Узел уплотнения для газотурбинного двигателя, включающий в себя канавки во внутреннем бандаже
EP3485147B1 (en) Impingement cooling of a blade platform
US10480322B2 (en) Turbine engine with annular cavity
EP2324224A2 (en) Transition with a linear flow path with exhaust mouths for use in a gas turbine engine
JP2015086872A (ja) ガスタービンのセグメント間隙の冷却用および/またはパージ用の微細チャネル排出装置
US9003807B2 (en) Gas turbine engine with structure for directing compressed air on a blade ring
RU2537113C1 (ru) Газовая турбина, содержащая тепловую защиту, и способ управления
KR20100080427A (ko) 터빈 엔진용 인듀서와 관련된 방법, 시스템 및/또는 장치
JP2016125486A (ja) ガスタービンシール
RU2615867C2 (ru) Картер турбины, содержащий средства крепления секций кольца
US9476355B2 (en) Mid-section of a can-annular gas turbine engine with a radial air flow discharged from the compressor section
RU2619327C2 (ru) Узел турбомашины
US10408075B2 (en) Turbine engine with a rim seal between the rotor and stator
US20150167488A1 (en) Adjustable clearance control system for airfoil tip in gas turbine engine
JP6961340B2 (ja) 回転機械
JP5478576B2 (ja) ガスタービン
EP3653839A1 (en) Turbine aerofoil
CN111120109A (zh) 用于燃气涡轮发动机中护罩冷却的***和方法
JP2021526193A (ja) ターボ機械ケーシングの冷却装置
US20140050558A1 (en) Temperature gradient management arrangement for a turbine system and method of managing a temperature gradient of a turbine system

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20220114