RU2589495C1 - Способ определения углов пространственной ориентации летательного аппарата и устройство для его осуществления - Google Patents

Способ определения углов пространственной ориентации летательного аппарата и устройство для его осуществления Download PDF

Info

Publication number
RU2589495C1
RU2589495C1 RU2015117474/28A RU2015117474A RU2589495C1 RU 2589495 C1 RU2589495 C1 RU 2589495C1 RU 2015117474/28 A RU2015117474/28 A RU 2015117474/28A RU 2015117474 A RU2015117474 A RU 2015117474A RU 2589495 C1 RU2589495 C1 RU 2589495C1
Authority
RU
Russia
Prior art keywords
unit
aircraft
input
determining
linear
Prior art date
Application number
RU2015117474/28A
Other languages
English (en)
Inventor
Виктор Федорович Заец
Владимир Сергеевич Кулабухов
Олег Николаевич Корсун
Николай Алексеевич Туктарев
Сабина Курбановна Ахмедова
Original Assignee
Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика") filed Critical Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика")
Priority to RU2015117474/28A priority Critical patent/RU2589495C1/ru
Application granted granted Critical
Publication of RU2589495C1 publication Critical patent/RU2589495C1/ru

Links

Landscapes

  • Navigation (AREA)

Abstract

Изобретение относится к инерциальным навигационным системам и может использоваться для определения угловой ориентации подвижных объектов любого типа. Сущность изобретения состоит в совместной обработке измерений датчиков перегрузок и измерений скорости подвижного объекта спутниковой навигационной системой (СНС), при отсутствии датчиков угловых скоростей. Угловые скорости определяют методом параметрической идентификации, минимизируя функционал качества, который формируют из разностей ускорений, полученных путем дифференцирования земных скоростей, измеренных при помощи СНС и ускорений, полученных путем обработки сигналов перегрузки по трем связанным осям ЛА. Устройство, реализующее данный способ, содержит блок датчиков перегрузок, спутниковую навигационную систему, блок определения линейных ускорений, блок формирования матрицы направляющих косинусов, блок определения функционала, блок дифференцирования, блок минимизации функционала, блок определения угловых скоростей, блок определения начальных углов ориентации и интегратор, соединенные между собой определенным образом. Технический результат - упрощение способа, снижение стоимости и повышение точности определения угловой ориентации объекта при отсутствии бортовых измерителей угловых скоростей. 2 н.п. ф-лы, 1 ил.

Description

Изобретение относится к области приборостроения инерциальных навигационных систем, в частности к области построения датчиков угловых координат для систем автоматического управления движением, главным образом в качестве курсовертикали, и может использоваться для определения угловой ориентации летательных аппаратов любого типа. Техническим результатом является упрощение способа, снижение стоимости его приборной реализации и повышение точности определения угловой ориентации объекта.
Известны способ и устройство построения невозмущаемой безгироскопной вертикали, представленные в патенте РФ №: RU 2258907, МПК G01C 19/44, опубликованном 20.08.2005 г., принятые нами за соответствующие прототипы.
Согласно указанному выше способу построения невозмущаемой безгироскопной вертикали подвижного объекта, включающему измерения текущих углов отклонения осей связанной системы координат от плоскости местного горизонта (вертикали) - тангажа и крена с помощью двух линейных горизонтальных акселерометров с продольной и поперечной ориентацией осей их чувствительности, возмущенные линейными ускорениями объекта, формирование оценок вышеупомянутых возмущающих линейных ускорений (северной и восточной составляющих αN и αE соответственно) осуществляют по данным спутникового навигационного приемника путем численного дифференцирования соответствующих скоростей или способом наименьших квадратов, пересчитывают эти составляющие в проекции αx и αy связанной системы координат с использованием курса от системы курсоуказания объекта и вводят непрерывно или дискретно коррекцию в возмущенные этими ускорениями измерения акселерометров, чем достигают построения невозмущаемой вертикали (углы тангажа ϑ и крена γ) по формулам для линейных акселерометров
Figure 00000001
Устройство построения невозмущаемой безгироскопной вертикали, реализующее данный способ, содержит систему курсоуказания, два линейных акселерометра с продольной и поперечной ориентацией осей их чувствительности, систему автоматического управления движением, приемник спутниковой навигации, осуществляющий формирование оценок линейных ускорений объекта, и вычислительный блок, например микрокомпьютер, в котором возмущаемые ускорениями объекта измерения текущих углов отклонения осей связанной системы координат и местной вертикали, полученные с помощью линейных акселерометров, непрерывно корректируются значениями этих ускорений от приемника спутниковой навигации и курсоуказателя.
Однако описанный выше способ обладает сравнительно низкой точностью. Исследования показывают слабую наблюдаемость в канале измерений крена и тангажа при отсутствии учета вертикальной скорости от спутниковой навигационной системы (СНС) и отсутствии вертикального акселерометра.
Целью предложенного изобретения является повышение точности, упрощение способа и снижение стоимости его реализации для определения угловой ориентации летательного аппарата при отсутствии бортовых измерителей угловых скоростей.
Для достижения поставленной цели предлагается способ определения углов пространственной ориентации летательного аппарата (ЛА), включающий измерение линейных перегрузок вдоль продольной оси nx и поперечной оси nz ЛА, измерение проекций земной скорости на горизонтальную плоскость, определение ускорений ЛА путем дифференцирования измеренных СНС проекций скорости ЛА в земной нормальной системе координат, согласно которому дополнительно измеряют проекцию земной скорости на вертикальную ось, нормальную перегрузку ny вдоль вертикальной оси у ЛА, определяют линейные ускорения ax, ay, az, которые пересчитывают в нормальную земную систему координат (СК), составляют функционал J из разности трех проекций ускорений в земной СК от СНС и трех составляющих ускорений, полученных от трех датчиков линейных ускорений, с учетом дисперсий погрешностей R измерителя скорости, методом параметрической идентификации определяют угловые скорости ЛА ωx, ωy, ωz, определяют начальные углы γ0, ϑ0, ψ0 ориентации ЛА по измеренным сигналам трех датчиков линейных перегрузок, определяют углы пространственной ориентации крен γ, тангаж ϑ и угол рыскания ψ, интегрируя найденные угловые скорости, при этом в случае пропадании сигналов от СНС летательный аппарат переводят в горизонтальный полет с постоянной скоростью (установившийся режим полета) и углы крена и тангажа определяют по сигналам трех датчиков линейных перегрузок в режиме начальной выставки.
Устройство определения углов пространственной ориентации летательного аппарата, включающее в себя блок датчиков перегрузок, содержащий два измерителя линейных перегрузок вдоль продольной оси nx и поперечной оси nz ЛА и спутниковую навигационную систему (СНС), дополнительно содержит третий измеритель линейных перегрузок ny в составе блока датчиков перегрузок, расположенный вдоль вертикальной оси ЛА, последовательно соединенные блок определения линейных ускорений, блок формирования матрицы направляющих косинусов, блок определения функционала, блок минимизации функционала и блок определения угловых скоростей, блок дифференцирования, вход которого соединен с выходом СНС, а выход подключен ко второму входу блока определения функционала, и последовательно соединенные блок определения начальных углов ориентации и интегратор, второй вход которого соединен с выходом блока определения угловых скоростей, выход блока датчиков перегрузок подключен к входу блока определения начальных углов ориентации и к первому входу блока определения линейных ускорений, второй вход которого и второй вход блока формирования матрицы направляющих косинусов соединены с первым выходом интегратора, третий вход блока определения линейных ускорений является входом для сигнала, соответствующего значению ускорения свободного падения g, третий вход блока определения функционала является входом для сигналов, соответствующих значениям дисперсионной матрицы погрешностей измерения земных скоростей R, а второй выход интегратора является выходом устройства.
Сущность заявленного изобретения заключается в следующем.
Предлагаемый способ оценивания углов тангажа, крена и рыскания в полете основан на совместной обработке измерений датчиков перегрузок и измерений скорости летательного аппарата спутниковой навигационной системой.
Рассмотрим математические модели, устанавливающие связи между различными параметрами полета. Проекции ускорений на оси связанной системы координат определяются следующими выражениями:
Figure 00000002
где nx, ny, nz - проекции перегрузок на оси связанной системы координат, измеряемые датчиками перегрузок, установленными на борту ЛА;
ϑ, γ - углы тангажа и крена, подлежащие оцениванию;
g - ускорение свободного падения.
Для нахождения оценок углов пространственной ориентации применим систему дифференциальных уравнений, на вход которых поступают угловые скорости ωx, ωy, ωz
Figure 00000003
где ϑ, γ, ψ - углы тангажа, крена, рыскания.
Для использования выражений (1) и (2) необходимо ввести математическую модель, позволяющую восстановить отсутствующие измерения угловых скоростей. Рассмотрим скользящий интервал длительностью 0,5…1 с, пробегающий весь участок обработки полетных данных. Поскольку длительность интервала мала, аппроксимируем каждую угловую скорость прямолинейным отрезком
Figure 00000004
где t - время от начала скользящего интервала,
C ω x
Figure 00000005
, C ω y
Figure 00000006
, C ω z
Figure 00000007
, K ω x
Figure 00000008
, K ω y
Figure 00000009
, K ω z
Figure 00000010
- величины угловых скоростей в начале скользящего интервала и коэффициенты, характеризующие углы наклона приращений угловых скоростей.
Определение начального углового положения разделяется на два процесса: горизонтальная выставка (крен и тангаж) и азимутальная выставка (курс).
Начальные значения углов пространственной ориентации γ0, ϑ0, ψ0, представляющие собой начальные условия для дифференциальных уравнений (2), определяют по сигналам датчиков перегрузок.
Горизонтальную выставку осуществляют по сигналам трех датчиков линейных перегрузок, измеряющих на неподвижном основании проекции ускорения силы тяжести на свои оси чувствительности в соответствии с выражением (1).
В этом случае численные значения измерений акселерометров будут равны
Figure 00000011
Из выражения следует, что углы крена и тангажа могут быть найдены на основании сигналов трех акселерометров по формулам
Figure 00000012
С целью устранения влияния шумов измерений, присутствующих в выходных сигналах акселерометров, их предварительно усредняют на некотором промежутке времени.
Выставку и дальнейшую коррекцию азимутального канала осуществляют по информации от датчика магнитного курса. При наличии информации о начальных координатах в соответствии с мировой моделью магнитного поля Земли находят значение магнитного склонения, которое учитывают при определении истинного курса из магнитного.
Оценку неизвестных параметров C ω x
Figure 00000005
, C ω y
Figure 00000006
, C ω z
Figure 00000007
, K ω x
Figure 00000008
, K ω y
Figure 00000009
, K ω z
Figure 00000010
производят методом параметрической идентификации.
При численном интегрировании уравнений (2) в них подставляют аппроксимации угловых скоростей на скользящем интервале (3).
Установленный на борту блок датчиков перегрузок обеспечивает измерение трех линейных перегрузок ЛА на оси связанной СК. Их необходимо спроецировать на земную нормальную систему координат. Как известно, матрица перехода от земной нормальной системы к связанной имеет вид
Figure 00000013
Соответственно, для обратного перехода необходимо использовать транспонированную матрицу AT.
Тогда проекции ускорений (1) в связанной системе переводятся в земную нормальную систему по выражению
Figure 00000014
где ax_g, ay_g, az_g - проекции ускорений (4) на оси земной нормальной системы координат.
Итак, выражения (1)-(7) составляют модель объекта.
Для получения модели наблюдений продифференцируем измеренные СНС проекции скорости ЛА в земной нормальной системе координат. Для численного дифференцирования применяют известные методы, обладающие хорошими сглаживающими свойствами. При этом получим оценки ускорений в земной нормальной системе, вычисленные по спутниковым измерениям
Figure 00000015
Эти величины используем для формирования модели наблюдений (8), которая принимает вид
Figure 00000016
где величины (8) принимаются в качестве элементов вектора наблюдений z(ti),
ξ T ( t i ) = [ ξ x ( t i ) ξ y ( t i ) ξ z ( t i ) ]
Figure 00000017
- шум наблюдений, представляющий собой векторную нормальную случайную последовательность типа белого шума с нулевым математическим ожиданием и известной дисперсионной матрицей R(ti).
Ускорения в правых частях (7) определяют по модели объекта (1)-(7), в которые входят неизвестные величины угловых скоростей в начале скользящего интервала и коэффициенты, характеризующие углы наклона приращений угловых скоростей
Figure 00000018
Представленные выше модели объекта и наблюдений можно представить в следующей общей векторной форме:
Figure 00000019
где y(t), u(t) - векторы выходных и входных сигналов размерности n и m соответственно,
z(tt) - вектор наблюдений размерности r,
a - вектор неизвестных параметров, подлежащий идентификации,
ξ(ti) - шум наблюдений, представляющий собой векторную нормальную случайную последовательность типа белого шума с нулевым математическим ожиданием и известной дисперсионной матрицей R(ti).
Шумы наблюдений представляют собой нормальные и независимые случайные величины. Поэтому их совместная плотность распределения вероятностей равна произведению плотностей для каждого момента ti, i = 1, N ¯
Figure 00000020
.
Известно, что максимум функции правдоподобия при указанных допущениях о свойствах шумов приводит к несмещенным и эффективным оценкам. Функционал максимума правдоподобия имеет следующий вид:
Figure 00000021
Несложно заметить, что (12) представляет собой функционал метода наименьших квадратов с матрицей весовых коэффициентов R(ti)-1. Таким образом, при указанных выше допущениях о свойствах шумов функционал максимума правдоподобия совпадает с взвешенным функционалом метода наименьших квадратов.
Для минимизации (12) используют одну из модификаций классического метода Ньютона
Figure 00000022
где
Figure 00000023
Figure 00000024
Производные оценок прогноза определяют численно для моментов времени ti, i = 1, N ¯
Figure 00000020
по формулам
Figure 00000025
где ej - вектор размерности p, все элементы которого равны нулю за исключением j-го элемента, который равен 1; ε - малое число, обычно задаваемое на уровне 0,001…0,1% от номинального значения параметров.
Оценки z(ti, a), i = 1, N ¯
Figure 00000020
определяют численным решением уравнений объекта и наблюдений при η(ti)=0. Идентификацию заканчивают по условию | a k + 1 a k | < δ | a k |
Figure 00000026
, где δ=0,005. При обработке в реальном масштабе времени целесообразно жестко задать число шагов, например пять, чтобы зафиксировать число итераций.
Моделирование предложенного способа показало, что наименьшие погрешности оценивания углов ориентации имеют место в середине скользящего интервала, длительность которого составляет 0,5…1 с. При обработке участка полета произвольной длительности скользящий интервал перемещается по всему участку с малым шагом 0,03…0,125 с, а в качестве окончательных значений выбираются оценки углов и угловых скоростей, соответствующих середине скользящего интервала.
Устройство определения углов пространственной ориентации ЛА, реализующее данный способ, содержит блок 1 датчиков перегрузок, спутниковую навигационную систему 2, блок 3 определения линейных ускорений, блок 4 формирования матрицы направляющих косинусов (МНК), блок 5 определения функционала, блок 6 минимизации функционала, блок 7 определения угловых скоростей, блок 8 дифференцирования, блок 9 определения начальных углов ориентации и интегратор 10.
Предлагаемое устройство работает следующим образом.
По сигналам от блока 1 датчиков перегрузок и по значениям углов ориентации от интегратора 10 с учетом константы g, в блоке 3 определения ускорений определяют линейные ускорения ax, ay, az, согласно выражениям (1). В блоке 4 формирования МНК линейные ускорения проецируют на земную нормальную систему координат, используя матрицу А (6). Из значений скоростей от СНС 2 путем их дифференцирования в блоке 8 получают линейные ускорения. Сравнивая линейные ускорения от блока 8 дифференцирования и от блока 4 формирования МНК, в блоке 5 определения функционала, с учетом матрицы дисперсии R погрешностей ускорений, находят функционал J, согласно выражению (12). В блоке 6 минимизации функционала, минимизируя функционал J, идентифицируют неизвестные параметры C ω x
Figure 00000005
, C ω y
Figure 00000006
, C ω z
Figure 00000007
, K ω x
Figure 00000008
, K ω y
Figure 00000009
, K ω z
Figure 00000010
. Для идентификации используют модификацию классического метода Ньютона (14, 15, 16, 17). Идентификацию заканчивают по условию выполнения | a k + 1 a k | < δ | a k |
Figure 00000026
, где δ=0,005. Используя идентифицированные параметры, в блоке 7 определения угловых скоростей определяют угловые скорости ωx, ωy, ωz. В интеграторе 10, интегрируя выражение (2), используя найденные угловые скорости и начальные значения от блока 9 определения начальных углов γ0, ϑ0, ψ0, согласно (5), определяют углы пространственной ориентации крен γ, тангаж ϑ и угол рыскания ψ.
Техническим результатом предложенного изобретения является упрощение способа, снижение стоимости его приборной реализации и повышение точности определения угловой ориентации объекта при отсутствии бортовых измерителей угловых скоростей.
Изобретение может быть использовано во всех типах подвижных объектов и летательных аппаратов. Для реализации могут быть использованы широко применяемые в ЛА акселерометры и спутниковые приемники. Блоки интегрирования и определения параметров могут быть реализованы на стандартных элементах ЭВМ.

Claims (2)

1. Способ определения углов пространственной ориентации летательного аппарата (ЛА), включающий измерение линейных перегрузок вдоль продольной оси nx и поперечной оси nz ЛА, измерение проекций земной скорости на горизонтальную плоскость, определение ускорений ЛА путем дифференцирования измеренных СНС проекций скорости ЛА в земной нормальной системе координат, отличающийся тем, что дополнительно измеряют проекцию земной скорости на вертикальную ось, нормальную перегрузку ny вдоль вертикальной оси y ЛА, определяют линейные ускорения ах, ay, az,, которые пересчитывают в нормальную земную систему координат (СК), составляют функционал J из разности трех проекций ускорений в земной СК от СНС и трех составляющих ускорений, полученных от трех датчиков линейных ускорений, с учетом дисперсий погрешностей R измерителя скорости, методом параметрической идентификации определяют угловые скорости ЛА ωx, ωy, ωz, определяют начальные углы γ0, ϑ0, ψ0 ориентации ЛА по измеренным сигналам трех датчиков линейных перегрузок, определяют углы пространственной ориентации крен γ, тангаж ϑ и угол рыскания ψ, интегрируя найденные угловые скорости, при этом в случае пропадании сигналов от СНС летательный аппарат переводят в горизонтальный полет с постоянной скоростью (установившийся режим полета) и углы крена и тангажа определяют по сигналам трех датчиков линейных перегрузок в режиме начальной выставки.
2. Устройство определения углов пространственной ориентации летательного аппарата (ЛА), включающее в себя блок датчиков перегрузок, содержащий два измерителя линейных перегрузок вдоль продольной оси nx и поперечной оси nz ЛА и спутниковую навигационную систему (СНС), отличающееся тем, что оно дополнительно содержит третий измеритель линейных перегрузок ny в составе блока датчиков перегрузок, расположенный вдоль вертикальной оси ЛА, последовательно соединенные блок определения линейных ускорений, блок формирования матрицы направляющих косинусов, блок определения функционала, блок минимизации функционала и блок определения угловых скоростей, блок дифференцирования, вход которого соединен с выходом СНС, а выход подключен ко второму входу блока определения функционала, и последовательно соединенные блок определения начальных углов ориентации и интегратор, второй вход которого соединен с выходом блока определения угловых скоростей, выход блока датчиков перегрузок подключен к входу блока определения начальных углов ориентации и к первому входу блока определения линейных ускорений, второй вход которого и второй вход блока формирования матрицы направляющих косинусов соединены с первым выходом интегратора, третий вход блока определения линейных ускорений является входом для сигнала, соответствующего значению ускорения свободного падения g, третий вход блока определения функционала является входом для сигналов, соответствующих значениям дисперсионной матрицы погрешностей измерения земных скоростей R, а второй выход интегратора является выходом устройства.
RU2015117474/28A 2015-05-08 2015-05-08 Способ определения углов пространственной ориентации летательного аппарата и устройство для его осуществления RU2589495C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015117474/28A RU2589495C1 (ru) 2015-05-08 2015-05-08 Способ определения углов пространственной ориентации летательного аппарата и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015117474/28A RU2589495C1 (ru) 2015-05-08 2015-05-08 Способ определения углов пространственной ориентации летательного аппарата и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2589495C1 true RU2589495C1 (ru) 2016-07-10

Family

ID=56371201

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015117474/28A RU2589495C1 (ru) 2015-05-08 2015-05-08 Способ определения углов пространственной ориентации летательного аппарата и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2589495C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671291C1 (ru) * 2017-07-21 2018-10-30 Акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (АО МНПК "Авионика") Способ определения углов ориентации ЛА на вертикальных траекториях полета
RU2754087C1 (ru) * 2020-10-19 2021-08-26 федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) Способ определения начальной ориентации объекта
CN114485641A (zh) * 2022-01-24 2022-05-13 武汉梦芯科技有限公司 一种基于惯导卫导方位融合的姿态解算方法及装置
RU2792261C1 (ru) * 2022-02-03 2023-03-21 Акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (АО МНПК "Авионика") Способ определения углов атаки и скольжения беспилотного летательного аппарата

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2256154C1 (ru) * 2004-06-16 2005-07-10 Открытое акционерное общество Московский научно-производственный комплекс "Авионика" (ОАО МНПК "Авионика") Способ измерения угловых положений летательного аппарата
RU2293950C1 (ru) * 2005-07-25 2007-02-20 Закрытое акционерное общество Объединенное конструкторское бюро "Русская авионика" Навигационный комплекс летательного аппарата
RU2341775C1 (ru) * 2007-06-15 2008-12-20 Открытое акционерное общество "ОКБ Сухого" Способ определения аэродинамического угла летательного аппарата
RU2373562C2 (ru) * 2007-07-03 2009-11-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет Аэрокосмического приборостроения" Способ и устройство контроля горизонтальной ориентации аппарата

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2256154C1 (ru) * 2004-06-16 2005-07-10 Открытое акционерное общество Московский научно-производственный комплекс "Авионика" (ОАО МНПК "Авионика") Способ измерения угловых положений летательного аппарата
RU2293950C1 (ru) * 2005-07-25 2007-02-20 Закрытое акционерное общество Объединенное конструкторское бюро "Русская авионика" Навигационный комплекс летательного аппарата
RU2341775C1 (ru) * 2007-06-15 2008-12-20 Открытое акционерное общество "ОКБ Сухого" Способ определения аэродинамического угла летательного аппарата
RU2373562C2 (ru) * 2007-07-03 2009-11-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет Аэрокосмического приборостроения" Способ и устройство контроля горизонтальной ориентации аппарата

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671291C1 (ru) * 2017-07-21 2018-10-30 Акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (АО МНПК "Авионика") Способ определения углов ориентации ЛА на вертикальных траекториях полета
RU2754087C1 (ru) * 2020-10-19 2021-08-26 федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) Способ определения начальной ориентации объекта
CN114485641A (zh) * 2022-01-24 2022-05-13 武汉梦芯科技有限公司 一种基于惯导卫导方位融合的姿态解算方法及装置
CN114485641B (zh) * 2022-01-24 2024-03-26 武汉梦芯科技有限公司 一种基于惯导卫导方位融合的姿态解算方法及装置
RU2792261C1 (ru) * 2022-02-03 2023-03-21 Акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (АО МНПК "Авионика") Способ определения углов атаки и скольжения беспилотного летательного аппарата

Similar Documents

Publication Publication Date Title
CN107741229B (zh) 一种光电/雷达/惯性组合的舰载机着舰导引方法
CN111221018B (zh) 一种用于抑制海上多路径的gnss多源信息融合导航方法
US11015957B2 (en) Navigation system
RU2487419C1 (ru) Система комплексной обработки информации радионавигационных и автономных средств навигации для определения действительных значений параметров самолетовождения
CN106500693B (zh) 一种基于自适应扩展卡尔曼滤波的ahrs算法
CN102353378B (zh) 一种矢量形式信息分配系数的组合导航***自适应联邦滤波方法
US9285387B2 (en) In-flight pitot-static calibration
US20180172841A1 (en) Positioning apparatus
CN110849360B (zh) 面向多机协同编队飞行的分布式相对导航方法
Berman et al. The role of dead reckoning and inertial sensors in future general aviation navigation
RU2589495C1 (ru) Способ определения углов пространственной ориентации летательного аппарата и устройство для его осуществления
RU2539140C1 (ru) Интегрированная бесплатформенная система навигации средней точности для беспилотного летательного аппарата
Wang et al. Attitude determination method by fusing single antenna GPS and low cost MEMS sensors using intelligent Kalman filter algorithm
Mahmoud et al. Integrated INS/GPS navigation system
CN110007318B (zh) 风场干扰下基于卡尔曼滤波的单无人机判断gps欺骗的方法
Pan et al. Real-time accurate odometer velocity estimation aided by accelerometers
Lau et al. Inertial-based localization for unmanned helicopters against GNSS outage
RU2594631C1 (ru) Способ определения углов пространственной ориентации летательного аппарата и устройство для его осуществления
RU2646954C2 (ru) Способ коррекции бесплатформенной инерциальной навигационной системы
US7299113B2 (en) System and method for determining aircraft tapeline altitude
CN110736459B (zh) 惯性量匹配对准的角形变测量误差评估方法
Saadeddin et al. Optimization of intelligent-based approach for low-cost INS/GPS navigation system
RU2697859C1 (ru) Способ определения местоположения наземного подвижного объекта
Gu et al. A Kalman filter algorithm based on exact modeling for FOG GPS/SINS integration
Wilson et al. Passive navigation using local magnetic field variations