RU2579117C1 - Способ вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования - Google Patents

Способ вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования Download PDF

Info

Publication number
RU2579117C1
RU2579117C1 RU2015108329/04A RU2015108329A RU2579117C1 RU 2579117 C1 RU2579117 C1 RU 2579117C1 RU 2015108329/04 A RU2015108329/04 A RU 2015108329/04A RU 2015108329 A RU2015108329 A RU 2015108329A RU 2579117 C1 RU2579117 C1 RU 2579117C1
Authority
RU
Russia
Prior art keywords
vulcanization
catalyst
vinyl
containing polysiloxanes
iridium
Prior art date
Application number
RU2015108329/04A
Other languages
English (en)
Inventor
Регина Маратовна Исламова
Константин Владимирович Лузянин
Михаил Владимирович Добрынин
Вадим Юрьевич Кукушкин
Елена Витальевна Каганова
Галина Викторовна Григорян
Original Assignee
Федеральное государственное унитарное предприятие "Ордена Ленина и ордена Трудового Красного Знамени научно-исследовательский институт синтетического каучука имени академика С.В. Лебедева" (ФГУП "НИИСК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Ордена Ленина и ордена Трудового Красного Знамени научно-исследовательский институт синтетического каучука имени академика С.В. Лебедева" (ФГУП "НИИСК") filed Critical Федеральное государственное унитарное предприятие "Ордена Ленина и ордена Трудового Красного Знамени научно-исследовательский институт синтетического каучука имени академика С.В. Лебедева" (ФГУП "НИИСК")
Priority to RU2015108329/04A priority Critical patent/RU2579117C1/ru
Application granted granted Critical
Publication of RU2579117C1 publication Critical patent/RU2579117C1/ru

Links

Abstract

Изобретение относится к вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования. Предложен способ вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования, включающий взаимодействие винилсодержащих полисилоксанов с гидридсодержащим силоксановым соединением при нагревании в присутствии катализатора - комплекса иридия (III) общей формулы [IrХ(2-фенилпиридин)2(CNR)] или [IrX(2-фенилпиридин)2]2, где R - это фенил, диметилфенил, алкил, X - хлор, бром, иод. Технический результат - предлагаемый способ позволяет проводить процесс в достаточно широком интервале температур с использованием катализатора, получаемого по методике, не требующей инертной атмосферы, и имеющего длительный срок хранения. 17 пр.

Description

Изобретение относится к вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования и может найти применение в производстве силоксановых компаундов, используемых для получения силоксановых резин, герметиков, изоляторов, клеев, пленочных покрытий, а также биомедицинских материалов и игрушек.
Известен способ вулканизации винилсодержащих полисилоксанов в присутствии гидридсодержащего силоксанового соединения по реакции гидросилилирования, где в качестве катализатора используется комплекс дивинилтетраметилдисилоксана и платины(0) - катализатор Карстедта (Patent US 3775452 A, C07f 15/00, C08g 31/02. Опубл. 27.11.1973).
Вулканизацию проводят при комнатной температуре преимущественно при концентрации катализатора Карстедта 10-5 моль/л (Hydrosilylation: A Comprehensive Review on Recent Advances. Ed. B. Marciniec. Springer, 2009. Vol. 1., pp. 408; I. Kownacki, B. Marciniec, K. Szubert, M. Kubicki, M. Jankowska, H. Steinberger, S. Rubinsztajn // Applied Catalysis A: General. 2010. V. 380. P. 105-112).
Недостатком данного способа вулканизации является применение катализатора, который необходимо использовать и хранить в атмосфере инертного газа, не допуская попадания влаги, кислорода и света.
Кроме того, катализатор Карстедта обладает гиперактивностью, что сопровождается преждевременной вулканизацией винилсодержащих полисилоксанов по реакции гидросилилирования уже при смешении компонентов вулканизационной смеси. Это приводит к ухудшению качества получаемого вулканизата, а именно образованию пузырьков и других неоднородностей в структуре.
Стойкость реакционной смеси к преждевременной вулканизации, как правило, достигается введением специальных соединений - ингибиторов, замедляющих вулканизацию при температуре переработки. В качестве ингибиторов в промышленности в основном используются малеаты и фумараты (D. Troegel, J. Stohrer // Coordination Chemistry Reviews. 2011. V. 255. P. 1440-1459; Hydrosilylation: A Comprehensive Review on Recent Advances. Ed. B. Marciniec. Springer, 2009. Vol. 1., pp. 408).
Однако введение ингибитора не только усложняет каталитическую систему, но и увеличивает цену и без того дорогого катализатора Карстедта (~1500 евро за 1 г чистого вещества по данным каталога компании по производству и продаже химических веществ Sigma-Aldrich, США, 2014 г.). Кроме того, возможности ингибиторов ограничены, так как по данным, приведенным ниже, в ряде случаев ухудшаются прочностные показатели вулканизатов
(А.В. Горшков. www.medsil.ru/doc/Gorl.doc).
В промышленности, наряду с катализаторами «холодного отверждения» типа катализатора Карстедта, т.е. активных при комнатной температуре, есть острая необходимость в катализаторах, работающих только при нагревании. Это особенно важно в случае переработки силоксановых композиций. Поэтому еще одним недостатком катализатора Карстедта является невозможность его использования при повышенных температурах вулканизации.
Известен способ вулканизации винилсодержащих полисилоксанов в присутствии гидридсодержащего силоксанового соединения по реакции гидросилилирования при повышенных температурах, в котором в качестве катализатора используются модифицированные аналоги катализатора Карстедта, содержащие трис(триорганосилил)фосфитовые лиганды:
[Pt(DVTMDS){P(OSiR3)3}],
где DVTMDS: (H2C=CHSiMe2)2O, R3: Si7O9(iOct)7, iPr3, MePh2, Ph3, (OtBu)3, (OSiMe3)3.
(I. Kownacki, B. Marciniec, K. Szubert, M. Kubicki, M. Jankowska, H. Steinberger, S. Rubinsztajn // Applied Catalysis A: General. 2010. V. 380. P. 105-112).
Способ заключается в вулканизации полидиметилсилоксана с концевыми винильными группами и полигидрометилсилоксана в качестве гидридсодержащего соединения при 120°C в присутствии катализаторов - комплексов платины(0) с трис(триорганосилил)фосфитовыми лигандами. Время отверждения в среднем составляет 2-5 минут.
Недостатком данного способа вулканизации является необходимость применения труднодоступных и еще более дорогостоящих по сравнению с комплексом Карстедта катализаторов. Синтез данных комплексов платины(0) многостадийный, который необходимо проводить в атмосфере аргона с использованием высоковакуумных систем, что также приводит к удорожанию процесса.
Недостатком данного способа вулканизации является и узкий температурный интервал использования катализаторов в вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования - только 120°C. Следует отметить, что эти комплексы платины(0) по данным авторов настоящей заявки не могут выдерживать длительное нагревание и более высокие температуры.
По технической сущности наиболее близким аналогом предлагаемого технического решения является способ вулканизации винилсодержащих полисилоксанов в присутствии гидридсодержащего силоксанового соединения по реакции гидросилилирования с использованием в качестве катализаторов силоксидов иридия (I):
[Ir(cod)(PCy3)(OSiMe3)] и [Ir(CO)(Pcy3)2(OSiMe3)],
где cod - циклоокта-1,5-диен (I. Kownacki, В. Marciniec, A. Macina, S. Rubinsztajn, D. Lamb // Applied Catalysis A: General. 2007. V. 317. P. 53-57).
Вулканизация винилсодержащего полидиметилсилоксана протекает в присутствии полигидросилоксана в качестве гидридсодержащего соединения при ~200°C при концентрации иридиевого катализатора в вулканизационной смеси 10-4 моль/л.
Силоксиды иридия(I) являются более доступными соединениями по сравнению с модифицированными аналогами катализатора Карстедта, содержащими трис(триорганосилил)фосфитовые лиганды, однако для своего получения они также требуют использования инертной атмосферы.
Недостатком данного способа является необходимость проводить процесс вулканизации только при достаточно высоких температурах (200°C), что значительно увеличивает энергетические затраты процесса и ограничивает область его использования.
Задачей заявляемого технического решения является разработка способа вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования при нагревании в широком диапазоне температур в присутствии катализаторов, синтезируемых по более простым методикам, не требующим инертной атмосферы.
Поставленная задача решается проведением вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования, включающей взаимодействие винилсодержащего полисилоксана с гидридсодержащим силоксановым соединением при нагревании в присутствии в качестве катализатора комплексов иридия(III) общей формулы:
Figure 00000001
или
Figure 00000002
где R - это фенил, диметилфенил, алкил; X - хлор, бром, иод.
Сущность заявляемого изобретения состоит в том, что реакционную смесь, состоящую из винилсодержащего полисилоксана, гидридсодержащего силоксанового соединения и иридиевого катализатора, загружают в жаропрочную емкость, тщательно перемешивают в течение 1-3 минут, после чего помещают ее в термостат с соответствующей температурой и выдерживают до полного отверждения. Концентрационный диапазон каждого из катализаторов равен 1.0×10-3-1.0×10-5 моль/л, вулканизацию проводят при 100-180°C, время вулканизации составляет от 5 минут до ~20 часов в зависимости от условий процесса. При 80°C вулканизация винилсодержащих полисилоксанов по реакции гидросилилирования в присутствии катализаторов 1 или 2 протекает более чем за сутки. При комнатной температуре катализаторы 1 и 2 не активны.
В качестве винилсодержащих полисилоксанов могут быть использованы любые полисилоксаны, содержащие терминальные и/или боковые винильные группы. В качестве гидридсодержащего силоксанового соединения могут быть использованы любые силоксановые олигомеры, содержащие группы ≡Si-H.
Используемые в качестве катализаторов комплексы иридия(III) 1 и 2 получают по известным методикам: (K. Dedeian, J. Shi, Е. Forsythe, D.C. Morton // Inorg. Chem. 2007. V. 46. P. 1603-1611) и (S. Sprouse, K.A. King, P.J. Spellane, R.J. Watts // J. Am. Chem. Soc. 1984. V. 106. P. 6647-6653), соответственно.
Ниже приведены примеры реализации заявляемого изобретения. Примеры иллюстрируют, но не ограничивают предложенный способ.
Пример 1.
Синтез катализатора 1.
2,6-Диметилфенил изоцианид (0.535 г, 4.08 ммоль) добавляют к суспензии [Ir(2-фенилпиридин)2Cl]2 (2.08 г, 1.94 ммоль) в дихлорметане (50 мл) и перемешивают в течение 1 ч. После очистки на хроматографической колонке (силикагель, элюент - 95:5 дихлорметан : метанол) продукт упаривают и сушат на воздухе. Выход равен 1.81 г, ~70%.
Элементный анализ. Рассчитано: C, 55.80; H, 3.78; N, 6.30. Найдено: C, 55.80; H, 3.78; N, 6.30.
ЭС-МС. Рассчитано: 668.1444, найдено 668.1452 (М+Н)+; рассчитано: 632.1678, найдено 632.1661 (М-Cl)+.
1Н ЯMР (400.13 MГц, CDCl3, ppm): 9.90 (ddd, 1H, J=6.0, 1.5, 0.8 Hz), 9.12 (ddd, 1H, J=5.8, 1.5, 0.8 Hz), 7.82 (m, 2H), 7.80 (m, 2H), 7.56 (m, 2H), 7.24 (ddd, 1H, J=7.0, 5.5, 1.5 Hz), 7.04 (d, 2H, J=7.5 Hz), 7.13 (ddd, 1H, J=7.5, 5.8, 1.5 Hz), 6.92 (tr, 1H, J=7.5 Hz), 6.85 (m, 2H), 6.79 (ddd, 1H, J=7.3, 7.3, 1.5 Hz), 6.74 (ddd, 1H, J=7.5, 7.5, 1.5 Hz), 6.35 (dd, 1H, J=7.8, 1.3 Hz), 6.11 (dd, 1H, J=7.3, 1.3 Hz), 2.12 (s, 6H).
Пример 2.
Синтез катализатора 2.
Гидрат трихлорида иридия(III) (0.388 г) смешивают с 2-фенилпиридином (0.76 г) в круглодонной колбе на 100 мл, заливают смесью 2-этоксиэтанола (30 мл) и воды (10 мл), и кипятят с обратным холодильником в течение 24 ч. Полученный раствор охлаждают до комнатной температуры, и выпавший желтый осадок собирают на воронке Гирша. Осадок промывают 95% этанолом (60 мл) и ацетоном (60 мл), а затем растворяют в дихлорметане (75 мл) и фильтруют. К полученному раствору добавляют толуол (25 мл), и н-гексан (10 мл), а затем упаривают на роторном испарителе при комнатной температуре до конечного объема в 50 мл. Охлаждение полученного раствора льдом приводит к получению кристаллов целевого продукта. Выход равен 0.428 г, ~72%.
Пример 3.
В алюминиевую чашку загружают 5 г полидиметилсилоксан с тремя терминальными винильными группами, среднемассовая молекулярная масса Mw=80 072, среднечисленная молекулярная масса Mn=33 797, 0.5 вес. % винильных групп -СН=СН2; 0.5 г сополимера полидиметилсилоксана и этилгидросилоксана с концевыми триметилсилильными группами, Mw=8143, Mn=4634, 0.7 вес. % гидридных групп ≡Si-H; добавляют раствор катализатора формулы 1, где R - диметилфенил и X - хлор, в хористом метилене с концентрацией 1.0×10-3 моль/л; тщательно перемешивают и помещают в термостат при 180°C. Время полного отверждения вулканизационной смеси составляет 5 минут.
При использовании катализатора 2 в аналогичных условиях время полного отверждения равно 15 минут.
Пример 4. Процесс вулканизации проводят аналогично условиям примера 3, но с использованием катализатора формулы 1, где R - фенил и X - бром, при температуре 150°C. Время полного отверждения вулканизационной смеси при использовании катализатора 1 и 2 составляет 10 и 50 минут, соответственно.
Пример 5. Процесс вулканизации проводят аналогично условиям примера 4, но используется полидиметилсилоксан, содержащий 1 терминальную винильную группу, среднемассовая молекулярная масса Mw=100000, среднечисленная молекулярная масса Mn=51000, 0,5 вес. % винильных групп -СН=СН2 в присутствии катализатора 2. Время полного отверждения вулканизационной смеси составляет 45 минут.
Пример 6. Процесс вулканизации проводят аналогично условиям примера 4, но используется полидиметилсилоксан, содержащий боковую винильную группу, среднемассовая молекулярная масса Mw=20000, среднечисленная молекулярная масса Mn=11000, 0.3 вес. % винильных групп -СН=СН2 в присутствии катализатора 2. Время полного отверждения вулканизационной смеси составляет 4 часа.
Пример 7. Процесс вулканизации проводят аналогично условиям примера 4, но используется сополимер полидиметилсилоксана и метилгидросилоксана с концевыми триметилсилильными группами, Mw=10000, Mn=4950, 0.6 вес. % гидридных групп ≡Si-H в присутствии катализатора 2. Время полного отверждения вулканизационной смеси составляет 30 минут.
Пример 8. Процесс вулканизации проводят аналогично условиям примера 3, но с использованием катализатора формулы 1, где R - метил и X - иод, при температуре 125°C. Время полного отверждения вулканизационной смеси при использовании катализатора 1 и 2 составляет 30 и 195 минут, соответственно.
Пример 9. Процесс вулканизации проводят аналогично условиям примера 3, но с использованием катализатора формулы 1, где R - изопропил и X - хлор, при температуре 100°C. Время полного отверждения вулканизационной смеси при использовании катализатора 1 и 2 составляет 3 часа и 18 часов 50 минут, соответственно.
Пример 10. Процесс вулканизации проводят аналогично условиям примера 3, но при температуре 80°C. Время полного отверждения вулканизационной смеси при использовании катализатора 1 составляет 24 часа. При использовании катализатора 2 вулканизация за 24 часа не протекает.
Пример 11. Процесс вулканизации проводят аналогично условиям примера 3, но при температуре 25°C. Время выдержи - один год. Вулканизация в данных условиях не протекает.
Пример 12. Процесс вулканизации проводят аналогично условиям примера 3, но с использованием катализатора формулы 1, где R - циклогексил и X - хлор. Концентрация иридиевого катализатора равна 1.0×10-4 моль/л. Время полного отверждения вулканизационной смеси при использовании катализаторов 1 и 2 составляет 15 и 45 минут, соответственно.
Пример 13. Процесс вулканизации проводят аналогично условиям примера 3, но концентрация иридиевого катализатора равна 1.0×10-5 моль/л. Время полного отверждения вулканизационной смеси при использовании катализаторов 1 и 2 составляет 25 и 95 минут, соответственно.
Пример 14. Процесс вулканизации проводят аналогично условиям примера 4, но концентрация иридиевого катализатора равна 1.0×10-4 моль/л. Время полного отверждения вулканизационной смеси при использовании катализаторов 1 и 2 составило 40 и 100 минут, соответственно.
Пример 15. Процесс вулканизации проводят аналогично условиям примера 4, но концентрация иридиевого катализатора равна 1.0×10-5 моль/л. Время полного отверждения вулканизационной смеси при использовании катализаторов 1 и 2 составляет 90 и 130 минут, соответственно.
Пример 16. Процесс вулканизации проводят аналогично условиям примера 8, но концентрация иридиевого катализатора равна 1.0×10-4 моль/л. Время полного отверждения вулканизационной смеси при использовании катализаторов 1 и 2 составляет 50 и 290 минут, соответственно.
Пример 17. Процесс вулканизации проводят аналогично условиям примера 8, но концентрация иридиевого катализатора равна 1.0×10-5 моль/л. Время полного отверждения вулканизационной смеси при использовании катализаторов 1 и 2 составляет 250 и 390 минут, соответственно.
Таким образом, как видно из приведенных примеров, предлагаемый способ может осуществляться в достаточно широком диапазоне температур и базируется на катализаторе, получаемом по доступной методике, не требующей инертной атмосферы и использования высоковакуумных систем, и имеющем длительный срок хранения (более 1 года) в обычных условиях.

Claims (1)

  1. Способ вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования, включающий взаимодействие при нагревании винилсодержащего полисилоксана с гидридсодержащим силоксановым соединением в присутствии в качестве катализатора комплекса иридия, отличающийся тем, что в качестве катализатора используется комплекс иридия (III) общей формулы:
    [IrX(2-фенилпиридин)2(CNR)]
    или
    [IrX(2-фенилпиридин)2]2,
    где R - это фенил, диметилфенил, алкил, X - хлор, бром, иод.
RU2015108329/04A 2015-03-10 2015-03-10 Способ вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования RU2579117C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015108329/04A RU2579117C1 (ru) 2015-03-10 2015-03-10 Способ вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015108329/04A RU2579117C1 (ru) 2015-03-10 2015-03-10 Способ вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования

Publications (1)

Publication Number Publication Date
RU2579117C1 true RU2579117C1 (ru) 2016-03-27

Family

ID=55657058

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015108329/04A RU2579117C1 (ru) 2015-03-10 2015-03-10 Способ вулканизации винилсодержащих полисилоксанов по реакции гидросилилирования

Country Status (1)

Country Link
RU (1) RU2579117C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813749C1 (ru) * 2023-10-02 2024-02-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) Способ вулканизации полисилоксанов при получении силиконовых резин

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523436A (en) * 1992-12-16 1996-06-04 Wacker-Chemie Gmbh Catalysts for hydrosilylation reactions
RU2319715C1 (ru) * 2003-12-05 2008-03-20 Дау Корнинг Корпорейшн Способы получения каолинсодержащих силиконовых резиновых композиций

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523436A (en) * 1992-12-16 1996-06-04 Wacker-Chemie Gmbh Catalysts for hydrosilylation reactions
RU2319715C1 (ru) * 2003-12-05 2008-03-20 Дау Корнинг Корпорейшн Способы получения каолинсодержащих силиконовых резиновых композиций

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I.Kownacki, B.Marciniec, A.Macina. Catalytic activity of iridium siloxide complexes in cross-linking of silicones by hydrosilylation. Applied Catalysis A: General, 2007, 317, pp.53-57. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813749C1 (ru) * 2023-10-02 2024-02-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) Способ вулканизации полисилоксанов при получении силиконовых резин

Similar Documents

Publication Publication Date Title
Ahmad et al. An NHC-stabilized silicon analogue of acylium ion: Synthesis, structure, reactivity, and theoretical studies
Schwedtmann et al. NHC-mediated synthesis of an asymmetric, cationic phosphoranide, a phosphanide, and coinage-metal phosphanido complexes.
JP6563382B2 (ja) 鉄およびコバルトのピリジンジイミン触媒によるオレフィンのシリル化を経た飽和および不飽和のシラハイドロカーボン
KR100595948B1 (ko) 수소화규소첨가 반응용 촉매
Cotton et al. Structural studies of three tetrakis (carboxylato) dirhodium (II) adducts in which carboxylate groups and axial ligands are varied
Matioszek et al. Halogermanium (II) complexes having phenylamidinate as supporting ligands: syntheses, characterizations, and reactivities
Barberá et al. (Pyrazolato) gold complexes showing room-temperature columnar mesophases. Synthesis, properties, and structural characterization
Bhattacharyya et al. Palladium (II) and platinum (II) complexes of the heterodifunctional ligand Ph2PNHP (O) Ph2
Vicente et al. New Neutral and Anionic Alkynylgold (I) Complexes via New Synthetic Methods. Crystal and Molecular Structures of [(PPh3) 2N][Au (C⋮ CCH2OH) 2],[Au (C⋮ CSiMe3)(CNtBu)], and [Au (C⋮ CR) PR ‘3](R ‘= Cyclohexyl, R= CH2Cl, CH2Br; R ‘= Ph, R= SiMe3, tBu)
Schiefer et al. Neutral and ionic aluminum, gallium, and indium compounds carrying two or three terminal ethynyl groups
JP6526821B2 (ja) 熱伝達流体として使用される分岐状オルガノシロキサン
Hering et al. Chlorine/Methyl Exchange Reactions in Silylated Aminostibanes: A New Route To Stibinostibonium Cations
CN105916870A (zh) 钴催化剂及它们用于氢化硅烷化和脱氢硅烷化的用途
Barman et al. Guanidinate stabilized germanium (II) and tin (II) amide complexes and their catalytic activity for aryl isocyanate cyclization
Hinz et al. Synthesis of a Silylated Phosphorus Biradicaloid and Its Utilization in the Activation of Small Molecules
Chalmers et al. Sterically encumbered tin and phosphorus peri-substituted acenaphthenes
Janeta et al. Synthesis, characterization and thermal properties of T8 type amido-POSS with p-halophenyl end-group
Consiglio et al. Structure and aggregation properties of a Schiff-base zinc (II) complex derived from cis-1, 2-diaminocyclohexane
JP5999596B2 (ja) カルボジイミド化合物の製造方法
Römbke et al. Mono-and bimetallic gold (I) and silver (I) pentafluoropropionates and related compounds
Han et al. Three asymmetric guanidinato metal complexes: Synthesis, crystal structures and their use as pre-catalysts in the Meerwein–Ponndorf–Verley reduction
KR100595338B1 (ko) 불포화 화합물의 수소규소화용 금속 카르벤계 촉매의 제조방법 및 이로부터 수득한 촉매
Li et al. Synthesis of platinum acetylide complexes and their application in curing silicone rubber by hydrosilylation
Barman et al. Mixed guanidinato-amido Ge (iv) and Sn (iv) complexes with Ge [double bond, length as m-dash] E (E= S, Se) double bond and SnS 4, Sn 2 Se 2 rings
JP6983995B2 (ja) 貴金属触媒の安定化