RU2578499C1 - Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа - Google Patents

Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа Download PDF

Info

Publication number
RU2578499C1
RU2578499C1 RU2015110278/06A RU2015110278A RU2578499C1 RU 2578499 C1 RU2578499 C1 RU 2578499C1 RU 2015110278/06 A RU2015110278/06 A RU 2015110278/06A RU 2015110278 A RU2015110278 A RU 2015110278A RU 2578499 C1 RU2578499 C1 RU 2578499C1
Authority
RU
Russia
Prior art keywords
oil
gas
hydrogen sulfide
separation
stage
Prior art date
Application number
RU2015110278/06A
Other languages
English (en)
Inventor
Рифхат Зиннурович Сахабутдинов
Андрей Анатольевич Ануфриев
Алексей Николаевич Шаталов
Рафаэль Махасимович Гарифуллин
Original Assignee
Открытое акционерное общество "Татнефть" имени В.Д. Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Татнефть" имени В.Д. Шашина filed Critical Открытое акционерное общество "Татнефть" имени В.Д. Шашина
Priority to RU2015110278/06A priority Critical patent/RU2578499C1/ru
Application granted granted Critical
Publication of RU2578499C1 publication Critical patent/RU2578499C1/ru

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способам подготовки нефти к транспорту и может быть использовано в нефтегазодобывающей промышленности при подготовке нефти с высоким содержанием сероводорода. Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа, включающий сепарацию сероводородсодержащей нефти в первой и второй ступенях сепарации, последующий нагрев сероводородсодержащей нефти в установке нагрева нефти, отдувку углеводородным газом, не содержащим сероводород, в десорбционной колонне, сепарацию нефти в сепараторе низкого давления, ввод и перемешивание реагента-нейтрализатора сероводорода, компримирование на компрессорной станции попутного нефтяного газа из второй ступени сепарации нефти, сепаратора низкого давления и десорбционной колонны. После компримирования попутный нефтяной газ подается в подводящий нефтепровод первой ступени сепарации или при разделении потоков первой ступени в подводящие нефтепроводы соответствующих сепараторов, пропускающих не менее 20% поступающей на подготовку сырой сероводородсодержащей нефти. Технический результат - увеличение выхода товарной нефти, увеличение эффективности десорбционной очистки нефти от сероводорода. 2 табл., 3 ил.

Description

Изобретение относится к способам подготовки нефти к транспорту и может быть использовано в нефтегазодобывающей промышленности при подготовке нефти с высоким содержанием сероводорода.
Известен способ подготовки сырой нефти путем ее многоступенчатой сепарации (А.с. №1431798 СССР, МПК B01D 19/00, опубл. 23.10.1988), включающий подачу углеводородного газа, выделившегося на первой ступени сепарации, в последующую ступень. При этом газ на отдувку подают в количестве 1-3 м3 на 1 м3 нефти, поступающей на концевую ступень сепарации.
Недостатком данного способа является низкая эффективность удаления сероводорода, вследствие чего подготовленная нефть по остаточному содержанию сероводорода не удовлетворяет требованиям, предъявляемым ГОСТ 51858-2002.
Известен также способ подготовки сероводородсодержащей нефти (Лесухин С.П., Соколов А.Г., Позднышев Г.Н. Основные направления развития технологии очистки нефти от сероводорода // Нефтяное хозяйство. - 1989. - №8. - С. 50-54), включающий ее многоступенчатую сепарацию и отдувку очищенным от сероводорода углеводородным газом в дополнительной десорбционной колонне при температуре 40-50°С, давлении 0,1-0,6 МПа и удельном расходе отдувочного газа 5-50 м33 нефти.
Недостатком данного способа является то, что для снижения значения массовой доли сероводорода в нефти до 20 ppm требуется подача большого количества углеводородного газа (30-50 м33), не содержащего сероводорода, что ведет к необходимости увеличения пропускной способности сборных газопроводов, мощности компрессорных станций и установки очистки газа от кислых компонентов (УСО).
Наиболее близким к предлагаемому является способ подготовки сероводородсодержащей нефти (патент RU №2220756, МПК B01D 19/00, B01D 53/52, опубл. 10.01.2004, бюл. №1), включающий ее многоступенчатую сепарацию и отдувку углеводородным газом, не содержащим сероводород, в десорбционной колонне с последующим вводом и перемешиванием с монометанолэтаноламином (ММЭА) - продуктом взаимодействия моноэтаноламина и формальдегида.
Известный способ позволяет снизить значение массовой доли сероводорода в товарной нефти до 20 ppm при сочетании физического (сепарации и отдувки нефти углеводородным газом в колонне) и химического (нейтрализации сероводорода при использовании ММЭА) методов удаления сероводорода из нефти. При этом отдувка нефти осуществляется углеводородным газом, не содержащим сероводород, или природным газом до достижения не более 90%-ной степени ее очистки от сероводорода и смешением ММЭА с нефтью из расчета 4-15 г на 1 г остаточного сероводорода с последующим введением в нефть воздуха, взятого из расчета 0,5-1,5 моль кислорода на 1 моль остаточного сероводорода.
Недостатком двух вышеописанных способов является то, что в процессе отдувки нефти в колонне происходит не только десорбция сероводорода в газовую фазу, но и стабилизация нефти, сопровождающаяся переходом углеводородов (от пропана и выше) в состав газа отдувки, уменьшая тем самым выход товарной нефти. Эти фракции газа способны после сжатия компрессорами и соответствующего охлаждения конденсироваться. Часть компонентов попутного нефтяного газа (ПНГ) конденсируется при искусственном охлаждении на компрессорной станции (КС), а часть - при естественном охлаждении в газопроводе от компрессорной станции до УСО, что значительно снижает пропускную способность системы газосбора.
Переход компонентов из нефти в состав газа отдувки также приводит к увеличению объема ПНГ, поступающего в систему газосбора, и, как следствие, увеличению затрат, связанных с его очисткой от сероводорода на УСО.
Для подготовки ПНГ к транспортировке его сжимают в компрессорах на КС и охлаждают с помощью аппаратов воздушного охлаждения (АВО) с последующей сепарацией перед подачей в магистральный газопровод. Температура охлаждения газа в АВО после его сжатия зависит от температуры окружающего воздуха, которая меняется в широких пределах в течение года. Недостатком данного варианта охлаждения является невозможность достижения температуры газа ниже температуры грунта на глубине залегания газопровода. Применение холодильных машин (например, парокомпрессионного типа) требует использование дорогостоящего оборудования и высококвалифицированного персонала для обслуживания.
С увеличением давления и температуры ПНГ в начале газопровода, а также с уменьшением температуры окружающей среды объем образующегося конденсата увеличивается.
Понижение температуры газа в газопроводе происходит вследствие его расширения, а также отдачи им тепла более холодной поверхности - стенке газопровода. Вследствие того, что температура стенки ниже температуры газа, на внутренней ее поверхности может происходить процесс конденсации углеводородов. Конденсация происходит также и в объеме газа, на поверхности центров конденсации, которыми служат посторонние частицы, взвешенные в газе, или мелкие капельки конденсата, возникающие самопроизвольно вследствие случайных отклонений от равномерного распределения молекул в газе в результате теплового воздействия. При конденсации газа на внутренней поверхности стенки происходит два процесса: процесс теплопередачи и передачи массы. Оба эти процесса приводят к снижению температуры газа, а это в свою очередь способствует продолжению процесса конденсации. Состав и объем углеводородов, переходящих в жидкое состояние, будет при этом изменяться в соответствии с изменением состава газа.
Процесс конденсации углеводородов в объеме характеризуется ростом центров конденсации до размеров капелек тумана с последующим оседанием капелек на внутренней поверхности стенки трубы или на поверхности конденсата, образовавшегося на ней.
Например, для Республики Татарстан температура газа после воздушного охлаждения в зимний период времени в среднем изменяется от 5 до 10°С, в летний - от 15 до 30°С. При транспортировке ПНГ по газопроводу его температура приближается к температуре грунта, которая составляет в зимний период года 0-5°С, а в летний - 8-12°С, что приводит к выпадению конденсата и его накоплению в газопроводе.
Техническими задачами изобретения являются увеличение эффективности десорбционной очистки нефти от сероводорода, увеличение выхода товарной нефти, уменьшение объема конденсата, образующегося на КС и системе газосбора, уменьшение эксплуатационных затрат на подготовку газа на КС, а также расхода газа, поступающего на установку сероочистки, и, как следствие, уменьшение затрат на очистку нефти и газа от сероводорода.
Технические задачи решаются способом подготовки сероводородсодержащей нефти и попутного нефтяного газа, включающим сепарацию сероводородсодержащей нефти в первой и второй ступенях сепарации, последующий нагрев сероводородсодержащей нефти в установке нагрева нефти, отдувку углеводородным газом, не содержащим сероводород, в десорбционной колонне, сепарацию нефти в сепараторе низкого давления, ввод и перемешивание реагента-нейтрализатора сероводорода, компримирование на компрессорной станции попутного нефтяного газа из второй ступени сепарации нефти, сепаратора низкого давления и десорбционной колонны, отбор попутного нефтяного газа из первой ступени сепарации и его подачу на установку сероочистки.
Новым является то, что после компримирования ПНГ подается в подводящий нефтепровод первой ступени сепарации или при разделении потоков первой ступени в подводящие нефтепроводы соответствующих сепараторов, пропускающих не менее 20%, поступающей на подготовку сырой сероводородсодержащей нефти.
На фиг. 1 изображена схема осуществления способа, в котором используются сепарация нефти, отдувка углеводородным газом, не содержащим сероводород, в десорбционной колонне, ввод и перемешивание реагента-нейтрализатора сероводорода, подача ПНГ с КС в поток сырой сероводородсодержащей нефти, поступающей на первую ступень сепарации.
На фиг. 2 представлены данные по содержанию в нефти сероводорода, углекислого газа, азота, метана и этана перед десорбционной колонной и после нее.
На фиг. 3 представлены данные по содержанию в нефти пропана, изо-бутана, н-бутана, изо-пентана и подобных компонентов перед десорбционной колонной и после нее.
Для реализации способа сырую сероводородсодержащую нефть по трубопроводу 1 (фиг. 1) подают в сепараторы 2 первой ступени сепарации по подводящим трубопроводам 3. Затем нефть через вторую ступень сепарации 4 подают с помощью насоса 5 в установку нагрева нефти 6, где осуществляется ее нагрев. Далее нагретую нефть направляют в верхнюю часть десорбционной колонны 7. В нижнюю часть десорбционной колонны 7 подают углеводородный газ, не содержащий сероводород, по газопроводу 8. С десорбционной колонны 7 сероводородсодержащий газ по газопроводу 9 поступает на КС 10, а нефть через сепаратор 11 низкого давления на смешение с химическим реагентом - нейтрализатором сероводорода 12. Далее нефть подают в трубопровод и/или реактор 13, в котором протекает химическая реакция взаимодействия сероводорода с реагентом - нейтрализатором сероводорода 12. Расход реагента определяется исходя из массовой доли сероводорода в нефти после десорбционной колонны 7 и требуемого качества сдаваемой продукции по содержанию сероводорода согласно требованиям ГОСТ Р 51858-2002. После проведения процесса нейтрализации нефть, очищенная от сероводорода, отводится по трубопроводу 14.
ПНГ со второй ступени сепарации 4, десорбционной колонны 7 и сепаратора 11 низкого давления по газопроводам 9, 15, 16 направляют на прием компрессоров 17 компрессорной станции 10 на компримирование. Сжатый ПНГ с выкида компрессоров 17 компрессорной станции 10 по газопроводу 18 подают в подводящие нефтепроводы 3 сепараторов 2 первой ступени. Газ, отделившийся от нефти в сепараторах 2, по газопроводу 19 направляют на УСО.
Результаты, полученные при испытаниях известной и предлагаемой установки подготовки сероводородсодержащей нефти и ПНГ, приведены в табл. 1.
Figure 00000001
Возможен вариант подачи только части от объема газа с КС 10 по газопроводу 18 в подводящий нефтепровод 3 сепараторов 2 первой ступени сепарации, а оставшегося объема - на УСО. В этом случае положительный эффект (снижение массовой доли сероводорода в нефти после десорбционной колонны, снижение объема газа, поступающего на УСО, снижение количества конденсата, образующегося в системе газосбора и увеличение выхода товарной нефти) достигается при подаче даже части от всего объема ПНГ, подаваемого с КС 10 в подводящий нефтепровод 3 сепараторов 2 первой ступени сепарации (табл. 2). С увеличением объема ПНГ, подаваемого с КС 10 по газопроводу 18 в подводящий нефтепровод 3 сепараторов 2 первой ступени сепарации, эффективность предлагаемого способа только возрастает и достигает максимальной эффективности при подаче всего объема газа с КС 10 по газопроводу 18 в подводящий нефтепровод 3 сепараторов 2 первой ступени сепарации.
Figure 00000002
Заявляемый способ отличается от прототипа тем, что после компримирования ПНГ подается в подводящий нефтепровод первой ступени сепарации или при разделении потоков первой ступени в подводящие нефтепроводы соответствующих сепараторов, пропускающих не менее 20%, поступающей на подготовку сырой сероводородсодержащей нефти.
Положительный эффект достигается за счет того, что при подаче ПНГ по газопроводу 18 с компрессорной станции 10 в подводящий нефтепровод 3 сепараторов 2 первой ступени сепарации происходит перераспределение компонентов газа в объеме сероводородсодержащей нефти, вследствие чего повышается общее газосодержание жидкой фазы. Одновременно происходит интенсивное снижение температуры газа, подаваемого по газопроводу 18, за счет теплообмена с жидкостью в процессе движения газожидкостной смеси в трубопроводе 3 и сепараторах 2 первой ступени. В результате тепло-массообменного процесса между ПНГ и сероводородсодержащей нефтью часть компонентов, содержащихся в газе, переходит в состав нефти. Доля компонентов, входящих в состав газа, подаваемого по газопроводу 18, в нефти существенно возрастает по сравнению с прототипом. При этом точка росы газа, отделившегося от жидкости в сепараторах 2 первой ступени, существенно снижается, что позволяет полностью исключить возможность образования конденсата в системе газосбора.
Такие компоненты, как метан, этан, азот и углекислый газ, легче отделяются от жидкости в процессе сепарации, и их доля в составе нефти перед колонной отдувки уменьшается (фиг. 2). В свою очередь это приводит к снижению эффективности отделения пропана, бутана, гептана и других подобных компонентов и увеличению массовой доли сероводорода в нефти (фиг. 2, 3) перед десорбционной колонной 7. Однако подача нефти в десорбционную колонну 7 с повышенным содержанием пропан-бутановых и пентановых фракций позволяет снизить объем не содержащего сероводород газа, подаваемого в десорбционную колонну 7. В десорбционной колонне 7 в процессе массообмена между этим газом и сероводородсодержащей нефтью пропан и более высококипящие углеводороды из жидкой фазы частично переходят в газовую, что способствует более легкой десорбции сероводорода. Благодаря этому уменьшается массовая доля сероводорода в нефти после десорбционной колонны при прочих равных условиях. Это позволяет уменьшить расход нейтрализатора сероводорода 12, подаваемого в поток нефти после сепаратора 11 низкого давления.
При осуществлении способа по изобретению объем газа, подаваемого на УСО, уменьшается вследствие перехода пропан-гексановой фракции из газовой фазы в жидкую в процессе тепло-массообмена нефти с рециркулируемым ПНГ в нефтепроводе 3 перед сепараторами 2 первой ступени. Данная фракция на последующих ступенях сепарации нефти частично вновь переходит в газовую фазу и начинается новый цикл круговорота углеводородных компонентов.
За счет возврата пропана, бутана, гептана и других подобных компонентов ПНГ в состав нефти предлагаемый способ позволяет увеличить выход товарной нефти. При этом превышение давления насыщенных паров нефти согласно требований ГОСТ Р 51858-2002 не наблюдается вследствие ее стабилизации в десорбционной колонне 7 (табл. 1, 2).
Положительным фактором при осуществлении способа (при подаче всего объема газа с компрессорной станции 10 по трубопроводу 18 в подводящий нефтепровод 3 сепараторов 2 первой ступени сепарации) является также отсутствие необходимости охлаждения газа после компримирования, что позволяет снизить затраты электроэнергии и исключить необходимость использования холодильного оборудования.
Предлагаемый способ подготовки сероводородсодержащей нефти и ПНГ прост в исполнении и не требует значительных затрат на его осуществление. Его реализация возможна как на существующих установках подготовки нефти, так и на вновь проектируемых.
Предлагаемое сочетание физических (двухступенчатой сепарации нефти, отдувки нефти в десорбционной колонне и подачи ПНГ с КС 10 в подводящий нефтепровод 3 сепараторов 2 первой ступени сепарации) и химических (нейтрализации сероводорода в нефти химическими реагентами) методов удаления сероводорода из нефти при ее подготовке позволяет:
- уменьшить расход нейтрализатора сероводорода;
- увеличить выход товарной нефти;
- полностью исключить возможность образования конденсата в газопроводе от КС до УСО;
- уменьшить расход ПНГ, поступающего в систему газосбора, и, как следствие, снизить затраты на очистку газа от сероводорода на УСО;
- исключить необходимость использования холодильного оборудования на КС.

Claims (1)

  1. Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа, включающий сепарацию сероводородсодержащей нефти в первой и второй ступенях сепарации, последующий нагрев сероводородсодержащей нефти в установке нагрева нефти, отдувку углеводородным газом, не содержащим сероводород, в десорбционной колонне, сепарацию нефти в сепараторе низкого давления, ввод и перемешивание реагента-нейтрализатора сероводорода, компримирование на компрессорной станции попутного нефтяного газа из второй ступени сепарации нефти, сепаратора низкого давления и десорбционной колонны, отбор попутного нефтяного газа из первой ступени сепарации и его подачу на установку сероочистки, отличающийся тем, что после компримирования попутный нефтяной газ подается в подводящий нефтепровод первой ступени сепарации или при разделении потоков первой ступени в подводящие нефтепроводы соответствующих сепараторов, пропускающих не менее 20% поступающей на подготовку сырой сероводородсодержащей нефти.
RU2015110278/06A 2015-03-23 2015-03-23 Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа RU2578499C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015110278/06A RU2578499C1 (ru) 2015-03-23 2015-03-23 Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015110278/06A RU2578499C1 (ru) 2015-03-23 2015-03-23 Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа

Publications (1)

Publication Number Publication Date
RU2578499C1 true RU2578499C1 (ru) 2016-03-27

Family

ID=55656693

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015110278/06A RU2578499C1 (ru) 2015-03-23 2015-03-23 Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа

Country Status (1)

Country Link
RU (1) RU2578499C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2269566C1 (ru) * 2004-06-24 2006-02-10 Государственное унитарное предприятие Республики Татарстан Всероссийский научно-исследовательский институт углеводородного сырья Способ подготовки сероводородсодержащей нефти
RU2316377C1 (ru) * 2006-06-21 2008-02-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ подготовки сероводородсодержащей нефти
RU2442816C1 (ru) * 2010-12-17 2012-02-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Установка очистки нефти от сероводорода и низкомолекулярных меркаптанов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2269566C1 (ru) * 2004-06-24 2006-02-10 Государственное унитарное предприятие Республики Татарстан Всероссийский научно-исследовательский институт углеводородного сырья Способ подготовки сероводородсодержащей нефти
RU2316377C1 (ru) * 2006-06-21 2008-02-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ подготовки сероводородсодержащей нефти
RU2442816C1 (ru) * 2010-12-17 2012-02-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Установка очистки нефти от сероводорода и низкомолекулярных меркаптанов

Similar Documents

Publication Publication Date Title
US10486100B1 (en) Coalescer for co-current contactors
US9500404B2 (en) Method and system for removing H2S from a natural gas stream
RU2549905C2 (ru) Способ обработки природного газа, содержащего диоксид углерода
RU2609175C2 (ru) Способ модернизации действующей установки низкотемпературной сепарации газа
US10717039B2 (en) Inner surface features for co-current contractors
RU2570795C1 (ru) Газоперерабатывающий и газохимический комплекс
WO2011026170A1 (en) Process and apparatus for reducing the concentration of a sour species in a sour gas
EA014746B1 (ru) Установка и способ сепарации конденсата газа из углеводородных смесей высокого давления
MX2009010129A (es) Metodo y dispositivo para separar uno o mas hidrocarburos c2+ a partir de una corriente de hidrocarburos de fase mixta.
RU2286377C1 (ru) Способ низкотемпературного разделения углеводородного газа
RU2439452C1 (ru) Способ низкотемпературной подготовки углеводородного газа
CN103119295A (zh) 用于净化气体流的方法和设备
CN111004657B (zh) 一种油田伴生气综合利用的方法
RU2722679C1 (ru) Установка (варианты) и система (варианты) для отбензинивания попутного нефтяного газа, способ отбензинивания попутного нефтяного газа
RU2578499C1 (ru) Способ подготовки сероводородсодержащей нефти и попутного нефтяного газа
US10668425B2 (en) Separation of methane from gas mixtures
RU2612235C1 (ru) Способ и установка подготовки газа деэтанизации к транспортировке по газопроводу
RU2175882C2 (ru) Способ подготовки углеводородного газа к транспорту "оптимет"
RU2541472C1 (ru) Установка подготовки и переработки углеводородного сырья
CN111447985A (zh) 蒸馏含氧气的气体流的方法
RU2555909C1 (ru) Способ подготовки углеводородного газа к транспорту
RU136140U1 (ru) Установка для подготовки попутного нефтяного газа низкого давления (варианты)
RU49609U1 (ru) Установка низкотемпературного разделения углеводородного газа
CN111849573A (zh) 一种轻烃回收***
RU213282U1 (ru) Установка отбензинивания углеводородного газа