RU2577273C1 - Способ получения аэрогелей на основе многослойных углеродных нанотрубок - Google Patents

Способ получения аэрогелей на основе многослойных углеродных нанотрубок Download PDF

Info

Publication number
RU2577273C1
RU2577273C1 RU2014146924/05A RU2014146924A RU2577273C1 RU 2577273 C1 RU2577273 C1 RU 2577273C1 RU 2014146924/05 A RU2014146924/05 A RU 2014146924/05A RU 2014146924 A RU2014146924 A RU 2014146924A RU 2577273 C1 RU2577273 C1 RU 2577273C1
Authority
RU
Russia
Prior art keywords
carbon nanotubes
multilayer carbon
catalyst
nanotubes
aerogel
Prior art date
Application number
RU2014146924/05A
Other languages
English (en)
Inventor
Владимир Львович Кузнецов
Дмитрий Викторович Красников
Мария Александровна Казакова
Сергей Иванович Мосеенков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Priority to RU2014146924/05A priority Critical patent/RU2577273C1/ru
Application granted granted Critical
Publication of RU2577273C1 publication Critical patent/RU2577273C1/ru

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к области получения аэрогелей на основе многослойных углеродных нанотрубок в виде изделий с контролируемой формой, в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм, которые могут использоваться для получения покрытий, поглощающих и/или отражающих электромагнитное излучение, звукопоглощающих композитов, а также носителей биологически активных объектов. Способ получения аэрогелей на основе многослойных углеродных нанотрубок характеризуется тем, что катализатор синтеза многослойных углеродных нанотрубок формуют и/или помещают в матрицу и обрабатывают углеродсодержащими реагентами в реакторе при температуре не выше 900°C, в результате чего получают трехмерную ажурную структуру на основе многослойных углеродных нанотрубок с плотностью менее 100 мг/см3. В качестве катализатора синтеза многослойных углеродных нанотрубок применяют катализатор и/или смесь катализаторов, обеспечивающих получение нанотрубок разного диаметра, что приводит к созданию аэрогелей с полимодальным распределением по диаметру нанотрубок. Форму изделий аэрогеля на основе многослойных углеродных нанотрубок задают исходной геометрической формой катализатора. Технический результат - создание аэрогелей с заданными характеристиками на основе многослойных углеродных нанотрубок непосредственно в ходе их роста. 2 з.п. ф-лы, 2 табл., 6 ил., 9 пр.

Description

Изобретение относится к области получения аэрогелей на основе многослойных углеродных нанотрубок (МУНТ) в виде изделий с контролируемой формой (в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм, октаэдров и других желаемых форм). Полученные аэрогели могут использоваться для получения покрытий, поглощающих и/или отражающих электромагнитное излучение, звукопоглощающих композитов, а также носителей биологически активных объектов.
Аэрогели - материалы, представляющие собой гель, в котором жидкая фаза полностью замещена газообразной. Углеродные аэрогели - высокопористые материалы, состоящие из трехмерного каркаса, образованного различными протяженными формами углеродных наноматериалов (пенами из аморфизованного или графитизированного углерода, графенами, углеродными нанотрубками), характеризуются низкой плотностью (менее 100 мг/см3).
Известно несколько подходов получения углеродных аэрогелей. При этом наиболее распространены методы, базирующиеся на первоначальном получении 3D-полимерных матриц (по золь-гель технологии) с их последующей карбонизацией, а также методы, базирующиеся на использовании индивидуальных наноразмерных структур (фуллерены, углеродные нанотрубки, графен и т.д.). В частности, описаны способы получения углеродных аэрогелей по золь-гель технологии, выполненных по классической схеме путем трех последовательных технологических операций: (1) золь-гель полимеризации органических олигомеров (синтез органических аэрогелей), (2) сушки (субкритическая, сверхкритическая или сублимационная) и (3) высокотемпературной карбонизации полученного органического аэрогеля [R.W. Pekala, C.T. Alviso, X. Lu, J. Gross, J. Fricke, New organic aerogels based upon a phenolic-furfural reaction / J. Non-Cryst Solids, 1995, 188, 34-40].
Для получения углеродного аэрогеля через стадию золь-гель технологии используются различные органические матрицы на основе: резорцин-формальдегида, меламин-формальдегида, фенол-фурфурола, полиакрилонитрила и полиуретана [W. Li, G. Reichenauer, J. Fricke, Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors / Carbon, 2002, 40, 2955-2959]. В этом ряду наибольшее распространение получила система на основе резорцин-формальдегида. Использование различных приемов удаления растворителя (метод замены растворителей, субкритическая, сверхкритическая и сублимационная сушки) приводит к получению аэрогелей с различными свойствами и структурой [R. Zhang, Y. Lu, L. Zhan et al., Monolithic carbon aerogels from sol-gel polymerization of phenolic resoles and methylolated melamine / Carbon, 2002, 41, 1660-1663]. Большинство аэрогелей углерода, получаемых с использованием описанных подходов, имеют удельную поверхность в диапазоне от 500-800 м2/г. Данные методы имеют ряд недостатков, такие как многостадийность, необходимость использования дорогостоящих реактивов и оборудования.
Другие методы получения аэрогелей базируются на использовании подходов связывания фрагментов наноструктурированных углеродных материалов дополнительными химическими веществами (фуллерены, углеродные нанотрубки, графен и т.д.). В частности, были описаны различные методики по получению углеродных аэрогелей за счет «склеивания» углеродных нанотрубок с использованием полимерных материалов (поливиниловый спирт, полиметилметакрилат и т.д), однако, это приводило к снижению проводимости и увеличению плотности углеродного аэрогеля [М.В. Bryning, D.E. Milkie, M.F. Islam et al., Carbon Nanotube Aerogels / Adv. Mater., 2007, 19, 661-664].
Величина поверхности аэрогелей, полученных путем склеивания наноструктурированных форм углерода, значительным образом зависит от плотности структурообразующего материала, от типа связующего материала и его количества [J. Liu, A.S. Karakoti, A. Kumar et al., Ultralight Multiwalled Carbon Nanotube Aerogel / ACS NANO, 2010, 4, 12, 7293-7302].
Ввиду наличия у многослойных углеродных трубок (МУНТ) уникальных механических, электрофизических свойств они являются перспективными материалами для использования в таких областях науки и техники, как наноэлектроника, альтернативная энергетика, аэрокосмическая, машиностроительная и строительная промышленность [Baughman R.Н., Zakhidov A.A., de Heer W.А. Carbon nanotubes - the route toward applications / Science, 2002, 297, 5582, 787-792].
Однако использование МУНТ в таких приложениях, как акустика (звукопоглощение), экранирование электромагнитного излучения, в качестве носителей катализаторов или биологических объектов затруднено ввиду высокой сыпучести и слабой формуемости исходных порошков МУНТ. Таким образом, для эффективного использования нанотрубок необходимо создание структурированных и жестких полупродуктов на их основе (формовка).
К настоящему моменту известен ряд публикаций [Y.Z. Guo, J. Shen, J. Wang. Carbon aerogels dried at ambient conditions / New Carbon, 2001, 16, 55-57] и патентов [EP 2111292 (B1), B01J 13/00, 2010-10-13], описывающих синтез углеродных аэрогелей из порошков исходных МУНТ [WO 2008000163 (A1), C01B 31/02, 2008-01-03]. Основным подходом для создания аэрогелей является сверхкритическая сушка дисперсий на основе нанотрубок [US 2011224376 (A1), C08F 230/08, 2011-09-15].
Основным недостатком подобных материалов признается их недостаточная прочность и эластичность [М.В. Bryning, D.E. Milkie, M.F. Islam, L.A. Hough, J.M. Kikkawa, A.G. Yodh, Carbon Nanotube Aerogels /Adv. Mater. 2007, 19, 661-664]. Для дополнительного упрочнения структуры материала в исходные порошки МУНТ в качестве связующего вводят различные полимеры, что приводит к значительному улучшению прочностных характеристик, но и повышает плотность материала [J. Zou, J. Liu, A.S. Karakoti, A. Kumar, D. Joung, Q. Li, S.I. Khondaker, S. Seal, L. Zhai, Ultralight Multiwalled Carbon Nanotube Aerogel / ACS NANO 2010, 4, №.12, 7293-7302].
Использование графена в качестве дополнительного связующего МУНТ позволяет улучшить эластичные свойства углеродного аэрогеля [Н. Sun, Z. Xu, С. Gao, Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels / Adv. Mater. 2013, 25, 2554-2560]. Для упрочнения структуры углеродных аэрогелей используют химическую сшивку МУНТ в местах контактов [US 6187823, C01B 31/02, 2001-02-13].
Однако, несмотря на значительные успехи в создании аэрогелей из порошков исходных нанотрубок, для реализации данного похода необходимо использование дорогостоящего оборудования для проведения операции сушки материала в сверхкритических условиях, что существенно увеличивает стоимость конечных продуктов. Поэтому более перспективным подходом является синтез аэрогелей нанотрубок непосредственно (in situ) в ходе проведения роста МУНТ. Подобный поход был реализован в ряде работ через газофазное напыление катализатора в ходе роста нанотрубок [В.Х. Gui, J. Wei, K. Wang, А. Cao, Н. Zhu, Y. Jia, Q. Shu, D. Wu, Carbon Nanotube Sponges / Advanced Materials, 2010, 22, 617-621] или введение «разориентирующего» агента при синтезе ориентированных массивов МУНТ [М. Xu, D.N. Futaba, Т. Yamada, М. Yumura, K. Hata, Carbon Nanotubes with Temperature-Invariant Viscoelasticity from - 196 to 1000°C / Science, 2010, 330, 1364-1368].
Изобретение решает задачу по одностадийному синтезу аэрогелей с заданными характеристиками в условиях, аналогичных производству МУНТ в промышленных установках. Изобретение решает задачу получения аэрогелей на основе МУНТ в виде объектов с контролируемой формой, в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм и других желаемых форм.
Задача решается способом получения аэрогелей на основе многослойных углеродных нанотрубок МУНТ, в котором катализатор синтеза многослойных углеродных нанотрубок формуют и/или помещают в матрицу и обрабатывают углеродсодержащими реагентами в реакторе при температуре не выше 900°C, в результате чего получают трехмерную ажурную структуру на основе многослойных углеродных нанотрубок с плотностью менее 100 мг/см3.
В качестве катализатора синтеза многослойных углеродных нанотрубок применяют катализатор и/или смесь катализаторов, обеспечивающих получение нанотрубок разного диаметра, что приводит к созданию аэрогелей с полимодальным распределением по диаметру нанотрубок.
Форму изделий аэрогеля на основе многослойных углеродных нанотрубок задают исходной геометрической формой катализатора.
Задача решается путем первоначального формования и/или помещения в объемную матрицу порошка катализатора синтеза МУНТ, состоящего из высокодисперсных частиц оксидных матриц, содержащих множественные центры роста МУНТ или их предшественники, и его последующей обработкой углеродсодержащими газами в реакторе для производства многослойных углеродных нанотрубок. В качестве активного компонента катализатор может содержать соединения на основе Fe, Co, Ni, Mo, Mn, W или их комбинаций, а также Al2O3, MgO, CaCO3, CaO или их комбинации - в качестве носителей.
Одним из способов получения МУНТ является каталитический пиролиз углеводородов или оксида углерода [Т.W. Ebbesen // Carbon nanotubes: Preparation and properties, CRC Press, 1997, p. 139-161].
В предлагаемом способе для демонстрации возможности структурирования материала аэрогели получают для четырех типов многослойных углеродных нанотрубок МУНТ, синтезированных на катализаторах Fe-Co/Al2O3, Fe-Co/MgO, Со-Mn/MgAlOx и Fe-Co/CaCO3. В частности в присутствии катализатора Fe-Co/CaCO3 получают МУНТ со средними внешними диаметрами - 15-25 нм (Sуд=80±30 м2/г). Значение кажущейся плотности углеродного аэрогеля составляет 50-100 мг/см3. Объем пор аэрогелей составляет от 90 до 98% (из них микро- и мезопоры не более 2%) от общего объема образца.
Полученные образцы характеризуют методом просвечивающей электронной микроскопии, растровой электронной микроскопии, а также путем измерения удельной поверхности по методу БЭТ и пористой структуры по изотермам адсорбции азота (метод BJH).
Настоящее изобретение предлагает способ приготовления углеродного аэрогеля на основе многослойных углеродных нанотрубок для создания композитных материалов различного назначения.
Сущность изобретения иллюстрируется следующими таблицами, примерами и иллюстрациями.
На Фиг. 1 представлена предлагаемая схема образования и стабилизации структуры аэрогеля МУНТ: А. Фрагмент частиц сформованного катализатора; Б. Катализатор после активации (восстановления), содержащий активные металлические частицы (черные кружки); В. Рост МУНТ за счет каталитического пиролиза углеродсодержащих молекул приводит к их расталкиванию и перепутыванию, сопровождающихся резким увеличением объема материала по сравнению с объемом сформованного катализатора.
На Фиг. 2 представлены фотографии образцов аэрогелей МУНТ (шаровой формы) с диаметрами 4, 9, 14 мм.
На Фиг. 3 представлены фотографии образцов катализаторов и аэрогелей, получающихся из них, демонстрирующие возможность влияния на форму аэрогеля (справа А, С) путем изменения формы катализатора (слева А, В).
На Фиг. 4 представлены фотографии образцов аэрогелей МУНТ, сохраняющих форму при погружении в растворитель (А) и при массе более чем в 2500 раз превосходящей собственную (В).
На Фиг. 5 представлены микрофотографии растровой электронной микроскопии образцов углеродных аэрогелей, демонстрирующие ажурную структуру, образованную из спутанных МУНТ, с высокой долей макропор.
На Фиг. 6 представлены: А - типичная изотерма адсорбции азота на аэрогель МУНТ (Относительно малый размер петли гистерезиса свидетельствует об относительно низкой доле микро- и мезопор в структуре материала), В - типичное распределение пор для аэрогелей МУНТ, рассчитанное по адсорбционной кривой БЭТ общая доля детектируемых пор в объеме материала (d<120 нм) составляет 1.5%.
Figure 00000001
Figure 00000002
Figure 00000003
Пример 1.
Навеску катализатора 40%Fe-Co/CaO (RU 2373995, B01J 37/00, 27.11.2009) в 50 мг помещают в трубчатый кварцевый реактор (Т=670°C). После термостатирования в реактор подают смесь Ar/C2H4 (400 см3/мин, 1:1). Время синтеза составляет 15 мин. После окончания реакции образец охлаждают в токе инертного газа. В результате получаются 619 мг аэрогеля на основе МУНТ (средний диаметр 22 нм) с кажущейся плотностью 72 мг/см3.
Пример 2.
Аналогично примеру 1, отличающийся тем, что время синтеза составляет 1 час. В результате получаются 1429 мг аэрогеля на основе МУНТ (средний диаметр 22 нм) с кажущейся плотностью 92 мг/см3.
Пример 3.
Аналогично примеру 1, отличающийся тем, что реакцию проводят в атмосфере N2/C2H4/(C3H8-C4H10) (200/10/200 см3/мин соответственно) при температуре 750°C. В результате получаются 341 мг аэрогеля на основе МУНТ (средний диаметр 22 нм).
Пример 4.
Аналогично примеру 1, отличающийся тем, что реакцию проводят в атмосфере N2/C2H2 (400 см3/мин, 70:30) при температуре 650°C. В результате получаются 714 мг аэрогеля на основе МУНТ (средний диаметр 21 нм).
Пример 5.
Аналогично примеру 1, отличающийся тем, что в качестве катализатора используется смесь порошков 40%Fe-Co/CaO и 40%Fe-Co/Al2O3 (RU 2373995, B01J 37/00, 27.11.2009) в массовом соотношении 1 к 1. В результате получаются 548 мг аэрогеля на основе МУНТ (бимодальное распределение трубок, средние диаметры 21 и 10 нм).
Пример 6.
Аналогично примеру 1, отличающийся тем, что в качестве катализатора используется смесь порошков 40%Fe-Co/CaO и 40%Fe-Co/Al2O3 (RU 2373995, B01J 37/00, 27.11.2009) в массовом соотношении 1 к 2. В результате получаются 828 мг аэрогеля на основе МУНТ (бимодальное распределение трубок, средние диаметры 21 и 10 нм).
Пример 7.
Аналогично примеру 1, отличающийся тем, что в качестве катализатора используется порошок 40%Fe-Co/MgO (патент RU 2373995, B01J 37/00, 27.11.2009). В результате получаются 423 мг аэрогеля на основе МУНТ (средний диаметр 14 нм).
Пример 8.
Аналогично примеру 1, отличающийся тем, что в качестве катализатора используется порошок 76%Co-Mn/MgAlOx. В результате получаются 544 мг аэрогеля на основе МУНТ (средний диаметр 18 нм).
Пример 9.
Аналогично примеру 1, отличающийся тем, что навеску катализатора помещают в пористую кварцевую ячейку цилиндрической формы, а затем помещают в реактор. Полученный аэрогель имеет форму, совпадающую с внутренней полостью ячейки.
Технический результат - создание аэрогелей на основе многослойных углеродных нанотрубок непосредственно в ходе их роста.

Claims (3)

1. Способ получения аэрогелей на основе многослойных углеродных нанотрубок, характеризующийся тем, что катализатор синтеза многослойных углеродных нанотрубок формуют и/или помещают в матрицу и обрабатывают углеродсодержащими реагентами в реакторе при температуре не выше 900°C, в результате чего получают трехмерную ажурную структуру на основе многослойных углеродных нанотрубок с плотностью менее 100 мг/см3.
2. Способ по п. 1, отличающийся тем, что в качестве катализатора синтеза многослойных углеродных нанотрубок применяют катализатор и/или смесь катализаторов, обеспечивающих получение нанотрубок разного диаметра, что приводит к созданию аэрогелей с полимодальным распределением по диаметру нанотрубок.
3. Способ по п. 1, отличающийся тем, что форму изделий аэрогеля на основе многослойных углеродных нанотрубок задают исходной геометрической формой катализатора.
RU2014146924/05A 2014-11-24 2014-11-24 Способ получения аэрогелей на основе многослойных углеродных нанотрубок RU2577273C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014146924/05A RU2577273C1 (ru) 2014-11-24 2014-11-24 Способ получения аэрогелей на основе многослойных углеродных нанотрубок

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014146924/05A RU2577273C1 (ru) 2014-11-24 2014-11-24 Способ получения аэрогелей на основе многослойных углеродных нанотрубок

Publications (1)

Publication Number Publication Date
RU2577273C1 true RU2577273C1 (ru) 2016-03-10

Family

ID=55654468

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014146924/05A RU2577273C1 (ru) 2014-11-24 2014-11-24 Способ получения аэрогелей на основе многослойных углеродных нанотрубок

Country Status (1)

Country Link
RU (1) RU2577273C1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019133900A1 (en) * 2017-12-28 2019-07-04 Texas Instruments Incorporated Sp2-bonded carbon structures
WO2020050813A1 (en) * 2018-09-04 2020-03-12 Hewlett-Packard Development Company, L.P. Energy dampeners for electronic devices
RU2725474C1 (ru) * 2019-04-29 2020-07-02 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Биокатализатор, способ его приготовления и способ получения сложных эфиров с использованием этого биокатализатора
US10748999B2 (en) 2018-12-21 2020-08-18 Texas Instruments Incorporated Multi-super lattice for switchable arrays
US11254775B2 (en) 2017-12-28 2022-02-22 Texas Instruments Incorporated Filler particles for polymers
US11370662B2 (en) 2017-12-28 2022-06-28 Texas Instruments Incorporated Hexagonal boron nitride structures
US11390527B2 (en) 2017-12-28 2022-07-19 Texas Instruments Incorporated Multi-layered SP2-bonded carbon tubes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1407390A3 (ru) * 1984-08-11 1988-06-30 Басф Аг (Фирма) Способ получени аэрогел
US6187823B1 (en) * 1998-10-02 2001-02-13 University Of Kentucky Research Foundation Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines
EP2111292A1 (fr) * 2006-12-20 2009-10-28 Centre National de la Recherche Scientifique (CNRS) Aerogels a base de nanotubes de carbone
RU2426751C2 (ru) * 2005-10-21 2011-08-20 Кабот Корпорейшн Композиционные материалы на основе аэрогелей
RU2010133907A (ru) * 2008-01-17 2012-02-27 Эвоник Карбон Блек ГмбХ (DE) Углеродные аэрогели, способ их получения и их применение

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1407390A3 (ru) * 1984-08-11 1988-06-30 Басф Аг (Фирма) Способ получени аэрогел
US6187823B1 (en) * 1998-10-02 2001-02-13 University Of Kentucky Research Foundation Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines
RU2426751C2 (ru) * 2005-10-21 2011-08-20 Кабот Корпорейшн Композиционные материалы на основе аэрогелей
EP2111292A1 (fr) * 2006-12-20 2009-10-28 Centre National de la Recherche Scientifique (CNRS) Aerogels a base de nanotubes de carbone
RU2010133907A (ru) * 2008-01-17 2012-02-27 Эвоник Карбон Блек ГмбХ (DE) Углеродные аэрогели, способ их получения и их применение

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019133900A1 (en) * 2017-12-28 2019-07-04 Texas Instruments Incorporated Sp2-bonded carbon structures
US11254775B2 (en) 2017-12-28 2022-02-22 Texas Instruments Incorporated Filler particles for polymers
US11370662B2 (en) 2017-12-28 2022-06-28 Texas Instruments Incorporated Hexagonal boron nitride structures
US11390527B2 (en) 2017-12-28 2022-07-19 Texas Instruments Incorporated Multi-layered SP2-bonded carbon tubes
US11938715B2 (en) 2017-12-28 2024-03-26 Texas Instruments Incorporated SP2-bonded carbon structures
WO2020050813A1 (en) * 2018-09-04 2020-03-12 Hewlett-Packard Development Company, L.P. Energy dampeners for electronic devices
US11401992B2 (en) 2018-09-04 2022-08-02 Hewlett-Packard Development Company, L.P. Energy dampeners for electronic devices
US11808316B2 (en) 2018-09-04 2023-11-07 Hewlett-Packard Development Company, L.P. Energy dampeners for electronic devices
US10748999B2 (en) 2018-12-21 2020-08-18 Texas Instruments Incorporated Multi-super lattice for switchable arrays
US11309388B2 (en) 2018-12-21 2022-04-19 Texas Instruments Incorporated Multi-super lattice for switchable arrays
RU2725474C1 (ru) * 2019-04-29 2020-07-02 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Биокатализатор, способ его приготовления и способ получения сложных эфиров с использованием этого биокатализатора

Similar Documents

Publication Publication Date Title
RU2577273C1 (ru) Способ получения аэрогелей на основе многослойных углеродных нанотрубок
Dou et al. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation
Mikhalchan et al. Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method
Sudeep et al. Covalently interconnected three-dimensional graphene oxide solids
Huang et al. Edge‐to‐edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity
Jiang et al. Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres
Inagaki et al. Nanocarbons––recent research in Japan
Li et al. Fabrication of highly reinforced and compressible graphene/carbon nanotube hybrid foams via a facile self-assembly process for application as strain sensors and beyond
Xia et al. CO2 activation of ordered porous carbon CMK-1 for hydrogen storage
Ge et al. Flexible carbon nanofiber sponges for highly efficient and recyclable oil absorption
Moon et al. Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures
Lee et al. Tunable pore size and porosity of spherical polyimide aerogel by introducing swelling method based on spherulitic formation mechanism
Wang et al. Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration
Zhong et al. Synthesis of a novel porous material comprising carbon/alumina composite aerogels monoliths with high compressive strength
Hong et al. Graphite nanofibers prepared from catalytic graphitization of electrospun poly (vinylidene fluoride) nanofibers and their hydrogen storage capacity
Worsley et al. Carbon aerogels
Chang et al. Cost-efficient strategy for sustainable cross-linked microporous carbon bead with satisfactory CO2 capture capacity
Wan et al. Incorporation of graphene nanosheets into cellulose aerogels: enhanced mechanical, thermal, and oil adsorption properties
Yu et al. Preparation of carbon nanoparticles from activated carbon by aqueous counter collision
Laurent et al. Mesoporous binder-free monoliths of few-walled carbon nanotubes by spark plasma sintering
Joshi et al. Sodium hydroxide activated nanoporous carbons based on Lapsi seed stone
Chen et al. A co-confined carbonization approach to aligned nitrogen-doped mesoporous carbon nanofibers and its application as an adsorbent
Zhao et al. Synthesis of multi-wall carbon nanotubes by the pyrolysis of ethanol on Fe/MCM-41 mesoporous molecular sieves
Lee et al. Pore parameters-dependent adsorption behavior of volatile organic compounds on graphene-based material
Duong et al. Advanced thermal properties of carbon-based aerogels