RU2576600C2 - Устройство направляющих лопаток для турбины и способ его изготовления - Google Patents

Устройство направляющих лопаток для турбины и способ его изготовления Download PDF

Info

Publication number
RU2576600C2
RU2576600C2 RU2012151011/06A RU2012151011A RU2576600C2 RU 2576600 C2 RU2576600 C2 RU 2576600C2 RU 2012151011/06 A RU2012151011/06 A RU 2012151011/06A RU 2012151011 A RU2012151011 A RU 2012151011A RU 2576600 C2 RU2576600 C2 RU 2576600C2
Authority
RU
Russia
Prior art keywords
guide
cooling fluid
hole
passage
aerodynamic profile
Prior art date
Application number
RU2012151011/06A
Other languages
English (en)
Other versions
RU2012151011A (ru
Inventor
Ричард ДЖОУНЗ
Энди ПЭЙСИ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2012151011A publication Critical patent/RU2012151011A/ru
Application granted granted Critical
Publication of RU2576600C2 publication Critical patent/RU2576600C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/04Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from several pieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/047Nozzle boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/90Mounting on supporting structures or systems
    • F05D2240/91Mounting on supporting structures or systems on a stationary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Устройство направляющих лопаток содержит внутреннюю платформу, полый аэродинамический профиль и направляющую. Внутренняя платформа выполнена со сквозным отверстием, образующим проточный канал для охлаждающей текучей среды. Полый аэродинамический профиль выполнен в виде единого целого с первой поверхностью внутренней платформы и имеет охлаждающее отверстие для обмена охлаждающей текучей среды, проходящей через сквозное отверстие в или из полого аэродинамического профиля. Направляющая выполнена в виде единого целого со второй поверхностью внутренней платформы и содержит выемку с проходом для охлаждающей текучей среды, образующим проход для охлаждающей текучей среды к сквозному отверстию. Направляющая проходит вдоль второй поверхности в окружном направлении. Проход для охлаждающей текучей среды имеет в окружном направлении размер сквозного отверстия. При изготовлении указанного выше устройства направляющих лопаток создают внутреннюю платформу, при этом полый аэродинамический профиль выполняют в виде единого целого с первой поверхностью внутренней платформы, а направляющую выполняют в виде единого целого с ее второй поверхностью. Группа изобретений позволяет повысить срок службы устройства направляющих лопаток за счет уменьшения разности температур направляющей и внутренней платформы. 2 н. и 10 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Данное изобретение относится к устройству направляющих лопаток для турбины и к способу изготовления устройства направляющих лопаток для турбины.
Уровень техники
Обычные турбинные направляющие лопатки должны выдерживать высокие нагрузки в аэродинамическом профиле и, в частности, в зализах задних кромок. Эти напряжения вызываются преимущественно различными скоростями нагревания и охлаждения внутри компонентов во время переходных рабочих режимов турбин. Аэродинамические профили направляющих лопаток образованы на внутренней платформе, которая проходит в окружном направлении турбинного вала. От внутренней платформы аэродинамические профили проходят наружу в радиальном направлении. От внутренней платформы в радиальном направлении к центру турбинного вала закреплена внутренняя направляющая. Внутренняя направляющая используется для установки диафрагмы между поверхностью турбинного вала и внутренней платформой. Внутренняя направляющая в целом толще и шире внутренней платформы, к которой прикреплена внутренняя направляющая, так что внутренняя направляющая реагирует медленнее на изменения температуры в турбине по сравнению с внутренней платформой. Это может вызывать термически обусловленные напряжения и уменьшать срок службы обычных сопловых направляющих аппаратов.
В обычных сопловых направляющих аппаратах турбины напряжения можно уменьшать посредством удерживания минимальной глубины и ширины внутренней направляющей. Это может также приводить к уменьшению срока службы внутренней направляющей по сравнению с сопловой направляющей лопаткой турбин и снижать качество фиксации диафрагмы.
В US 4126405 приведено описание сегмента сопла турбомашины, который удерживается в тангенциальном положении с помощью пары кронштейнов, проходящих радиально из наружного и внутреннего ободов. Каждый кронштейн действует в качестве концевой заглушки для предотвращения утечки воздуха с одного конца лопатки.
В ЕР 1793088 А2 раскрыто турбинное сопло для газотурбинного двигателя. Турбинное сопло содержит наружный обод и внутренний обод. Между внутренним ободом и наружным ободом образованы лопатки. На внутреннем ободе образован фланец и передний внутренний фланец, при этом фланцы проходят радиально внутрь от внутреннего обода.
В US 3829233 раскрыта уплотнительная система для лопастной диафрагмы машин с осевым потоком текучей среды, таких как газовая турбина. Турбина содержит внутренний бандаж, из которого лопатки проходят радиально наружу относительно турбинного вала и от которого выступают радиально внутрь фланцы и ребра. К фланцам и ребрам прикреплено уплотнительное кольцо корпуса или диафрагма, так что внутренний бандаж герметизирован от турбинного вала. Внутренний бандаж содержит отверстие для охлаждающей текучей среды, при этом отверстие пространственно отделено от фланцев и ребер.
Сущность изобретения
Существует потребность в создании устройства направляющих лопаток с увеличенным сроком службы и адекватными свойствами технического обслуживания.
Эта потребность может быть удовлетворена с помощью устройства направляющих лопаток для турбины и способа изготовления устройства направляющих лопаток в соответствии с независимыми пунктами формулы изобретения.
Согласно первому аспекту изобретения предлагается устройство направляющих лопаток для турбины. Устройство направляющих лопаток содержит внутреннюю платформу, полый аэродинамический профиль и направляющую. Внутренняя платформа содержит сквозное отверстие, образующее проточный канал для охлаждающей текучей среды. Внутренняя платформа проходит в окружном направлении вокруг вала турбины. Полый аэродинамический профиль содержит охлаждающий раскрыв для обмена охлаждающей текучей среды, проходящей через отверстие в или из полого аэродинамического профиля. Полый аэродинамический профиль фиксирован на первой поверхности внутренней платформы. Направляющая содержит выемку с проходом для охлаждающей текучей среды, при этом проход для охлаждающей текучей среды образует проход для охлаждающей текучей среды к сквозному отверстию. Направляющая фиксирована на второй поверхности внутренней платформы, и направляющая проходит вдоль второй поверхности в окружном направлении вокруг вала. Проход для охлаждающей текучей среды имеет в окружном направлении по меньшей мере размер сквозного отверстия.
Согласно другому аспекту изобретения предлагается способ изготовления устройства направляющих лопаток для турбины. В соответствии со способом создают внутреннюю платформу со сквозным отверстием для образования канала для охлаждающей текучей среды. При этом внутренняя платформа проходит в окружном направлении вокруг вала турбины. Затем прикрепляют полый аэродинамический профиль к первой поверхности (например, которая ориентирована радиально наружу относительно турбинной оси) внутренней платформы, при этом полый аэродинамический профиль содержит охлаждающий раскрыв для обмена охлаждающей текучей среды, проходящей через отверстие в или из полого аэродинамического профиля. Направляющая прикреплена ко второй поверхности (например, которая ориентирована радиально внутрь относительно турбинной оси) внутренней платформы, и направляющая проходит вдоль второй поверхности в окружном направлении вокруг вала. Направляющая содержит выемку с проходом для охлаждающей текучей среды для образования прохода для охлаждающей текучей среды. Проход для охлаждающей текучей среды имеет в окружном направлении по меньшей мере размер сквозного отверстия.
Внутренняя платформа проходит в окружном направлении вокруг турбинного вала. Внутренняя платформа может содержать внутренний охлаждающий канал, проходящий также в окружном направлении, через который может транспортироваться охлаждающая текучая среда. В желаемых местах, в частности в месте, где охлаждающая текучая среда подается в аэродинамический профиль, образовано сквозное отверстие. С помощью сквозного отверстия осуществляется обмен охлаждающей текучей среды в или из полого аэродинамического профиля. Кроме того, сквозное отверстие образует соединение по охлаждающей текучей среде с направляющей, так что обеспечивается возможность обмена охлаждающей текучей среды также в направлении к или от турбинного вала.
Направляющая проходит вдоль второй поверхности внутренней платформы в окружном направлении вокруг турбинного вала. Кроме того, направляющая проходит радиально внутрь к турбинному валу, начиная от второй поверхности. Направляющая обеспечивает определенную жесткость с целью фиксации уплотнительного элемента, такого как диафрагма, между второй поверхностью направляющей и поверхностью турбинного вала.
Кроме того, направляющая содержит выемку с проходом для охлаждающей текучей среды. Проход для охлаждающей текучей среды образует канал (который проходит радиально к турбинному валу) между сквозным отверстием внутренней платформы и пространством между внутренней платформой и турбинным валом. Когда охлаждающая текучая среда проходит через проход для охлаждающей текучей среды, направляющая охлаждается охлаждающей текучей средой. Таким образом, охлаждающая текучая среда охлаждает как направляющую, так и внутреннюю платформу.
Проход для охлаждающей текучей среды может быть свободен от других направляющих элементов или труб. Другими словами, охлаждающая текучая среда, протекающая через проход для охлаждающей текучей среды, находится в непосредственном контакте с поверхностью направляющей, которая образует проход для охлаждающей текучей среды. Дополнительно к этому, сквозное отверстие внутренней платформы может быть свободно от других направляющих элементов или труб. Охлаждающая текучая среда, протекающая через сквозное отверстие, может находиться в непосредственном контакте с поверхностью внутренней платформы, которая образует сквозное отверстие. Таким образом, размер раскрыва прохода для охлаждающей текучей среды и сквозного отверстия могут непосредственно определять соответствующее проточное поперечное сечение для охлаждающей текучей среды.
Наименьший раскрыв или диаметр ограничивает скорость текучей среды и тем самым эффективность охлаждения. В частности, если проход для охлаждающей текучей среды направляющей равен или больше сквозного отверстия внутренней платформы, то охлаждающая текучая среда охлаждает с одинаковой эффективностью направляющую и внутреннюю платформу.
Размер сквозного отверстия определяет, в частности, размер прохода для охлаждающей текучей среды в окружном направлении. Если сквозное отверстие и/или проход для охлаждающей текучей среды является круглыми, то размер задает, например, диаметр. Если форма сквозного отверстия или прохода для охлаждающей текучей среды эллиптическая, то размер задает, например, главную ось или поперечный диаметр. Если форма сквозного отверстия и/или прохода для охлаждающей текучей среды прямоугольная, то размер задает длину в окружном направлении. Дополнительно или в качестве альтернативного решения, понятие «размер» обозначает площадь поперечного сечения перекрывающихся поперечных сечений прохода для охлаждающей текучей среды и сквозного отверстия. Другими словами, площадь поперечного сечения прохода для охлаждающей текучей среды больше площади поперечного сечения сквозного отверстия в месте, где проход для охлаждающей текучей среды перекрывается с поперечным сечением сквозного отверстия.
Аэродинамический профиль содержит профиль крыла, имеющего заднюю кромку и переднюю кромку. Рабочая среда набегает на переднюю кромку и направляется поверхностью аэродинамического профиля к задней кромке, где рабочая среда покидает аэродинамический профиль с заданным и желаемым направлением. Передняя кромка и задняя кромка соединены воображаемой прямой линией, называемой хордой. Хорда аэродинамического профиля образует угол между 0° и 90° с окружным направлением прохождения. Направляющая образована в основном вдоль окружного направления. Таким образом перекрывающиеся площади поперечного сечения охлаждающего раскрыва аэродинамического профиля, сквозного отверстия, а также прохода для охлаждающей текучей среды перекрываются и образуют перекрывающееся поперечное сечение. Охлаждающая текучая среда протекает через перекрывающееся поперечное сечение. Проход для охлаждающей текучей среды выполнен больше сквозного отверстия в перекрывающемся поперечном сечении, так что максимальный массовый поток охлаждающей текучей среды не ограничен размером прохода для охлаждающей текучей среды направляющей. Другими словами, проход для охлаждающей текучей среды не образует наименьший проход охлаждающей текучей среды по сравнению со сквозным отверстием внутренней платформы и аэродинамическим профилем.
Поэтому поскольку охлаждающая текучая среда охлаждает внутреннюю направляющую и внутреннюю платформу с одинаковой эффективностью охлаждения, то разница температур внутренней платформы и направляющей уменьшается. В частности, больший проход для охлаждающей текучей среды направляющей относительно сквозного отверстия может обеспечивать повторение направляющей скорости изменения средней температуры остальных элементов устройства направляющих лопаток, таких как внутренняя платформа и полый аэродинамический профиль. Это приводит к меньшему термическому напряжению в переходных и быстро изменяющихся температурных условиях.
Таким образом, при уменьшении термического напряжения направляющей посредством согласования размера прохода для охлаждающей текучей среды, уменьшается термическое напряжение направляющей и могут быть уменьшены повреждения, такие как трещины, за счет разницы температур.
Согласно одному варианту выполнения в качестве примера выемка больше сквозного отверстия внутренней платформы. Выемка может быть выполнена в виде щелевого отверстия, при этом длина щелевого отверстия проходит в окружном направлении относительно вала. Таким образом, направляющая имеет меньший вес, поскольку больше материала может быть удалено с направляющей.
Согласно другому варианту выполнения в качестве примера направляющая выполнена в виде единого целого с платформой. В частности, направляющая и внутренняя платформа могут образовывать монолитную структуру и могут быть отлиты за один рабочий ход.
Согласно другому варианту выполнения в качестве примера устройство направляющих лопаток содержит другой полый аэродинамический профиль. Внутренняя платформа содержит другое сквозное отверстие, образующее другой проточный канал для охлаждающей текучей среды. Другой полый аэродинамический профиль содержит другой охлаждающий раскрыв для приема охлаждающей текучей среды, проходящей через другое сквозное отверстие в другой аэродинамический профиль, при этом другой аэродинамический профиль закреплен на первой поверхности внутренней платформы. Направляющая содержит другую выемку с другим проходом для охлаждающей текучей среды, образующим другой проход для охлаждающей текучей среды к сквозному отверстию. Другой проход для охлаждающей текучей среды имеет в окружном направлении по меньшей мере размер другого сквозного отверстия. Устройство направляющих лопаток может образовывать сегмент окружной ступени статора турбины. Сегмент может содержать лишь один или несколько аэродинамических профилей, которые прикреплены к первой поверхности внутренней платформы. Каждый сегмент может быть соединен с соседним сегментом направляющих лопаток в окружном направлении. Каждое устройство направляющих лопаток может быть соединено с другим устройством направляющих лопаток с помощью разъемного соединения. Однако сегмент может содержать, например, 3, 4, 5 или больше аэродинамических профилей. Устройство (сегмент) направляющих лопаток может также образовывать полную (360º) секцию с множеством аэродинамических профилей. Таким образом, поврежденные устройства направляющих лопаток (сегменты направляющих лопаток) можно заменять. Таким образом, снижается стоимость технического обслуживания.
Согласно другому варианту выполнения в качестве примера устройство направляющих лопаток дополнительно содержит диафрагму для герметизации устройства направляющих лопаток относительно вала. Направляющая содержит установочную секцию, на которой установлена диафрагма. Направляющая фиксирует диафрагму так, что диафрагма удерживается в желаемом положении, в котором диафрагма герметизирует внутреннее пространство между внутренней платформой и турбинной осью. За счет правильного охлаждения направляющей за счет большего размера сквозного отверстия тепловая деформация направляющей уменьшается, так что зазоры между диафрагмой и вращающимся турбинным валом, вызванные тепловой деформацией, уменьшаются. Установочная секция образована, например, для обеспечения зажимной фиксации, винтового соединения и/или сварного соединения. Кроме того, диафрагма образует скользящее соединение с валом, так что обеспечивается возможность вращения вала относительно диафрагмы. Скользящее соединение обеспечивает также герметизацию между валом и диафрагмой.
Согласно другому варианту выполнения в качестве примера устройство направляющих лопаток дополнительно содержит наружную платформу, к которой прикреплен полый аэродинамический профиль наружным концом полого аэродинамического профиля относительно внутреннего конца полого аэродинамического профиля, который прикреплен к внутренней платформе. Наружная платформа, аэродинамический профиль и внутренняя платформа могут быть выполнены монолитно (в виде единого целого), например, посредством литья.
Следует отметить, что описание указанных выше в качестве примера вариантов выполнения приведено относительно различных предметов изобретения. В частности, некоторые варианты выполнения приведены относительно пунктов формулы изобретения, относящихся к устройству, в то время как другие варианты выполнения приведены относительно пунктов формулы изобретения, относящихся к способу. Однако для специалистов в данной области техники из приведенного выше описания и последующего описания понятно, что если не указано другое, то дополнительно к любой комбинации признаков, относящихся к одному типу предмета изобретения, необходимо считать раскрытой в данной заявке также любую комбинацию признаков, относящихся к другому типу предмета изобретения, в частности признаков устройства и признаков способа.
Краткое описание чертежей
Указанные выше и другие аспекты данного изобретения следуют из приведенного ниже подробного описания приведенных в качестве примера, не имеющих ограничительного характера вариантов выполнения со ссылками на прилагаемые чертежи, на которых изображено:
фиг. 1 - устройство направляющих лопаток согласно приведенному в качестве примера варианту выполнения данного изобретения, в изометрической проекции;
фиг. 2 - устройство направляющих лопаток согласно приведенному в качестве примера варианту выполнения данного изобретения, в другой изометрической проекции;
фиг. 3 - разрез устройства направляющих лопаток согласно приведенному в качестве примера варианту выполнения данного изобретения;
фиг. 4 - устройство направляющих лопаток согласно приведенному в качестве примера варианту выполнения данного изобретения, на виде сбоку.
Подробное описание
Чертежи выполнены схематично. Следует отметить, что на различных фигурах аналогичные или идентичные элементы обозначены одинаковыми позициями.
На фиг. 1 показано устройство 100 направляющих лопаток для турбины. Устройство 100 направляющих лопаток содержит внутреннюю платформу 101, полый аэродинамический профиль 102 и направляющую 103. Внутренняя платформа 101 содержит сквозное отверстие 301 (см. фиг. 3, не изображено на фиг. 1) для охлаждающей текучей среды. Внутренняя платформа 101 проходит в окружном направлении 109 вокруг вала 304 (см. фиг. 3) турбины. Полый аэродинамический профиль 102 содержит охлаждающий раскрыв для обмена охлаждающей текучей среды, проходящей через сквозное отверстие 301 в или из полого аэродинамического профиля 102. Полый аэродинамический профиль 102 закреплен на первой поверхности 201 (см. фиг. 2) внутренней платформы 101. Направляющая 103 содержит выемку 104 с проходом 105 для охлаждающей текучей среды, образующим проход для охлаждающей текучей среды к сквозному отверстию 301. Направляющая 103 закреплена на второй поверхности 106 внутренней платформы 101, и направляющая 103 проходит вдоль второй поверхности 106 в окружном направлении 109 вокруг вала 304. Проход 105 для охлаждающей текучей среды имеет в окружном направлении 109 по меньшей мере размер сквозного отверстия 301.
Как показано на фиг. 1, выемка 104 с проходом 105 для охлаждающей текучей среды направляющей 103 имеет равные или большие размеры, чем сквозное отверстие 301, в частности, в окружном направлении 109. Таким образом, средняя температура направляющей изменяется так же, как температура внутренней платформы 101 и полого аэродинамического профиля 102, так что создается меньше тепловых напряжений, в частности, во время изменения условий.
Кроме того, на фиг. 1 показан проход 105 для охлаждающей текучей среды, который образован в выемке 104 направляющей 103. Выемка 104 является щелевым отверстием или сквозным отверстием, которое проходит в окружном направлении 109. Поскольку материал удален из направляющей 103 при формировании выемки 104, направляющая 103 имеет меньший вес. Однако, поскольку направляющая 103 содержит меньше материала, направляющая 103 быстрее приспосабливается к изменяющейся температуре и быстрее согласовывается с температурой внутренней платформы 101 с помощью охлаждающей текучей среды. Кроме того, охлаждающая текучая среда протекает через проход 105 для охлаждающей текучей среды, а также через выемку 104. Выемка 104 образует большую контактную поверхность с охлаждающей текучей средой, так что охлаждающая текучая среда охлаждает направляющую 103 более эффективно.
Устройство 100 направляющих лопаток согласно показанному в качестве примера на фиг. 1 варианту выполнения содержит два аэродинамических профиля 102, например турбинные лопатки внутри газотурбинного двигателя. Каждый аэродинамический профиль 102 образован между внутренней платформой 101 и наружной платформой 108. Наружная платформа 108 предназначена, например, для фиксации на корпусе турбины.
Направляющая 103, показанная на фиг. 1, дополнительно содержит установочную секцию 107. Установочная секция 107 содержит фиксирующие средства, которые предназначены для крепления уплотнительного элемента, в частности диафрагмы 303 (см. фиг. 3). Окружное положение установочной секции 107 может быть между двумя проходами 105 для охлаждающей текучей среды для двух аэродинамических профилей 102. В частности, окружное положение установочной секции 107 может быть выбрано так, что оно обеспечивает максимально возможное поперечное сечение для обоих проходов 105 для охлаждающей текучей среды. Предпочтительно, поток текучей среды через два прохода 105 для охлаждающей текучей среды дополнительно не ограничивается установочной секцией 107.
На фиг. 2 показан в качестве примера вариант выполнения, показанный на фиг. 1. Лопатки 102 образованы между первой платформой 101 и второй платформой 108. Аэродинамические профили 102 являются полыми профилями, через которые протекает охлаждающая текучая среда. Охлаждающая текучая среда может подаваться, например, из наружного окружения наружной платформы 108 в полые аэродинамические профили 102. Как показано на фиг. 2, аэродинамические профили 102 имеют аналогичные крылу аэродинамические профили. В зоне фиксирующих секций первой платформы 101 и второй платформы 108 аэродинамические профили 102 содержат зализы 202, которые образованы во время процесса литья. Внутренняя платформа 101 и наружная платформа 108 проходят в окружном направлении 109, при этом окружное направление 109 задано направлением вокруг вращающегося вала 304 турбины. К установочной секции 107 направляющей 103 прикреплен уплотнительный элемент, т.е. диафрагма 303, с целью обеспечения герметизации между устройством 100 направляющих лопаток и вращающимся валом 304.
На фиг. 3 показан разрез устройства 100 направляющих лопаток. Полый аэродинамический профиль 102 образован между наружной платформой 108 и внутренней платформой 101. Внутренняя платформа 101 содержит сквозное отверстие 301, которое соединяет полый профиль 302 полого аэродинамического профиля 102 с проходом 105 для охлаждающей текучей среды направляющей 103. Как показано на фиг. 3, проход 105 для охлаждающей текучей среды имеет большую площадь поперечного сечения, т.е. шире и/или длиннее вдоль центральной оси вращающегося вала 304, чем сквозное отверстие 301. Эффективность охлаждения охлаждающей текучей средой ограничена наименьшим проходом для охлаждающей текучей среды, а именно сквозным отверстием 301. Поэтому изменения температуры внутренней платформы 101, а также направляющей 103 сохраняются приблизительно одинаковыми, так что тепловые напряжения за счет разницы температуры и вызываемые ими тепловые деформации уменьшаются. Кроме того, уменьшение тепловых напряжений направляющей 103 и внутренней платформы 101 может также приводить к уменьшению напряжений, в частности, в месте расположения зализов 202, так что может быть уменьшено растрескивание в этих зонах.
Кроме того, на фиг. 3 показана диафрагма 303, которая закреплена на установочной секции 107 направляющей 103. Диафрагма 303 находится в контакте скольжения с поверхностью вращающегося вала 304. За счет правильного охлаждения направляющей 103 вследствие правильного размера прохода 105 для охлаждающей текучей среды тепловая деформация направляющей 103 уменьшается и тем самым улучшаются уплотнительные характеристики диафрагмы 303 относительно поверхности вала 304.
На фиг. 4 схематично показано устройство 100 направляющих лопаток согласно фиг. 3, при этом более детально показана диафрагма 303. Диафрагма 303 имеет консольную форму и прижата к установочной секции 107 направляющей 3. В зоне контакта диафрагмы 303 с валом 304 диафрагма 303 содержит кромку уплотнения для осуществления герметизации. Кроме того, на фиг. 4 показан аэродинамический профиль 102, который образован между наружной платформой 108 и внутренней платформой 101.
Следует отметить, что понятие «содержит» не исключает другие элементы или стадии, а определенный артикль не исключает множественности. Кроме того, элементы, описание которых приведено в связи с различными вариантами выполнения, можно комбинировать друг с другом. Следует также отметить, что указание позиций в формуле изобретения не должно восприниматься в качестве ограничения объема формулы изобретения.
Перечень позиций
100 Устройство направляющих лопаток
101 Внутренняя платформа
102 Полый аэродинамический профиль
103 Направляющая
104 Выемка
105 Проход для охлаждающей текучей среды
106 Вторая поверхность
107 Установочная секция
108 Наружная платформа
109 Окружное направление
201 Первая поверхность
202 Зализ
301 Сквозное отверстие
302 Полый профиль полого аэродинамического профиля
303 Диафрагма
304 Вал

Claims (12)

1. Устройство (100) направляющих лопаток для турбины, при этом устройство (100) направляющих лопаток содержит:
внутреннюю платформу (101) со сквозным отверстием (301), образующим проточный канал для охлаждающей текучей среды, при этом внутренняя платформа (101) проходит в окружном направлении (109) вокруг вала (304) турбины,
полый аэродинамический профиль (102) с охлаждающим отверстием для обмена охлаждающей текучей среды, проходящей через сквозное отверстие (301) в или из полого аэродинамического профиля (102), при этом полый аэродинамический профиль (102) сформирован на первой поверхности (201) внутренней платформы (101), и
направляющую (103), содержащую выемку (104) с проходом (105) для охлаждающей текучей среды, образующим проход для охлаждающей текучей среды к сквозному отверстию (301), при этом направляющая (103) сформирована на второй поверхности (106) внутренней платформы (101) и направляющая (103) проходит вдоль второй поверхности (106) в окружном направлении (109) вокруг вала (304),
в котором проход (105) для охлаждающей текучей среды имеет в окружном направлении (109), по меньшей мере, размер сквозного отверстия (301).
2. Устройство (100) направляющих лопаток по п. 1, в котором выемка (104) больше сквозного отверстия (301).
3. Устройство (100) направляющих лопаток по п. 1, в котором направляющая (103) выполнена в виде единого целого с внутренней платформой (101).
4. Устройство (100) направляющих лопаток по п. 2, в котором направляющая (103) выполнена в виде единого целого с внутренней платформой (101).
5. Устройство (100) направляющих лопаток по п. 1, в котором полый аэродинамический профиль (102) выполнен в виде единого целого с внутренней платформой (101).
6. Устройство (100) направляющих лопаток по п. 2, в котором полый аэродинамический профиль (102) выполнен в виде единого целого с внутренней платформой (101).
7. Устройство (100) направляющих лопаток по п. 3, в котором полый аэродинамический профиль (102) выполнен в виде единого целого с внутренней платформой (101).
8. Устройство (100) направляющих лопаток по п. 4, в котором полый аэродинамический профиль (102) выполнен в виде единого целого с внутренней платформой (101).
9. Устройство (100) направляющих лопаток по любому из пп. 1-8, дополнительно содержащее:
другой полый аэродинамический профиль (102),
при этом внутренняя платформа (101) содержит другое сквозное отверстие (301), образующее другой проточный канал для охлаждающей текучей среды,
при этом другой полый аэродинамический профиль (102) содержит другое охлаждающее отверстие для приема охлаждающей текучей среды,
проходящей через другое сквозное отверстие (301) в другой аэродинамический профиль (102), при этом другой аэродинамический профиль (102) сформирован на первой поверхности (201) внутренней платформы (101),
при этом направляющая (103) содержит другую выемку (104) с другим проходом (105) для охлаждающей текучей среды, образующим другой проход для охлаждающей текучей среды к сквозному отверстию (301), и при этом другой проход (105) для охлаждающей текучей среды имеет в окружном направлении (109), по меньшей мере, размер другого сквозного отверстия (301).
10. Устройство (100) направляющих лопаток по любому из пп. 1-8, дополнительно содержащее диафрагму (303) для герметизации устройства (100) направляющих лопаток относительно вала (304),
при этом направляющая (103) содержит установочную секцию (107), на которой установлена диафрагма (303).
11. Устройство (100) направляющих лопаток по любому из пп. 1-8, дополнительно содержащее
наружную платформу (108), к которой прикреплен полый аэродинамический профиль (102) наружным концом полого аэродинамического профиля (102) относительно внутреннего конца полого аэродинамического профиля (102), который сформирован на внутренней платформе (101).
12. Способ изготовления устройства (100) направляющих лопаток для турбины, при этом способ содержит
создание внутренней платформы (101) со сквозным отверстием (301) для образования проточного канала для охлаждающей текучей среды,
при этом внутренняя платформа (101) проходит в окружном направлении (109) вокруг вала (304) турбины,
формирование полого аэродинамического профиля (102) на первой поверхности (201) внутренней платформы (101), при этом полый аэродинамический профиль (102) содержит охлаждающее отверстие для обмена охлаждающей текучей среды, проходящей через сквозное отверстие (301) в или из полого аэродинамического профиля (102), и
формирование направляющей (103) на второй поверхности (106) внутренней платформы (101) с прохождением направляющей (103) вдоль второй поверхности (106) в окружном направлении вокруг вала (304), при этом направляющая (103) содержит выемку (104) с проходом (105) для охлаждающей текучей среды для образования прохода для охлаждающей текучей среды,
при этом проход (105) для охлаждающей текучей среды имеет в окружном направлении (109), по меньшей мере, размер сквозного отверстия (301).
RU2012151011/06A 2010-04-29 2011-03-30 Устройство направляющих лопаток для турбины и способ его изготовления RU2576600C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10161435.2 2010-04-29
EP10161435A EP2383435A1 (en) 2010-04-29 2010-04-29 Turbine vane hollow inner rail
PCT/EP2011/054931 WO2011134731A1 (en) 2010-04-29 2011-03-30 Turbine vane hollow inner rail

Publications (2)

Publication Number Publication Date
RU2012151011A RU2012151011A (ru) 2014-06-10
RU2576600C2 true RU2576600C2 (ru) 2016-03-10

Family

ID=43032977

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012151011/06A RU2576600C2 (ru) 2010-04-29 2011-03-30 Устройство направляющих лопаток для турбины и способ его изготовления

Country Status (5)

Country Link
US (1) US9869200B2 (ru)
EP (2) EP2383435A1 (ru)
CN (1) CN102906374B (ru)
RU (1) RU2576600C2 (ru)
WO (1) WO2011134731A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022051759A1 (en) * 2020-09-04 2022-03-10 Siemens Energy Global GmbH & Co. KG Guide vane in gas turbine engine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001493B1 (fr) * 2013-01-29 2016-06-10 Snecma Aubage fixe de distribution de flux a platine d'etancheite integree
KR20150074625A (ko) * 2013-12-24 2015-07-02 삼성테크윈 주식회사 압축 장치 코어용 지지대 및 이를 구비한 압축 장치 모듈
US10012106B2 (en) * 2014-04-03 2018-07-03 United Technologies Corporation Enclosed baffle for a turbine engine component
JP5717904B1 (ja) * 2014-08-04 2015-05-13 三菱日立パワーシステムズ株式会社 静翼、ガスタービン、分割環、静翼の改造方法、および、分割環の改造方法
EP3015657A1 (en) * 2014-10-31 2016-05-04 Siemens Aktiengesellschaft Gas turbine nozzle vane segment
EP3034798B1 (en) * 2014-12-18 2018-03-07 Ansaldo Energia Switzerland AG Gas turbine vane
DE102016202519A1 (de) * 2016-02-18 2017-08-24 MTU Aero Engines AG Leitschaufelsegment für eine Strömungsmaschine
KR101937586B1 (ko) * 2017-09-12 2019-01-10 두산중공업 주식회사 베인 조립체, 터빈 및 이를 포함하는 가스터빈
US11021966B2 (en) 2019-04-24 2021-06-01 Raytheon Technologies Corporation Vane core assemblies and methods
US11674400B2 (en) * 2021-03-12 2023-06-13 Ge Avio S.R.L. Gas turbine engine nozzles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB938247A (en) * 1962-03-26 1963-10-02 Rolls Royce Gas turbine engine having cooled turbine blading
US4930980A (en) * 1989-02-15 1990-06-05 Westinghouse Electric Corp. Cooled turbine vane
US6077034A (en) * 1997-03-11 2000-06-20 Mitsubishi Heavy Industries, Ltd. Blade cooling air supplying system of gas turbine
EP1045114A2 (en) * 1999-04-15 2000-10-18 General Electric Company Cooling supply system for stage 3 bucket of a gas turbine
US6439837B1 (en) * 2000-06-27 2002-08-27 General Electric Company Nozzle braze backside cooling
RU2224895C2 (ru) * 1999-05-31 2004-02-27 Нуово Пиньоне Холдинг С.П.А. Средство для установки сопел ступени статора и для охлаждения дисков ротора в газовой турбине

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700348A (en) * 1968-08-13 1972-10-24 Gen Electric Turbomachinery blade structure
US3829233A (en) 1973-06-27 1974-08-13 Westinghouse Electric Corp Turbine diaphragm seal structure
US4126405A (en) 1976-12-16 1978-11-21 General Electric Company Turbine nozzle
US5114159A (en) * 1991-08-05 1992-05-19 United Technologies Corporation Brush seal and damper
GB2365079B (en) * 2000-07-29 2004-09-22 Rolls Royce Plc Blade platform cooling
US6761529B2 (en) * 2002-07-25 2004-07-13 Mitshubishi Heavy Industries, Ltd. Cooling structure of stationary blade, and gas turbine
US7229245B2 (en) * 2004-07-14 2007-06-12 Power Systems Mfg., Llc Vane platform rail configuration for reduced airfoil stress
US7762761B2 (en) 2005-11-30 2010-07-27 General Electric Company Methods and apparatus for assembling turbine nozzles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB938247A (en) * 1962-03-26 1963-10-02 Rolls Royce Gas turbine engine having cooled turbine blading
US4930980A (en) * 1989-02-15 1990-06-05 Westinghouse Electric Corp. Cooled turbine vane
US6077034A (en) * 1997-03-11 2000-06-20 Mitsubishi Heavy Industries, Ltd. Blade cooling air supplying system of gas turbine
EP1045114A2 (en) * 1999-04-15 2000-10-18 General Electric Company Cooling supply system for stage 3 bucket of a gas turbine
RU2224895C2 (ru) * 1999-05-31 2004-02-27 Нуово Пиньоне Холдинг С.П.А. Средство для установки сопел ступени статора и для охлаждения дисков ротора в газовой турбине
US6439837B1 (en) * 2000-06-27 2002-08-27 General Electric Company Nozzle braze backside cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022051759A1 (en) * 2020-09-04 2022-03-10 Siemens Energy Global GmbH & Co. KG Guide vane in gas turbine engine

Also Published As

Publication number Publication date
RU2012151011A (ru) 2014-06-10
EP2534340B1 (en) 2017-05-31
EP2534340A1 (en) 2012-12-19
US9869200B2 (en) 2018-01-16
EP2383435A1 (en) 2011-11-02
CN102906374B (zh) 2016-04-13
WO2011134731A1 (en) 2011-11-03
US20130202409A1 (en) 2013-08-08
CN102906374A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
RU2576600C2 (ru) Устройство направляющих лопаток для турбины и способ его изготовления
US9188012B2 (en) Cooling structures in the tips of turbine rotor blades
JP6266231B2 (ja) タービンロータブレード先端における冷却構造
EP2716870B1 (en) Rotor blade and corresponding turbine
CN102454431B (zh) 可变涡轮机喷嘴***
EP3121382B1 (en) Gas turbine engines including channel-cooled hooks for retaining a part relative to an engine casing structure
US8186933B2 (en) Systems, methods, and apparatus for passive purge flow control in a turbine
EP2798156B1 (en) Gas turbine arrangement alleviating stresses at turbine discs and corresponding gas turbine
JP5738650B2 (ja) タービンシュラウド用の軸方向に配向されたセル状シール構造体及び関連方法
EP2372084A2 (en) Turbomachine Rotor Cooling
CA2551889A1 (en) Cooled shroud assembly and method of cooling a shroud
US10619487B2 (en) Cooling assembly for a turbine assembly
WO2014025726A1 (en) Turbine blades
JP2009191850A (ja) 蒸気タービンエンジンとその組立方法
RU2567524C2 (ru) Система и способ для отбора рабочей текучей среды от внутреннего объема турбомашины и турбомашина, содержащая такую систему
US11879347B2 (en) Turbine housing cooling device
US10018051B2 (en) Gas turbine and mounting method
US20120263572A1 (en) Turbine for converting energy and method for operating the same

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180331