RU2573231C2 - Устройство и способ для кодирования части аудиосигнала с использованием обнаружения неустановившегося состояния и результата качества - Google Patents

Устройство и способ для кодирования части аудиосигнала с использованием обнаружения неустановившегося состояния и результата качества Download PDF

Info

Publication number
RU2573231C2
RU2573231C2 RU2013142072/08A RU2013142072A RU2573231C2 RU 2573231 C2 RU2573231 C2 RU 2573231C2 RU 2013142072/08 A RU2013142072/08 A RU 2013142072/08A RU 2013142072 A RU2013142072 A RU 2013142072A RU 2573231 C2 RU2573231 C2 RU 2573231C2
Authority
RU
Russia
Prior art keywords
audio signal
encoding algorithm
encoding
quality
result
Prior art date
Application number
RU2013142072/08A
Other languages
English (en)
Other versions
RU2013142072A (ru
Inventor
Кристиан ХЕЛЬМРИХ
Гийом ФУКС
Горан МАРКОВИЧ
Original Assignee
Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. filed Critical Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф.
Publication of RU2013142072A publication Critical patent/RU2013142072A/ru
Application granted granted Critical
Publication of RU2573231C2 publication Critical patent/RU2573231C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/10Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a multipulse excitation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/005Correction of errors induced by the transmission channel, if related to the coding algorithm
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/028Noise substitution, i.e. substituting non-tonal spectral components by noisy source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/012Comfort noise or silence coding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0212Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/022Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/022Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
    • G10L19/025Detection of transients or attacks for time/frequency resolution switching
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/03Spectral prediction for preventing pre-echo; Temporary noise shaping [TNS], e.g. in MPEG2 or MPEG4
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/06Determination or coding of the spectral characteristics, e.g. of the short-term prediction coefficients
    • G10L19/07Line spectrum pair [LSP] vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/10Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a multipulse excitation
    • G10L19/107Sparse pulse excitation, e.g. by using algebraic codebook
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
    • G10L19/13Residual excited linear prediction [RELP]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/22Mode decision, i.e. based on audio signal content versus external parameters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/06Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being correlation coefficients
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/69Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for evaluating synthetic or decoded voice signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

Изобретение относится к технологиям кодирования аудиосигналов. Техническим результатом является повышение эффективности кодирования аудиосигналов за счет определения алгоритма кодирования, исходя из обнаружения значения результата качества аудиосигнала и обнаружения неустановившегося состояния. Предложено устройство для кодирования части аудиосигнала для получения кодированного аудиосигнала для части аудиосигнала. Устройство содержит детектор неустановившегося состояния для обнаружения того, располагается ли неустановившийся сигнал в части аудиосигнала, чтобы получать результат обнаружения неустановившегося состояния. Устройство также содержит каскад кодировщика для выполнения первого алгоритма кодирования над аудиосигналом, чтобы получить первое значение результата качества адуиосигнала для упомянутой части аудиосигнала, при этом первый алгоритм кодирования имеет первую характеристику, и для выполнения второго алгоритма кодирования над аудиосигналом, чтобы получить второе значение результата качества аудиосигнала, при этом второй алгоритм кодирования имеет вторую характеристику, которая является отличной от первой характеристики. 3 н. и 12 з.п. ф-лы, 8 ил.

Description

Настоящее изобретение относится к аудиокодированию и, в частности, к коммутируемому аудиокодированию, причем для разных временных частей кодированный сигнал генерируется с использованием разных алгоритмов кодирования.
Известны коммутируемые аудиокодеры, которые определяют разные алгоритмы кодирования для разных частей аудиосигнала. Примером является так называемый расширенный адаптивный многоскоростной широкополосный кодек или кодек AMR-WB+, определенный в международном стандарте 3GPP TS 26.290 V6.1.0 2004-12. В этой технической спецификации описывается принцип кодирования, который расширяет основанный на ACELP (алгебраическое линейное предсказание с кодовым возбуждением) кодек AMR-WB посредством добавления TCX (возбуждение с кодированным преобразованием), расширение полосы пропускания, и стерео. Аудиокодек AMR-WB+ обрабатывает входные кадры, равные 2048 выборкам, на внутренней частоте дискретизации FS. Внутренняя частота дискретизации является ограниченной диапазоном от 12,800 до 38,400 Гц. Кадры из 2048 выборок разбиваются на два критически дискретизированных равных частотных диапазона. Это дает в результате два суперкадра из 1024 выборок, соответствующих низкочастотному (LF) и высокочастотному (HF) диапазонам. Каждый суперкадр разделяется на четыре кадра из 256 выборок. Дискретизация на внутренней частоте выборки получается посредством использования переменной схемы преобразования дискретизации, которая повторно дискретизирует входной сигнал. Сигналы LF и HF затем кодируются с использованием двух разных подходов. Сигнал LF кодируется и декодируется с использованием "базового" кодировщика/декодера, на основе коммутируемых ACELP и TCX. В режиме ACELP, используется стандартный кодек AMR-WB. Сигнал HF кодируется с помощью относительно малого количества битов (16 бит/кадр) с использованием способа расширения полосы пропускания (BWE).
Параметры, передаваемые от кодировщика к декодеру, являются битами выбора режима, параметрами LF и параметрами сигнала HF. Параметры для каждого суперкадра из 1024 выборок разбиваются на четыре пакета одинакового размера. Когда входной сигнал является стерео, левый и правый каналы объединяются в сигналы моно для кодирования ACELP-TCX, тогда как стереокодирование принимает оба входных канала. В структуре декодера AMR-WB+, диапазоны LF и HF декодируются отдельно. Затем диапазоны объединяются в наборе фильтров синтеза. Если вывод ограничен только моно, параметры стерео пропускаются и декодер работает в режиме моно.
При кодировании сигнала LF кодек AMR-WB+ применяет анализ LP (линейное предсказание) как для режима ACELP, так и режима TCX. Коэффициенты LP линейно интерполируются на каждом подкадре из 64 выборок. Окно анализа LP является полукосинусом длины 384 выборок. Режим кодирования выбирается на основе способа анализа посредством синтеза с обратной связью. Только кадры из 256 выборок рассматриваются для кадров ACELP, тогда как кадры 256, 512 или 1024 выборок возможны в режиме TCX. Кодирование ACELP состоит из анализа и синтеза с долгосрочным предсказанием (LTP) и возбуждения алгебраической кодовой книги. В режиме TCX перцепционно взвешенный сигнал обрабатывается в области преобразования. Преобразованный посредством преобразования Фурье взвешенный сигнал квантуется с использованием квантования многовесовой решетки расщепления (алгебраического векторного квантования). Преобразование вычисляется в окнах из 1024, 512 или 256 выборок. Сигнал возбуждения восстанавливается посредством обратной фильтрации квантованного взвешенного сигнала посредством обратного взвешивающего фильтра. Чтобы определять, должна ли некоторая часть аудиосигнала кодироваться с использованием режима ACELP или режима TCX, используется выбор режима с обратной связью или выбор режима без обратной связи. При выборе режима с обратной связью используются 11 последовательных испытаний. После испытания, выбор режима осуществляется между двумя режимами, подлежащими сравнению. Критерием выбора является среднее сегментное SNR (отношение сигнала к шуму) между взвешенным аудиосигналом и синтезированным взвешенным аудиосигналом. Следовательно, кодировщик выполняет полное кодирование в обоих алгоритмах кодирования, полное декодирование в соответствии с обоими алгоритмами кодирования, и, затем, результаты обеих операций кодирования/декодирования сравниваются с исходным сигналом. Следовательно, для каждого алгоритма кодирования, т.е. ACELP с одной стороны и TCX с другой стороны, получается значение сегментного SNR, и используется алгоритм кодирования, имеющий более хорошее значение сегментного SNR или имеющий более хорошее значение среднего сегментного SNR, определенное на кадре посредством усреднения по значениям сегментного SNR для индивидуальных подкадров.
Дополнительная схема коммутируемого аудиокодирования является так называемым кодером USAC (USAC = унифицированное кодирование аудио и речи). Этот алгоритм кодирования описывается в ISO/IEC 23003-3. Общая структура может быть описана следующим образом. Сначала имеется общая система предварительной/последующей обработки функционального блока объемного звука MPEG, чтобы обрабатывать стерео, или многоканальная обработка и блок улучшенного SBR, генерирующий параметрическое представление более высоких аудиочастот входного сигнала. Затем, имеется две ветви, одна, состоящая из тракта инструментов модифицированного улучшенного кодирования аудио (AAC), и другая, состоящая из тракта на основе кодирования с линейным предсказанием (области LP или LPC), который, в свою очередь, обеспечивает либо представление частотной области, либо представление временной области остатка LPC. Все передаваемые спектры для обоих, AAC и LPC, представляются в области MDCT, следуя за квантованием и арифметическим кодированием. Представление временной области использует схему кодирования с возбуждением ACELP. Функции декодера состоят в том, чтобы находить описание квантованных аудиоспектров или представление временной области в полезной нагрузке битового потока и чтобы декодировать квантованные значения и другую информацию восстановления. Следовательно, кодировщик вырабатывает два решения. Первое решение состоит в том, чтобы выполнять классификацию сигналов для решения касательно режима частотной области по отношению к области линейного предсказания. Второе решение состоит в том, чтобы определять, внутри области линейного предсказания (LPD), часть сигнала должна кодироваться с использованием ACELP или TCX.
Для применения схемы коммутируемого аудиокодирования в сценариях, где является необходимой очень низкая задержка, конкретное внимание должно уделяться частям кодирования на основе преобразования, так как эти части кодирования вводят некоторую задержку, которая зависит от длины преобразования и формы окна. Поэтому принцип кодирования USAC не является подходящим для приложений с очень низкой задержкой вследствие того, что ветвь модифицированного кодирования AAC имеет значительную длину преобразования и адаптацию длины (также известную как коммутация блоков), включая сюда переходные окна.
С другой стороны, было найдено, что принцип кодирования AMR-WB+ является проблематичным из-за решения на стороне кодировщика относительно того, должен ли использоваться ACELP или TCX. ACELP обеспечивает хорошую эффективность кодирования, но может давать результатом значительные проблемы качества аудио, когда часть сигнала не является подходящей для режима кодирования ACELP. Следовательно, по причинам качества могут склоняться использовать TCX всякий раз, когда входной сигнал не содержит речь. Однако чрезмерное использование TCX при низких скоростях передачи битов дает в результате проблемы скорости передачи битов, так как TCX обеспечивает относительно низкую эффективность кодирования. Поэтому, когда в большей степени имеется ориентация на эффективность кодирования, могут использовать ACELP всякий раз, когда возможно, но, как утверждалось ранее, это может давать результатом проблемы качества аудио вследствие того факта, что ACELP не является оптимальным, например, для музыкальных и аналогичных стационарных сигналов.
Вычисление сегментного SNR является мерой качества, которая определяет более хороший режим кодирования на основе только результата, т.е. является ли SNR между исходным сигналом или кодированным/декодированным сигналом более хорошим, так что используется алгоритм кодирования, дающий результатом более хорошее SNR. Это, однако, всегда должно работать при ограничениях скорости передачи битов. Поэтому, было найдено, что использование только меры качества, такой как, например, мера сегментного SNR не всегда дает в результате наилучший компромисс между качеством и скоростью передачи битов.
Целью настоящего изобретения является обеспечить улучшенный принцип для кодирования части аудиосигнала.
Эта цель достигается посредством устройства для кодирования части аудиосигнала по пункту 1 формулы изобретения или способа для кодирования части аудиосигнала по п. 14 формулы изобретения.
Настоящее изобретение основывается на обнаружении, что более хорошее решение выбора между первым алгоритмом кодирования, подходящим для более неустановившихся (неустановившихся) частей сигнала, и вторым алгоритмом кодирования, подходящим для более стационарных частей сигнала, может получаться, когда решение выбора основывается не только на мере качества, но, дополнительно, на результате обнаружения неустановившегося состояния. В то время как мера качества рассматривает только результат цепи кодирования/декодирования по отношению к исходному сигналу, результат обнаружения неустановившегося состояния дополнительно полагается на анализ одного исходного входного аудиосигнала. В результате было обнаружено, что комбинация обеих мер, т.е. результата качества с одной стороны и результата обнаружения неустановившегося состояния с другой стороны для окончательного определения того, какая часть аудиосигнала должна кодироваться посредством какого алгоритма кодирования, ведет к улучшенному компромиссу между эффективностью кодирования с одной стороны и качеством аудио с другой стороны.
Устройство для кодирования части аудиосигнала, чтобы получать кодированный аудиосигнал для части аудиосигнала, содержит детектор неустановившегося состояния для обнаружения, располагается ли неустановившийся сигнал в части аудиосигнала, чтобы получать результат обнаружения неустановившегося состояния. Устройство дополнительно содержит каскад кодировщика для выполнения первого алгоритма кодирования над аудиосигналом, при этом первый алгоритм кодирования имеет первую характеристику, и для выполнения второго алгоритма кодирования над аудиосигналом, при этом второй алгоритм кодирования имеет вторую характеристику, которая является отличной от первой характеристики. В одном варианте осуществления, первая характеристика, связанная с первым алгоритмом кодирования, является более подходящей для более неустановившегося сигнала, и вторая характеристика кодирования, связанная со вторым алгоритмом кодирования, является более подходящей для более стационарных аудиосигналов. В качестве примера, первый алгоритм кодирования является алгоритмом кодирования ACELP и второй алгоритм кодирования является алгоритмом кодирования TCX, который может основываться на модифицированном дискретном косинусном преобразовании, преобразовании FFT или любом другом преобразовании или наборе фильтров. Дополнительно, процессор обеспечивается для определения того, какой алгоритм кодирования дает в результате кодированный аудиосигнал, который является более хорошей аппроксимацией для части аудиосигнала, чтобы получать результат качества. Дополнительно, обеспечивается контроллер, где контроллер сконфигурирован для определения, генерировать ли кодированный аудиосигнал для части аудиосигнала посредством либо первого алгоритма кодирования, либо второго алгоритма кодирования. В соответствии с изобретением, контроллер сконфигурирован для выполнения этого определения не только на основе результата качества, но, дополнительно, на основе результата обнаружения неустановившегося состояния.
В одном варианте осуществления, контроллер сконфигурирован для определения второго алгоритма кодирования, хотя результат качества показывает более хорошее качество для первого алгоритма кодирования, когда результат обнаружения неустановившегося состояния показывает установившийся (не переходный) сигнал. Дополнительно, контроллер сконфигурирован для определения первого алгоритма кодирования, хотя результат качества показывает более хорошее качество для второго алгоритма кодирования, когда результат обнаружения неустановившегося состояния показывает неустановившийся сигнал.
В дополнительном варианте осуществления, это определение, в котором результат неустановившегося состояния может отрицать результат качества, улучшается с использованием гистерезисной функции, так что второй алгоритм кодирования определяется только тогда, когда количество более ранних частей сигнала, для которых был определен первый алгоритм кодирования, является более маленьким, чем предопределенное количество. Аналогично, контроллер сконфигурирован с возможностью определять только первый алгоритм кодирования, когда количество более ранних частей сигнала, для которых в прошлом был определен второй алгоритм кодирования, является более маленьким, чем предопределенное количество. Преимущество от гистерезисной обработки состоит в том, что количество переключений между режимами кодирования уменьшается для некоторых входных сигналов. Слишком частое переключение в критических точках в сигнале может генерировать слышимые артефакты особенно для низких скоростей передачи битов. Вероятность таких артефактов уменьшается посредством реализации гистерезиса.
В дополнительном варианте осуществления, предпочтение отдается результату качества по отношению к результату обнаружения неустановившегося состояния, когда результат качества показывает сильное преимущество качества для одного алгоритма кодирования. Затем, алгоритм кодирования, имеющий намного более хороший результат качества, чем другой алгоритм кодирования, выбирается независимо от того, является ли сигнал неустановившимся сигналом или нет. С другой стороны, результат обнаружения неустановившегося состояния может становиться решающим, когда различие в качестве между обоими алгоритмами кодирования не является настолько высоким. С этой целью, является предпочтительным определять не только бинарный результат качества, но количественный результат качества. Бинарный результат качества показывает только то, какой алгоритм кодирования дает в результате более хорошее качество, тогда как количественный результат качества не только определяет то, какой алгоритм кодирования дает в результате более хорошее качество, но и насколько более хорошим является соответствующий алгоритм кодирования. С другой стороны, могут также использовать количественный результат обнаружения неустановившегося состояния, но, в основном, бинарный результат обнаружения неустановившегося состояния также является достаточным.
Следовательно, настоящее изобретение обеспечивает конкретное преимущество по отношению к хорошему компромиссу между скоростью передачи битов с одной стороны и качеством с другой стороны, так как, для неустановившихся сигналов, выбирается алгоритм кодирования, дающий результатом меньшее качество. Когда результат качества отдает предпочтение, например, решению выбора TCX, тем не менее выбирается режим ACELP, что может давать результатом слегка уменьшенное качество аудио, но, в конце, дает в результате более высокую эффективность кодирования, связанную с использованием режима ACELP.
Когда, с другой стороны, результат качества отдает предпочтение кадру ACELP, тем не менее, для установившихся сигналов принимается решение выбора TCX. Следовательно, слегка меньшая эффективность кодирования принимается в пользу более хорошего качества аудио.
Таким образом, настоящее изобретение дает в результате улучшенный компромисс между качеством и скоростью передачи битов вследствие того факта, что рассматривается не только качество кодированного и снова декодированного сигнала, но, в дополнение, также фактически подлежащий кодированию входной сигнал анализируется по отношению к его характеристике переходного процесса и результат этого анализа неустановившегося состояния используется, чтобы дополнительно влиять на решение выбора алгоритма, более подходящего для неустановившихся сигналов, или алгоритма, более подходящего для стационарных сигналов.
Дополнительные варианты осуществления настоящего изобретения далее иллюстрируются с помощью ссылки на сопровождающие чертежи, на которых:
Фиг. 1 иллюстрирует блок-схему устройства для кодирования части аудиосигнала в соответствии с одним вариантом осуществления;
Фиг. 2 иллюстрирует таблицу для двух разных алгоритмов кодирования и сигналы, для которых они являются подходящими;
Фиг. 3 иллюстрирует обзор в отношении условия качества, условия неустановившегося состояния и условия гистерезиса, которые могут применяться независимо друг от друга, но которые, предпочтительно, применяются объединенно;
Фиг. 4 иллюстрирует таблицу состояний, показывающую, выполняется ли переключение или нет для разных ситуаций;
Фиг. 5 иллюстрирует блок-схему последовательности операций для определения результата неустановившегося состояния в одном варианте осуществления;
Фиг. 6А иллюстрирует блок-схему последовательности операций для определения результата качества в одном варианте осуществления;
Фиг. 6В иллюстрирует больше деталей в отношении результата качества из фиг. 6a; и
Фиг. 7 иллюстрирует более подробно блок-схему устройства для кодирования в соответствии с одним вариантом осуществления.
Фиг. 1 иллюстрирует устройство для кодирования части аудиосигнала, обеспечиваемого на входной линии 10. Часть аудиосигнала вводится в детектор 12 неустановившегося состояния для обнаружения, располагается ли неустановившийся сигнал в части аудиосигнала, чтобы получать результат обнаружения неустановившегося состояния на линии 14. Дополнительно, обеспечивается каскад 16 кодировщика, при этом каскад кодировщика сконфигурирован для выполнения первого алгоритма кодирования над аудиосигналом, при этом первый алгоритм кодирования имеет первую характеристику. Дополнительно, каскад 16 кодировщика сконфигурирован для выполнения второго алгоритма кодирования над аудиосигналом, при этом второй алгоритм кодирования имеет вторую характеристику, которая является отличной от первой характеристики.
Дополнительно, устройство содержит процессор 18 для определения того, какой алгоритм кодирования из первого и второго алгоритмов кодирования дает в результате кодированный аудиосигнал, который является более хорошей аппроксимацией для части исходного аудиосигнала. Процессор 18 генерирует результат качества на основе этого определения на линии 20. Результат качества на линии 20 и результат обнаружения неустановившегося состояния на линии 14, оба, обеспечиваются в контроллер 22. Контроллер 22 сконфигурирован с возможностью определения того, генерировать ли кодированный аудиосигнал для части аудиосигнала посредством либо первого алгоритма кодирования, либо второго алгоритма кодирования. Для этого определения используются не только результат 20 качества, но также результат 14 обнаружения неустановившегося состояния. Дополнительно, необязательно обеспечивается выходной интерфейс 24, при этом выходной интерфейс выводит кодированный аудиосигнал как, например, битовый поток или другое представление кодированного сигнала, по линии 26.
В одном варианте осуществления там, где каскад 16 кодировщика выполняет обработку анализа посредством синтеза, каскад 16 кодировщика принимает ту же часть аудиосигнала и кодирует часть этого аудиосигнала посредством первого алгоритма кодирования, чтобы получать первое кодированное представление части аудиосигнала. Дополнительно, каскад кодировщика генерирует кодированное представление той же части аудиосигнала с использованием второго алгоритма кодирования. Дополнительно, каскад 16 кодировщика содержит, в этой обработке анализа посредством синтеза, декодеры для обоих первого алгоритма кодирования и второго алгоритма кодирования. Один соответствующий декодер декодирует первое кодированное представление с использованием алгоритма декодирования, связанного с первым алгоритмом кодирования. Дополнительно, обеспечивается декодер для выполнения дополнительного алгоритма декодирования, связанного со вторым алгоритмом кодирования, так что, в конце, каскад кодировщика не только имеет два кодированных представления для одной и той же части аудиосигнала, но также два декодированных сигнала для одной и той же части исходного аудиосигнала на линии 10. Эти два декодированных сигнала затем обеспечиваются в процессор посредством линии 28 и процессор сравнивает оба декодированные представления с такой же частью исходного аудиосигнала, полученного посредством ввода 30. Затем определяется сегментное SNR для каждого алгоритма кодирования. Этот так называемый результат качества обеспечивает, в одном варианте осуществления, не только индикацию более хорошего алгоритма кодирования, т.е. бинарный сигнал, относящийся к тому, дал ли первый алгоритм кодирования или второй алгоритм кодирования результатом более хороший SNR. Дополнительно, результат качества показывает количественную информацию, т.е. насколько более хорошим, например, в дБ, является соответствующий алгоритм кодирования.
В этой ситуации контроллер, когда полностью полагается на результат 20 качества, осуществляет доступ к каскаду кодировщика посредством линии 32, так что каскад кодировщика передает уже сохраненное кодированное представление соответствующего алгоритма кодирования в выходной интерфейс 24, так что это кодированное представление представляет соответствующую часть исходного аудиосигнала в кодированном аудиосигнале.
Альтернативно, когда процессор 18 выполняет режим без обратной связи для определения результата качества, не является необходимым, чтобы оба алгоритма кодирования применялись к одной и той же части аудиосигнала. Вместо этого, процессор 18 определяет то, какой алгоритм кодирования является более хорошим, и, затем, каскад 16 кодировщика управляется через линию 28, чтобы только применять алгоритм кодирования, показанный посредством процессора, и, затем, это кодированное представление, полученное в результате выбранного алгоритма кодирования, обеспечивается в выходной интерфейс 24 посредством линии 34.
В зависимости от конкретного варианта осуществления каскада 16 кодировщика, оба алгоритма кодирования могут работать в области LPC. В этом случае, как, например, для ACELP в качестве первого алгоритма кодирования и TCX в качестве второго алгоритма кодирования, выполняется общая предварительная обработка LPC. Эта предварительная обработка LPC может содержать анализ LPC части аудиосигнала, который определяет коэффициенты LPC для части аудиосигнала. Затем фильтр анализа LPC регулируется с использованием определенных коэффициентов LPC и исходный аудиосигнал фильтруется посредством этого фильтра анализа LPC. Затем каскад кодировщика вычисляет разность для каждой выборки между выходом фильтра анализа LPC и входным сигналом аудио, чтобы вычислять сигнал остатка LPC, который затем подвергается первому алгоритму кодирования или второму алгоритму кодирования в режиме без обратной связи или который обеспечивается в оба алгоритма кодирования в режиме с обратной связью, как описано ранее. Альтернативно, фильтрация посредством фильтра LPC и определение по выборкам сигнала остатка может заменяться технологией FDNS (формирование шума частотной области), описанной в стандарте USAC.
Фиг. 2 иллюстрирует предпочтительный вариант осуществления каскада кодировщика. В качестве первого алгоритма кодирования используется алгоритм кодирования ACELP, имеющий характеристику кодирования CELP. Дополнительно, этот алгоритм кодирования является более подходящим для неустановившихся сигналов. Второй алгоритм кодирования имеет характеристику кодирования, которая делает этот второй алгоритм кодирования более подходящим для установившихся сигналов. В качестве примера используется алгоритм кодирования возбуждения с преобразованием, такой как TCX и, конкретно, является предпочтительным алгоритм кодирования TCX 20, который имеет длину кадра 20 мс (длина окна может быть более высокой вследствие перекрывания), что делает принцип кодирования, проиллюстрированный на фиг. 1, особенно подходящим для вариантов осуществления с низкой задержкой, которые требуются в сценариях реального времени, таких как сценарии, где имеется двусторонняя связь как в приложениях телефонии и, конкретно, в приложениях мобильной или сотовой телефонии.
Однако настоящее изобретение является дополнительно полезным в других комбинациях первого и второго алгоритмов кодирования. В качестве примера, первый алгоритм кодирования, более подходящий для неустановившихся сигналов, может содержать любой из хорошо известных кодировщиков временной области, таких как используемые в GSM кодировщики (G.729) или любые другие кодировщики временной области. Алгоритм кодирования установившегося сигнала, с другой стороны, может быть любым хорошо известным кодировщиком области преобразования, таким как MP3, AAC, AC3, или любым другим преобразованием, или алгоритмом кодирования аудио на основе набора фильтров. Для варианта осуществления с низкой задержкой, однако, является предпочтительной комбинация ACELP с одной стороны и TCX с другой стороны, при этом, в частности, кодировщик TCX может основываться на FFT или даже более предпочтительно на MDCT с короткой длиной окна. Следовательно, оба алгоритма кодирования работают в области LPC, полученной посредством преобразования аудиосигнала в область LPC с использованием фильтра анализа LPC. Однако ACELP тогда работает во "временной" области LPC, в то время как кодировщик TCX работает в "частотной" области LPC.
Далее, предпочтительный вариант осуществления контроллера 22 из фиг. 1 описывается в контексте фиг. 3.
Предпочтительно переключение между первым алгоритмом кодирования, таким как ACELP, и вторым алгоритмом кодирования, таким как TCX 20, выполняется с использованием трех условий. Первое условие является условием качества, представленным посредством результата 20 качества из фиг. 1. Второе условие является условием неустановившегося состояния, представленным посредством результата обнаружения неустановившегося состояния на линии 14 из фиг. 1. Третье условие является условием гистерезиса, которое полагается на решения, выработанные контроллером 22 в прошлом, т.е. для более ранних частей аудиосигнала.
Условие качества осуществляется так, что переключение на алгоритм кодирования более высокого качества выполняется, когда условие качества показывает большое расстояние качества между первым алгоритмом кодирования и вторым алгоритмом кодирования. Когда, например, определяется, что один алгоритм кодирования превосходит другой алгоритм кодирования на, например, разницу SNR в один дБ, то условие качества определяет переключение или, формулируя иначе, фактически используемый алгоритм кодирования для фактически рассматриваемой части аудиосигнала независимо от какого-либо обнаружения неустановившегося состояния или ситуации гистерезиса.
Когда, однако, условие качества показывает только маленькое расстояние качества между обоими алгоритмами кодирования, такое как расстояние качества разницы SNR в один или менее дБ, может происходить переключение на алгоритм кодирования более низкого качества, когда результат обнаружения неустановившегося состояния показывает, что алгоритм кодирования более низкого качества соответствует характеристике аудиосигнала, т.е. является ли аудиосигнал неустановившимся или нет. Когда, однако, результат обнаружения неустановившегося состояния показывает, что алгоритм кодирования более низкого качества не соответствует характеристике аудиосигнала, то должен использоваться алгоритм кодирования более высокого качества. В последнем случае, еще раз, условие качества определяет результат, но только когда конкретное сопоставление между алгоритмом кодирования более низкого качества и нестационарной (неустановившейся)/стационарной ситуацией аудиосигнала не соответствуют друг другу.
Условие гистерезиса является особенно полезным в комбинации с условием неустановившегося состояния, т.е. в том, что переключение на алгоритм кодирования более низкого качества выполняется только тогда, когда меньше, чем последние N кадров были закодированы с помощью другого алгоритма. В предпочтительных вариантах осуществления N равняется пяти кадрам, но также могут использоваться другие значения, предпочтительно более низкие или равные N кадрам или частям сигнала, каждая содержит минимальное количество выборок выше, например, 128 выборок.
Фиг. 4 иллюстрирует таблицу изменений состояний в зависимости от некоторых ситуаций. Левый столбец показывает ситуацию, где количество более ранних кадров больше, чем N или меньше, чем N для либо TCX, либо ACELP.
Последняя строка показывает, имеется ли большое расстояние качества для TCX или большое расстояние качества для ACELP. В тех двух случаях, которые являются первыми двумя столбцами, изменение выполняется там, где показано посредством "X", в то время как изменение не выполняется, как показано посредством "0".
Дополнительно, последние два столбца показывают ситуацию, когда определяется маленькое расстояние качества для TCX и когда обнаруживается неустановившийся сигнал, или когда определяется маленькое расстояние качества для ACELP, и часть сигнала обнаруживается как являющаяся установившейся.
Первые две строки последних двух столбцов обе показывают, что результат качества является решающим, когда количество более ранних кадров больше, чем 10. Следовательно, когда имеется сильная индикация из прошлого для одного алгоритма кодирования, то обнаружение неустановившегося состояния не играет роли тоже.
Когда, однако, количество более ранних кадров, которые кодированы в одном из двух алгоритмов кодирования, является более маленьким, чем N, выполняется переключение от TCX на ACELP, показанное в поле 40 для неустановившихся сигналов. Дополнительно, как показано в поле 41, изменение с ACELP на TCX выполняется, даже когда имеется маленькое расстояние качества в пользу ACELP, вследствие того факта, что мы имеем установившийся сигнал. Когда количество последних кадров LCLP является более маленьким, чем N, последующий кадр также кодируется с помощью ACELP и, поэтому, нет необходимости в переключении, как показано в поле 42. Когда, дополнительно, количество кадров TCX является более маленьким, чем N, и когда имеется маленькое расстояние качества для ACELP и сигнал является установившимся, текущий кадр кодируется с использованием TCX и, нет необходимости в переключении, как показано посредством поля 43. Следовательно, влияние гистерезиса ясно видно из сравнения полей 42, 43 с четырьмя полями выше этих двух полей.
Следовательно, настоящее изобретение предпочтительно влияет на гистерезис для решения с обратной связью посредством вывода детектора неустановившегося состояния. Поэтому, не существует, как в AMR-WB+, чистого решения с обратной связью относительно того, выбрать ли TCX или ACELP. Вместо этого, на вычисление с обратной связью влияет результат обнаружения неустановившегося состояния, т.е. в аудиосигнале определяется каждая неустановившаяся часть сигнала. Решение в отношении того, вычислять ли кадр ACELP или кадр TCX, поэтому, зависит не только от вычислений с обратной связью, или, в общем, результата качества, но дополнительно зависит от того, обнаружено ли неустановившееся состояние или нет.
Другими словами, гистерезис для определения того, какой алгоритм кодирования должен использоваться для текущего кадра, может быть выражен следующим образом:
когда результат качества для TCX является слегка более маленьким, чем результат качества для ACELP, и когда в текущее время рассматриваемые части сигнала или только текущий кадр не является неустановившимся, тогда используется TCX вместо ACELP.
Когда, с другой стороны, результат качества для ACELP является слегка более маленьким, чем результат качества для TCX, и когда кадр является неустановившимся, тогда используется ACELP вместо TCX. Предпочтительно, мера плоскостности вычисляется как результат обнаружения неустановившегося состояния, который является количественным числом. Когда плоскостность больше чем или равна некоторому значению, тогда определяется, что кадр является неустановившимся (с неустановившимся состоянием). Когда, с другой стороны, плоскостность является более маленькой, чем это пороговое значение, тогда определяется, что кадр является установившимся (с установившимся состоянием). В качестве порога предпочтительна мера плоскостности, равная двум, где вычисление плоскостности описывается более подробно на фиг. 5.
Дополнительно, в отношении результата качества, количественная мера является предпочтительной. Когда используется мера SNR или, в частности, мера сегментного SNR, тогда признак "слегка меньший" как использовался ранее, может означать на один дБ меньше. Следовательно, когда отношения SNR для TCX и ACELP являются более отличными друг от друга, или, формулируя иначе, когда абсолютное различие между обоими значениями SNR больше, чем один дБ, тогда условие качества из фиг. 3 одно определяет алгоритм кодирования для текущей части аудиосигнала.
Вышеописанное решение может дополнительно конкретизироваться, когда обнаружение неустановившегося состояния или вывод гистерезиса или SNR для TCX или ACELP прошлых или более ранних кадров включается в условие "если". В результате, строится гистерезис, который, для одного варианта осуществления, проиллюстрирован на фиг. 3 как условие номер 3. В частности, фиг. 3 иллюстрирует альтернативу, когда вывод гистерезиса, т.е. определение для прошлого, используется для модификации условия неустановившегося состояния.
Альтернативно, дополнительное условие гистерезиса, которое основывается на более ранних отношениях SNR для TCX или ACELP, может содержать то, что определение для алгоритма кодирования более низкого качества выполняется только тогда, когда изменение в различии SNR по отношению к более раннему кадру является более низким, чем, например, некоторый порог. Дополнительный вариант осуществления может содержать использование результата обнаружения неустановившегося состояния для одного или нескольких более ранних кадров, когда результат обнаружения неустановившегося состояния является количественным числом. Тогда, переключение на алгоритм кодирования более низкого качества может, например, выполняться, только когда изменение количественного результата обнаружения неустановившегося состояния от более раннего кадра к текущему кадру находится, снова, ниже некоторого порога. Другие комбинации этих чисел для дополнительной модификации условия 3 гистерезиса из фиг. 3 могут оказываться полезными, чтобы получать более хороший компромисс между скоростью передачи битов с одной стороны и качеством аудио с другой стороны.
Дополнительно, условие гистерезиса, как проиллюстрировано в контексте фиг. 3 и как описано ранее, может использоваться вместо или в дополнение к дополнительному гистерезису, который, например, основывается на внутренних данных анализа алгоритмов кодирования ACELP и TCX.
Далее, делается ссылка на фиг. 5 для иллюстрации предпочтительного определения результата обнаружения неустановившегося состояния на линии 14 из фиг. 1.
На этапе 50 аудиосигнал временной области, такой как входной сигнал PCM на линии 10, подвергается высокочастотной фильтрации, чтобы получать аудиосигнал, прошедший высокочастотную фильтрацию. Затем, на этапе 52, кадр подвергнутого высокочастотной фильтрации сигнала, который может быть равным части аудиосигнала, подразделяется на множество, например восемь подблоков. Затем, на этапе 54, вычисляется значение энергии для каждого подблока. Это вычисление энергии может содержать возведение в квадрат каждого значения выборки в подблоке и последующее сложение возведенных в квадрат выборок с или без усреднения. Затем, на этапе 56, формируются пары смежных подблоков. Пары могут содержать первую пару, состоящую из первого и второго подблока, вторую пару, состоящую из второго и третьего подблока, третью пару, состоящую из третьего и четвертого подблока, и т.д. Дополнительно, также может использоваться пара, содержащая последний подблок более раннего кадра и первый подблок текущего кадра. Альтернативно, могут выполняться другие способы формирования пар, такие как, например, только формирование пар первого и второго подблока, третьего и четвертого подблока, и т.д. Затем, как также описано на этапе 56 из фиг. 5, более высокое значение энергии каждой пары подблоков выбирается и, как описано на этапе 58, делится на более низкое значение энергии пары подблоков. Затем, как описано на этапе 60 из фиг. 5, все результаты из этапа 58 для кадра объединяются. Это объединение может состоять из сложения результатов блока 58 и усреднения, где результат сложения делится на количество пар, такое как восемь, когда восемь пар в расчете на подблок были определены на этапе 56. Результатом этапа 60 является мера плоскостности, которая используется контроллером 22, чтобы определять, является ли часть сигнала неустановившейся или нет. Когда мера плоскостности больше, чем или равна 2, обнаруживается неустановившаяся часть сигнала, в то время как, когда мера плоскостности меньше, чем 2, определяется, что сигнал является установившимся или стационарным. Однако также могут использоваться другие пороги между 1,5 и 3, но было показано, что порог, равный двум, обеспечивает наилучшие результаты.
Следует отметить, что могут использоваться также другие детекторы неустановившегося состояния. Неустановившиеся сигналы могут дополнительно содержать сигналы вокализованной речи. Традиционно, неустановившиеся сигналы содержат подобные аплодисментам сигналы или кастаньеты, или взрывные звуки речи, содержащие сигналы, полученные посредством произнесения букв "p" или "t", или подобных. Однако гласные звуки, такие как "a", "e", "i", "o", "u", в классическом подходе не считаются неустановившимися сигналами, так как они характеризуются периодическими импульсами, образующимися в голосовой щели, или импульсами основного тона. Однако, так как гласные звуки также представляют сигналы вокализованной речи, гласные звуки также рассматриваются как неустановившиеся сигналы для настоящего изобретения. Обнаружение этих сигналов могут осуществляться, в дополнение или альтернативно к процедуре из фиг. 5, посредством детекторов речи, различающих вокализованную речь от невокализированной речи, или посредством оценки метаданных, связанных с аудиосигналом и показывающих, модулю оценки метаданных, является ли соответствующая часть неустановившейся или установившейся частью.
Далее, описывается фиг. 6А, чтобы проиллюстрировать третий способ вычисления результата качества на линии 20 из фиг. 1, т.е. то, как процессор 18 предпочтительно сконфигурирован.
На этапе 61, описывается процедура с обратной связью, где для каждой из множества возможностей часть кодируется и декодируется с использованием первого и второго алгоритмов кодирования. Затем, на этапе 63, вычисляется мера, такая как сегментное SNR, зависящая от различия кодированного и снова декодированного аудиосигнала и исходного сигнала. Эта мера вычисляется для обоих алгоритмов кодирования.
Затем, на этапе 65 вычисляется среднее сегментное SNR с использованием индивидуальных сегментных SNR, и это вычисление снова выполняется для обоих алгоритмов кодирования, так что, в конце, этап 65 дает в результате два разных усредненных значения SNR для одной и той же части аудиосигнала. Различие между этими сегментированными значениями SNR для кадра используется как количественный результат качества на линии 20 из фиг. 1.
Фиг. 6В иллюстрирует два уравнения, где верхнее уравнение используется на этапе 63 и где нижнее уравнение используется на этапе 65.
Figure 00000001
обозначает взвешенный аудиосигнал и
Figure 00000002
обозначает кодированный и снова декодированный взвешенный сигнал.
Усреднение, выполняемое на этапе 65, является усреднением по одному кадру, где каждый кадр состоит из некоторого количества подкадров NSF, и где четыре таких кадра вместе формируют суперкадр. Следовательно, суперкадр содержит 1024 выборки, индивидуальный кадр содержит 256 выборок и каждый подкадр, для которого верхнее уравнение на фиг. 6Вb или этап 63 выполняется, содержит 64 выборки. В верхнем уравнении, используемом на этапе 63, n является индексом номера выборки и N является максимальным количеством выборок в подкадре, равном 63, показывающем, что подкадр имеет 64 выборки.
Фиг. 7 иллюстрирует дополнительный вариант осуществления устройства для кодирования согласно изобретению, аналогичный варианту осуществления из фиг. 1, и одинаковые ссылочные позиции показывают аналогичные элементы. Однако фиг. 7 иллюстрирует более детальное представление каскада 16 кодировщика, который содержит предварительный процессор 16a для выполнения взвешивания и анализа/фильтрации LPC, и блок 16a предварительного процессора обеспечивает данные LPC на линии 70 в выходной интерфейс 24. Дополнительно, каскад 16 кодировщика из фиг. 1 содержит первый алгоритм кодирования в 16b и второй алгоритм кодирования в 16c, которые являются алгоритмом кодирования ACELP и алгоритмом кодирования TCX, соответственно.
Дополнительно, каскад 16 кодировщика может содержать либо переключатель 16d, подсоединенный перед блоками 16d, 16c, либо переключатель 16e, подсоединенный после блоков 16b, 16c, где "перед" и "после" указывают на направление потока сигналов, которое идет, по меньшей мере, по отношению к блоку 16a по 16e сверху вниз на фиг. 7. Блок 16d не будет присутствовать в решении с обратной связью. В этом случае, будет присутствовать только переключатель 16e, так как оба алгоритма 16b, 16c кодирования работают над одной и той же частью аудиосигнала и результат выбранного алгоритма кодирования забирается и передается в выходной интерфейс 24.
Если, однако, решение без обратной связи или любое другое решение выполняется до того, как оба алгоритма кодирования будут выполнены над одним и тем же сигналом, то переключатель 16e не будет присутствовать, но будет присутствовать переключатель 16d, и каждая часть аудиосигнала будет кодироваться с использованием только какого-либо одного из блоков 16b, 16c.
Дополнительно, в частности, для режима с обратной связью, выводы обоих блоков соединяются с блоком 18, 22 процессора и контроллера, как показано посредством линий 71, 72. Управление переключателем осуществляется посредством линий 73, 74 из блока 18, 22 процессора и контроллера в соответствующие переключатели 16d, 16e. Снова, в зависимости от варианта осуществления, там будет обычно только одна из линий 73, 74.
Кодированный аудиосигнал 26, поэтому, содержит, среди других данных, результат ACELP или TCX, который обычно в дополнение кодируется с избыточностью, как, например, посредством кодирования Хаффмана или арифметического кодирования, до ввода в выходной интерфейс 24. Дополнительно, данные 70 LPC обеспечиваются в выходной интерфейс 24, чтобы включаться в кодированный аудиосигнал. Дополнительно, является предпочтительным дополнительно включать решение выбора режима кодирования в кодированный аудиосигнал, показывая декодеру, что текущая часть аудиосигнала является частью ACELP или TCX.
Хотя некоторые аспекты были описаны в контексте устройства, является ясным, что эти аспекты также представляют описание соответствующего способа, где блок или устройство соответствует этапу способа или признаку этапа способа. Аналогично, аспекты, описанные в контексте этапа способа, также представляют описание соответствующего блока или элемента, или признака соответствующего устройства.
В зависимости от некоторых требований вариантов осуществления, варианты осуществления изобретения могут осуществляться в аппаратном обеспечении или в программном обеспечении. Вариант осуществления может выполняться с использованием цифрового запоминающего носителя, например гибкого диска, DVD, CD, ROM, PROM, EPROM, EEPROM или флэш-памяти, имеющего электронным образом читаемые сигналы управления, сохраненные на нем, которые взаимодействуют (или являются способными взаимодействовать) с программируемой компьютерной системой, так что соответствующий способ выполняется.
Некоторые варианты осуществления согласно изобретению содержат невременный носитель данных, имеющий электронным образом читаемые сигналы управления, которые могут взаимодействовать с программируемой компьютерной системой, так что выполняется один из описанных здесь способов.
В общем, варианты осуществления настоящего изобретения могут осуществляться как компьютерный программный продукт с программным кодом, при этом программный код выполнен с возможностью выполнения одного из способов, когда компьютерный программный продукт исполняется на компьютере. Программный код может, например, храниться на машиночитаемом носителе.
Другие варианты осуществления содержат компьютерную программу для выполнения одного из описанных здесь способов, сохраненную на машиночитаемом носителе.
Другими словами, один вариант осуществления способа согласно изобретению представляет собой, поэтому, компьютерную программу, имеющую программный код для выполнения одного из описанных здесь способов, когда компьютерная программа исполняется на компьютере.
Дополнительный вариант осуществления способов согласно изобретению представляет собой, поэтому, носитель данных (или цифровой запоминающий носитель, или машиночитаемый носитель), содержащий, записанную на нем компьютерную программу для выполнения одного из описанных здесь способов.
Дополнительный вариант осуществления способа согласно изобретению представляет собой, поэтому, поток данных или последовательностью сигналов, представляющих компьютерную программу для выполнения одного из описанных здесь способов. Поток данных или последовательность сигналов могут, например, быть сконфигурированными с возможностью передачи посредством соединения передачи данных, например, посредством сети Интернет.
Дополнительный вариант осуществления содержит средство обработки, например компьютер, или программируемое логическое устройство, сконфигурированное с возможностью или выполненное с возможностью выполнения одного из описанных здесь способов.
Дополнительный вариант осуществления содержит компьютер, имеющий установленную на нем компьютерную программу для выполнения одного из описанных здесь способов.
В некоторых вариантах осуществления может использоваться программируемое логическое устройство (например, программируемая пользователем вентильная матрица), чтобы выполнять некоторые или все из функциональных возможностей описанных здесь способов. В некоторых вариантах осуществления программируемая пользователем вентильная матрица может взаимодействовать с микропроцессором, чтобы выполнять один из описанных здесь способов. В общем, способы предпочтительно выполняются посредством любого аппаратного устройства.
Вышеописанные варианты осуществления являются только иллюстративными для принципов настоящего изобретения. Следует понимать, что модификации и изменения компоновок и деталей, здесь описанных, должны быть очевидны специалистам в данной области техники. Поэтому предполагается, что ограничение накладывается только объемом представленной патентной формулы изобретения и не конкретными деталями, представленными здесь в качестве описания и объяснения вариантов осуществления.

Claims (15)

1. Устройство для кодирования части аудиосигнала (10), чтобы получать кодированный аудиосигнал (26) для части аудиосигнала, содержащее:
детектор (12) неустановившегося состояния для обнаружения, располагается ли неустановившийся сигнал в части аудиосигнала, чтобы получать результат (14) обнаружения неустановившегося состояния;
каскад (16) кодировщика для выполнения первого алгоритма кодирования над аудиосигналом, чтобы получить первое значение результата качества аудиосигнала для упомянутой части аудиосигнала, при этом первый алгоритм кодирования имеет первую характеристику, и для выполнения второго алгоритма кодирования над аудиосигналом, чтобы получить второе значение результата качества аудиосигнала для упомянутой части аудиосигнала, при этом второй алгоритм кодирования имеет вторую характеристику, которая является отличной от первой характеристики;
процессор (18) для определения, какой алгоритм кодирования из первого и второго алгоритмов кодирования дает в результате кодированный аудиосигнал, который является лучшей аппроксимацией для упомянутой части аудиосигнала по отношению к другому алгоритму кодирования из первого и второго алгоритмов кодирования, чтобы получать результат (20) качества, при этом процессор выполнен с возможностью определять результат качества как расстояние между первым значением результата качества и вторым значением результата качества; и
контроллер (22) для определения, должен ли кодированный аудиосигнал для части аудиосигнала генерироваться, используя либо первый алгоритм кодирования, либо второй алгоритм кодирования, на основе результата (14) обнаружения неустановившегося состояния и результата (20) качества.
2. Устройство по п. 1, в котором каскад (16) кодировщика сконфигурирован с возможностью использования первого алгоритма кодирования, который является более подходящим для неустановившихся сигналов, чем второй алгоритм кодирования.
3. Устройство по п. 2, в котором первый алгоритм кодирования является алгоритмом кодирования ACELP, и при этом второй алгоритм кодирования является алгоритмом кодирования с преобразованием.
4. Устройство по п. 1, в котором контроллер (22) сконфигурирован с возможностью определения второго алгоритма кодирования, хотя результат (20) качества показывает лучшее качество для первого алгоритма кодирования, когда результат (14) обнаружения неустановившегося состояния показывает установившийся сигнал.
5. Устройство по п. 1, в котором контроллер (22) сконфигурирован с возможностью определения первого алгоритма кодирования, хотя результат качества показывает лучшее качество для второго алгоритма кодирования, когда результат обнаружения неустановившегося состояния показывает неустановившийся сигнал.
6. Устройство по п. 4, в котором контроллер (22) сконфигурирован с возможностью определения второго алгоритма кодирования или первого алгоритма кодирования, только когда результат качества показывает расстояние качества между алгоритмами кодирования, которое является меньшим, чем пороговое значение расстояния.
7. Устройство по п. 6, в котором пороговое значение расстояния равняется или меньше чем 3 дБ, и при этом значения результата качества для обоих алгоритмов кодирования вычисляются с использованием вычисления SNR между аудиосигналом (10) и кодированной и снова декодированной версией аудиосигнала.
8. Устройство по п. 4, в котором контроллер (22) сконфигурирован с возможностью определять только второй алгоритм кодирования или первый алгоритм кодирования, когда количество более ранних частей сигнала, для которых был определен первый или второй алгоритм кодирования, является более маленьким, чем предопределенное количество.
9. Устройство по п. 8, в котором контроллер (22) сконфигурирован с возможностью использовать количество более ранних частей сигнала, меньшее 10.
10. Устройство по п. 1,
в котором контроллер (22) сконфигурирован с возможностью применения гистерезисной обработки, так что второй алгоритм кодирования или первый алгоритм кодирования определяется, только когда более низкое значение результата качества из первого и второго значений результата качества показывает более низкое качество для второго алгоритма кодирования или первого алгоритма кодирования, когда количество более ранних частей сигнала, имеющих первый алгоритм кодирования или второй алгоритм кодирования, соответственно, равно или меньше чем предопределенное количество, и когда результат обнаружения неустановившегося состояния показывает предварительно определенное состояние двух возможных состояний, содержащих установившиеся состояния и неустановившиеся состояния.
11. Устройство по п. 1, в котором детектор (12) неустановившегося состояния сконфигурирован с возможностью выполнять следующие этапы:
высокочастотную фильтрацию (50) аудиосигнала, чтобы получать блок подвергнутого высокочастотной фильтрации сигнала;
подразделение (52) блока подвергнутого высокочастотной фильтрации сигнала на множество подблоков;
вычисление (54) энергии для каждого подблока;
объединение (58) значений энергии для каждой пары смежных подблоков, чтобы получать результат для каждой пары; и
объединение (60) результатов для пар, чтобы получать результат (14) обнаружения неустановившегося состояния.
12. Устройство по п. 1, в котором каскад (16) кодировщика дополнительно содержит каскад фильтрации LPC для определения коэффициентов LPC из аудиосигнала для фильтрации аудиосигнала с использованием фильтра анализа LPC, определенного посредством коэффициентов LPC, чтобы определять остаточный сигнал, при этом первый алгоритм кодирования или второй алгоритм кодирования применяется к остаточному сигналу, и
при этом кодированный аудиосигнал дополнительно содержит информацию (70) о коэффициентах LPC.
13. Устройство по п. 1,
в котором каскад (16) кодирования либо содержит переключатель (16d), соединенный с первым алгоритмом (16b) кодирования и вторым алгоритмом (16с) кодирования, или переключатель (16е), подсоединенный после первого алгоритма (16b) кодирования и второго алгоритма (16с) кодирования, при этом переключатель (16d, 16е) управляется посредством контроллера (22).
14. Способ кодирования части аудиосигнала (10), чтобы получать кодированный аудиосигнал (26) для части аудиосигнала, содержащий:
обнаружение (12), располагается ли неустановившийся сигнал в части аудиосигнала, чтобы получать результат (14) обнаружения неустановившегося состояния;
выполнение (16) первого алгоритма кодирования над аудиосигналом, чтобы получить первое значение результата качества аудиосигнала для упомянутой части аудиосигнала, при этом первый алгоритм кодирования имеет первую характеристику, и выполнение второго алгоритма кодирования над аудиосигналом, чтобы получить второе значение результата качества аудиосигнала для упомянутой части аудиосигнала, при этом второй алгоритм кодирования имеет вторую характеристику, которая является отличной от первой характеристики;
определение (18) какой алгоритм кодирования из первого и второго алгоритмов кодирования дает в результате кодированный аудиосигнал, который является лучшей аппроксимацией для упомянутой части аудиосигнала по отношению к другому алгоритму кодирования из первого и второго алгоритмов кодирования, чтобы получать результат (20) качества, при этом определение содержит определение результата качества как расстояния между первым значением результата качества и вторым значением результата качества; и
определение (22), должен ли кодированный аудиосигнал для упомянутой части аудиосигнала генерироваться, используя либо первый алгоритм кодирования, либо второй алгоритм кодирования, на основе результата (14) обнаружения неустановившегося состояния и результата (20) качества.
15. Запоминающий носитель, имеющий записанные на нем выполняемые компьютером инструкции, которые при исполнении на компьютере выполняют способ кодирования части аудиосигнала по п. 14.
RU2013142072/08A 2011-02-14 2012-02-13 Устройство и способ для кодирования части аудиосигнала с использованием обнаружения неустановившегося состояния и результата качества RU2573231C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161442632P 2011-02-14 2011-02-14
US61/442,632 2011-02-14
PCT/EP2012/052396 WO2012110448A1 (en) 2011-02-14 2012-02-13 Apparatus and method for coding a portion of an audio signal using a transient detection and a quality result

Publications (2)

Publication Number Publication Date
RU2013142072A RU2013142072A (ru) 2015-03-27
RU2573231C2 true RU2573231C2 (ru) 2016-01-20

Family

ID=71943603

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013142072/08A RU2573231C2 (ru) 2011-02-14 2012-02-13 Устройство и способ для кодирования части аудиосигнала с использованием обнаружения неустановившегося состояния и результата качества

Country Status (19)

Country Link
US (1) US9620129B2 (ru)
EP (1) EP2676270B1 (ru)
JP (1) JP5914527B2 (ru)
KR (2) KR101562281B1 (ru)
CN (1) CN103493129B (ru)
AR (2) AR085217A1 (ru)
AU (1) AU2012217216B2 (ru)
BR (1) BR112013020588B1 (ru)
CA (2) CA2827266C (ru)
ES (1) ES2623291T3 (ru)
MX (1) MX2013009304A (ru)
MY (1) MY166006A (ru)
PL (1) PL2676270T3 (ru)
PT (1) PT2676270T (ru)
RU (1) RU2573231C2 (ru)
SG (1) SG192714A1 (ru)
TW (1) TWI476760B (ru)
WO (1) WO2012110448A1 (ru)
ZA (1) ZA201306842B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773636C2 (ru) * 2017-08-10 2022-06-06 Хуавэй Текнолоджиз Ко., Лтд. Способ кодирования стереопараметров временной области и соответствующий продукт
US11727943B2 (en) 2017-08-10 2023-08-15 Huawei Technologies Co., Ltd. Time-domain stereo parameter encoding method and related product

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2616434T3 (es) * 2013-01-29 2017-06-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aparato y método para seleccionar uno de un primer algoritmo de codificación de audio y un segundo algoritmo de codificación de audio
US9715880B2 (en) 2013-02-21 2017-07-25 Dolby International Ab Methods for parametric multi-channel encoding
TWI713018B (zh) 2013-09-12 2020-12-11 瑞典商杜比國際公司 多聲道音訊系統中之解碼方法、解碼裝置、包含用於執行解碼方法的指令之非暫態電腦可讀取的媒體之電腦程式產品、包含解碼裝置的音訊系統
JP6086999B2 (ja) 2014-07-28 2017-03-01 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン ハーモニクス低減を使用して第1符号化アルゴリズムと第2符号化アルゴリズムの一方を選択する装置及び方法
TWI602172B (zh) 2014-08-27 2017-10-11 弗勞恩霍夫爾協會 使用參數以加強隱蔽之用於編碼及解碼音訊內容的編碼器、解碼器及方法
US11232804B2 (en) 2017-07-03 2022-01-25 Dolby International Ab Low complexity dense transient events detection and coding
US10586546B2 (en) 2018-04-26 2020-03-10 Qualcomm Incorporated Inversely enumerated pyramid vector quantizers for efficient rate adaptation in audio coding
US10573331B2 (en) * 2018-05-01 2020-02-25 Qualcomm Incorporated Cooperative pyramid vector quantizers for scalable audio coding
EP3719799A1 (en) * 2019-04-04 2020-10-07 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. A multi-channel audio encoder, decoder, methods and computer program for switching between a parametric multi-channel operation and an individual channel operation
CN110767243A (zh) * 2019-11-04 2020-02-07 重庆百瑞互联电子技术有限公司 一种音频编码方法、装置及设备
CN115881139A (zh) * 2021-09-29 2023-03-31 华为技术有限公司 编解码方法、装置、设备、存储介质及计算机程序
WO2024110562A1 (en) * 2022-11-23 2024-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive encoding of transient audio signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2289858C2 (ru) * 2002-06-27 2006-12-20 Самсунг Электроникс Ко., Лтд. Способ и устройство кодирования аудиосигнала с использованием извлечения гармоник
RU2393552C2 (ru) * 2004-09-17 2010-06-27 Конинклейке Филипс Электроникс Н.В. Комбинированное аудиокодирование, минимизирующее воспринимаемое искажение

Family Cites Families (243)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135754A (en) 1980-03-26 1981-10-23 Nippon Denso Co Ltd Method of controlling current feeding time period at the time of acceleration
US4711212A (en) 1985-11-26 1987-12-08 Nippondenso Co., Ltd. Anti-knocking in internal combustion engine
DE69232202T2 (de) 1991-06-11 2002-07-25 Qualcomm Inc Vocoder mit veraendlicher bitrate
US5408580A (en) 1992-09-21 1995-04-18 Aware, Inc. Audio compression system employing multi-rate signal analysis
SE501340C2 (sv) 1993-06-11 1995-01-23 Ericsson Telefon Ab L M Döljande av transmissionsfel i en talavkodare
BE1007617A3 (nl) 1993-10-11 1995-08-22 Philips Electronics Nv Transmissiesysteem met gebruik van verschillende codeerprincipes.
US5657422A (en) 1994-01-28 1997-08-12 Lucent Technologies Inc. Voice activity detection driven noise remediator
US5784532A (en) 1994-02-16 1998-07-21 Qualcomm Incorporated Application specific integrated circuit (ASIC) for performing rapid speech compression in a mobile telephone system
US5684920A (en) 1994-03-17 1997-11-04 Nippon Telegraph And Telephone Acoustic signal transform coding method and decoding method having a high efficiency envelope flattening method therein
US5568588A (en) 1994-04-29 1996-10-22 Audiocodes Ltd. Multi-pulse analysis speech processing System and method
KR100419545B1 (ko) 1994-10-06 2004-06-04 코닌클리케 필립스 일렉트로닉스 엔.브이. 다른코딩원리들을이용한전송시스템
JP3304717B2 (ja) 1994-10-28 2002-07-22 ソニー株式会社 ディジタル信号圧縮方法及び装置
EP0720316B1 (en) 1994-12-30 1999-12-08 Daewoo Electronics Co., Ltd Adaptive digital audio encoding apparatus and a bit allocation method thereof
SE506379C3 (sv) 1995-03-22 1998-01-19 Ericsson Telefon Ab L M Lpc-talkodare med kombinerad excitation
US5727119A (en) 1995-03-27 1998-03-10 Dolby Laboratories Licensing Corporation Method and apparatus for efficient implementation of single-sideband filter banks providing accurate measures of spectral magnitude and phase
JP3317470B2 (ja) * 1995-03-28 2002-08-26 日本電信電話株式会社 音響信号符号化方法、音響信号復号化方法
US5659622A (en) 1995-11-13 1997-08-19 Motorola, Inc. Method and apparatus for suppressing noise in a communication system
US5890106A (en) 1996-03-19 1999-03-30 Dolby Laboratories Licensing Corporation Analysis-/synthesis-filtering system with efficient oddly-stacked singleband filter bank using time-domain aliasing cancellation
US5848391A (en) 1996-07-11 1998-12-08 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method subband of coding and decoding audio signals using variable length windows
JP3259759B2 (ja) 1996-07-22 2002-02-25 日本電気株式会社 音声信号伝送方法及び音声符号復号化システム
JP3622365B2 (ja) 1996-09-26 2005-02-23 ヤマハ株式会社 音声符号化伝送方式
JPH10124092A (ja) 1996-10-23 1998-05-15 Sony Corp 音声符号化方法及び装置、並びに可聴信号符号化方法及び装置
US5960389A (en) 1996-11-15 1999-09-28 Nokia Mobile Phones Limited Methods for generating comfort noise during discontinuous transmission
JPH10214100A (ja) * 1997-01-31 1998-08-11 Sony Corp 音声合成方法
US6134518A (en) 1997-03-04 2000-10-17 International Business Machines Corporation Digital audio signal coding using a CELP coder and a transform coder
JPH10276095A (ja) 1997-03-28 1998-10-13 Toshiba Corp 符号化器及び復号化器
SE512719C2 (sv) 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
JP3223966B2 (ja) 1997-07-25 2001-10-29 日本電気株式会社 音声符号化/復号化装置
US6070137A (en) 1998-01-07 2000-05-30 Ericsson Inc. Integrated frequency-domain voice coding using an adaptive spectral enhancement filter
EP0932141B1 (en) * 1998-01-22 2005-08-24 Deutsche Telekom AG Method for signal controlled switching between different audio coding schemes
GB9811019D0 (en) 1998-05-21 1998-07-22 Univ Surrey Speech coders
DE19827704C2 (de) 1998-06-22 2000-05-11 Siemens Ag Verfahren zur zylinderselektiven Klopfregelung einer Brennkraftmaschine
US6173257B1 (en) 1998-08-24 2001-01-09 Conexant Systems, Inc Completed fixed codebook for speech encoder
US6439967B2 (en) 1998-09-01 2002-08-27 Micron Technology, Inc. Microelectronic substrate assembly planarizing machines and methods of mechanical and chemical-mechanical planarization of microelectronic substrate assemblies
SE521225C2 (sv) 1998-09-16 2003-10-14 Ericsson Telefon Ab L M Förfarande och anordning för CELP-kodning/avkodning
US7272556B1 (en) 1998-09-23 2007-09-18 Lucent Technologies Inc. Scalable and embedded codec for speech and audio signals
US6317117B1 (en) 1998-09-23 2001-11-13 Eugene Goff User interface for the control of an audio spectrum filter processor
US7124079B1 (en) 1998-11-23 2006-10-17 Telefonaktiebolaget Lm Ericsson (Publ) Speech coding with comfort noise variability feature for increased fidelity
FI114833B (fi) 1999-01-08 2004-12-31 Nokia Corp Menetelmä, puhekooderi ja matkaviestin puheenkoodauskehysten muodostamiseksi
DE19921122C1 (de) 1999-05-07 2001-01-25 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Verschleiern eines Fehlers in einem codierten Audiosignal und Verfahren und Vorrichtung zum Decodieren eines codierten Audiosignals
CN1145928C (zh) 1999-06-07 2004-04-14 艾利森公司 用参数噪声模型统计量产生舒适噪声的方法及装置
JP4464484B2 (ja) 1999-06-15 2010-05-19 パナソニック株式会社 雑音信号符号化装置および音声信号符号化装置
US6236960B1 (en) 1999-08-06 2001-05-22 Motorola, Inc. Factorial packing method and apparatus for information coding
US6636829B1 (en) 1999-09-22 2003-10-21 Mindspeed Technologies, Inc. Speech communication system and method for handling lost frames
ATE341074T1 (de) 2000-02-29 2006-10-15 Qualcomm Inc Multimodaler mischbereich-sprachkodierer mit geschlossener regelschleife
DE10012956A1 (de) 2000-03-16 2001-09-20 Bosch Gmbh Robert Vorrichtung und Verfahren zur Regelung des Energieangebots für die Zündung einer Brennkraftmaschine
US6757654B1 (en) 2000-05-11 2004-06-29 Telefonaktiebolaget Lm Ericsson Forward error correction in speech coding
JP2002118517A (ja) 2000-07-31 2002-04-19 Sony Corp 直交変換装置及び方法、逆直交変換装置及び方法、変換符号化装置及び方法、並びに復号装置及び方法
FR2813722B1 (fr) 2000-09-05 2003-01-24 France Telecom Procede et dispositif de dissimulation d'erreurs et systeme de transmission comportant un tel dispositif
US6847929B2 (en) 2000-10-12 2005-01-25 Texas Instruments Incorporated Algebraic codebook system and method
US6636830B1 (en) 2000-11-22 2003-10-21 Vialta Inc. System and method for noise reduction using bi-orthogonal modified discrete cosine transform
CA2327041A1 (en) 2000-11-22 2002-05-22 Voiceage Corporation A method for indexing pulse positions and signs in algebraic codebooks for efficient coding of wideband signals
US20050130321A1 (en) 2001-04-23 2005-06-16 Nicholson Jeremy K. Methods for analysis of spectral data and their applications
US7136418B2 (en) 2001-05-03 2006-11-14 University Of Washington Scalable and perceptually ranked signal coding and decoding
KR100464369B1 (ko) 2001-05-23 2005-01-03 삼성전자주식회사 음성 부호화 시스템의 여기 코드북 탐색 방법
US20020184009A1 (en) 2001-05-31 2002-12-05 Heikkinen Ari P. Method and apparatus for improved voicing determination in speech signals containing high levels of jitter
US20030120484A1 (en) 2001-06-12 2003-06-26 David Wong Method and system for generating colored comfort noise in the absence of silence insertion description packets
DE10129240A1 (de) 2001-06-18 2003-01-02 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Verarbeiten von zeitdiskreten Audio-Abtastwerten
US6941263B2 (en) 2001-06-29 2005-09-06 Microsoft Corporation Frequency domain postfiltering for quality enhancement of coded speech
US6879955B2 (en) 2001-06-29 2005-04-12 Microsoft Corporation Signal modification based on continuous time warping for low bit rate CELP coding
US7711563B2 (en) 2001-08-17 2010-05-04 Broadcom Corporation Method and system for frame erasure concealment for predictive speech coding based on extrapolation of speech waveform
DE10140507A1 (de) 2001-08-17 2003-02-27 Philips Corp Intellectual Pty Verfahren für die algebraische Codebook-Suche eines Sprachsignalkodierers
KR100438175B1 (ko) 2001-10-23 2004-07-01 엘지전자 주식회사 코드북 검색방법
US6934677B2 (en) 2001-12-14 2005-08-23 Microsoft Corporation Quantization matrices based on critical band pattern information for digital audio wherein quantization bands differ from critical bands
US7240001B2 (en) 2001-12-14 2007-07-03 Microsoft Corporation Quality improvement techniques in an audio encoder
CA2365203A1 (en) 2001-12-14 2003-06-14 Voiceage Corporation A signal modification method for efficient coding of speech signals
JP3815323B2 (ja) 2001-12-28 2006-08-30 日本ビクター株式会社 周波数変換ブロック長適応変換装置及びプログラム
DE10200653B4 (de) 2002-01-10 2004-05-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Skalierbarer Codierer, Verfahren zum Codieren, Decodierer und Verfahren zum Decodieren für einen skalierten Datenstrom
US6646332B2 (en) 2002-01-18 2003-11-11 Terence Quintin Collier Semiconductor package device
CA2388352A1 (en) 2002-05-31 2003-11-30 Voiceage Corporation A method and device for frequency-selective pitch enhancement of synthesized speed
CA2388439A1 (en) 2002-05-31 2003-11-30 Voiceage Corporation A method and device for efficient frame erasure concealment in linear predictive based speech codecs
CA2388358A1 (en) 2002-05-31 2003-11-30 Voiceage Corporation A method and device for multi-rate lattice vector quantization
US7302387B2 (en) 2002-06-04 2007-11-27 Texas Instruments Incorporated Modification of fixed codebook search in G.729 Annex E audio coding
US20040010329A1 (en) 2002-07-09 2004-01-15 Silicon Integrated Systems Corp. Method for reducing buffer requirements in a digital audio decoder
DE10236694A1 (de) 2002-08-09 2004-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum skalierbaren Codieren und Vorrichtung und Verfahren zum skalierbaren Decodieren
US7299190B2 (en) 2002-09-04 2007-11-20 Microsoft Corporation Quantization and inverse quantization for audio
US7502743B2 (en) 2002-09-04 2009-03-10 Microsoft Corporation Multi-channel audio encoding and decoding with multi-channel transform selection
US7069212B2 (en) 2002-09-19 2006-06-27 Matsushita Elecric Industrial Co., Ltd. Audio decoding apparatus and method for band expansion with aliasing adjustment
CA2501368C (en) 2002-10-11 2013-06-25 Nokia Corporation Methods and devices for source controlled variable bit-rate wideband speech coding
US7343283B2 (en) 2002-10-23 2008-03-11 Motorola, Inc. Method and apparatus for coding a noise-suppressed audio signal
US7363218B2 (en) 2002-10-25 2008-04-22 Dilithium Networks Pty. Ltd. Method and apparatus for fast CELP parameter mapping
KR100463559B1 (ko) 2002-11-11 2004-12-29 한국전자통신연구원 대수 코드북을 이용하는 켈프 보코더의 코드북 검색방법
KR100463419B1 (ko) 2002-11-11 2004-12-23 한국전자통신연구원 적은 복잡도를 가진 고정 코드북 검색방법 및 장치
KR100465316B1 (ko) 2002-11-18 2005-01-13 한국전자통신연구원 음성 부호화기 및 이를 이용한 음성 부호화 방법
KR20040058855A (ko) 2002-12-27 2004-07-05 엘지전자 주식회사 음성 변조 장치 및 방법
JP4191503B2 (ja) 2003-02-13 2008-12-03 日本電信電話株式会社 音声楽音信号符号化方法、復号化方法、符号化装置、復号化装置、符号化プログラム、および復号化プログラム
AU2003208517A1 (en) 2003-03-11 2004-09-30 Nokia Corporation Switching between coding schemes
US7249014B2 (en) 2003-03-13 2007-07-24 Intel Corporation Apparatus, methods and articles incorporating a fast algebraic codebook search technique
US20050021338A1 (en) 2003-03-17 2005-01-27 Dan Graboi Recognition device and system
KR100556831B1 (ko) 2003-03-25 2006-03-10 한국전자통신연구원 전역 펄스 교체를 통한 고정 코드북 검색 방법
WO2004090870A1 (ja) 2003-04-04 2004-10-21 Kabushiki Kaisha Toshiba 広帯域音声を符号化または復号化するための方法及び装置
US7318035B2 (en) 2003-05-08 2008-01-08 Dolby Laboratories Licensing Corporation Audio coding systems and methods using spectral component coupling and spectral component regeneration
DE10321983A1 (de) 2003-05-15 2004-12-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Einbetten einer binären Nutzinformation in ein Trägersignal
ES2354427T3 (es) 2003-06-30 2011-03-14 Koninklijke Philips Electronics N.V. Mejora de la calidad de audio decodificado mediante la adición de ruido.
DE10331803A1 (de) 2003-07-14 2005-02-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Umsetzen in eine transformierte Darstellung oder zum inversen Umsetzen der transformierten Darstellung
CA2475283A1 (en) 2003-07-17 2005-01-17 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Method for recovery of lost speech data
DE10345996A1 (de) 2003-10-02 2005-04-28 Fraunhofer Ges Forschung Vorrichtung und Verfahren zum Verarbeiten von wenigstens zwei Eingangswerten
DE10345995B4 (de) 2003-10-02 2005-07-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Verarbeiten eines Signals mit einer Sequenz von diskreten Werten
US7418396B2 (en) 2003-10-14 2008-08-26 Broadcom Corporation Reduced memory implementation technique of filterbank and block switching for real-time audio applications
US20050091041A1 (en) 2003-10-23 2005-04-28 Nokia Corporation Method and system for speech coding
US20050091044A1 (en) 2003-10-23 2005-04-28 Nokia Corporation Method and system for pitch contour quantization in audio coding
EP1683133B1 (en) 2003-10-30 2007-02-14 Koninklijke Philips Electronics N.V. Audio signal encoding or decoding
WO2005073959A1 (en) 2004-01-28 2005-08-11 Koninklijke Philips Electronics N.V. Audio signal decoding using complex-valued data
EP1714456B1 (en) * 2004-02-12 2014-07-16 Core Wireless Licensing S.à.r.l. Classified media quality of experience
DE102004007200B3 (de) 2004-02-13 2005-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audiocodierung
CA2457988A1 (en) * 2004-02-18 2005-08-18 Voiceage Corporation Methods and devices for audio compression based on acelp/tcx coding and multi-rate lattice vector quantization
FI118835B (fi) 2004-02-23 2008-03-31 Nokia Corp Koodausmallin valinta
FI118834B (fi) 2004-02-23 2008-03-31 Nokia Corp Audiosignaalien luokittelu
WO2005086138A1 (ja) 2004-03-05 2005-09-15 Matsushita Electric Industrial Co., Ltd. エラー隠蔽装置およびエラー隠蔽方法
WO2005096274A1 (fr) 2004-04-01 2005-10-13 Beijing Media Works Co., Ltd Dispositif et procede de codage/decodage audio ameliores
GB0408856D0 (en) * 2004-04-21 2004-05-26 Nokia Corp Signal encoding
MXPA06012617A (es) 2004-05-17 2006-12-15 Nokia Corp Codificacion de audio con diferentes longitudes de cuadro de codificacion.
JP4168976B2 (ja) * 2004-05-28 2008-10-22 ソニー株式会社 オーディオ信号符号化装置及び方法
US7649988B2 (en) 2004-06-15 2010-01-19 Acoustic Technologies, Inc. Comfort noise generator using modified Doblinger noise estimate
US8160274B2 (en) * 2006-02-07 2012-04-17 Bongiovi Acoustics Llc. System and method for digital signal processing
US7630902B2 (en) * 2004-09-17 2009-12-08 Digital Rise Technology Co., Ltd. Apparatus and methods for digital audio coding using codebook application ranges
KR100656788B1 (ko) 2004-11-26 2006-12-12 한국전자통신연구원 비트율 신축성을 갖는 코드벡터 생성 방법 및 그를 이용한 광대역 보코더
TWI253057B (en) 2004-12-27 2006-04-11 Quanta Comp Inc Search system and method thereof for searching code-vector of speech signal in speech encoder
BRPI0607246B1 (pt) 2005-01-31 2019-12-03 Skype método para gerar uma seqüência de amostras de encobrimento com relação à transmissão de um sinal de áudio digitalizado, dispositivo de armazenamento de programa, e, arranjo para receber um sinal de áudio digitalizado
US7519535B2 (en) 2005-01-31 2009-04-14 Qualcomm Incorporated Frame erasure concealment in voice communications
CN100593197C (zh) 2005-02-02 2010-03-03 富士通株式会社 信号处理方法和装置
US20070147518A1 (en) * 2005-02-18 2007-06-28 Bruno Bessette Methods and devices for low-frequency emphasis during audio compression based on ACELP/TCX
US8155965B2 (en) 2005-03-11 2012-04-10 Qualcomm Incorporated Time warping frames inside the vocoder by modifying the residual
AU2006232364B2 (en) 2005-04-01 2010-11-25 Qualcomm Incorporated Systems, methods, and apparatus for wideband speech coding
JP4767069B2 (ja) 2005-05-02 2011-09-07 ヤマハ発動機株式会社 鞍乗型車両のエンジン制御装置及びそのエンジン制御方法
EP1899958B1 (en) 2005-05-26 2013-08-07 LG Electronics Inc. Method and apparatus for decoding an audio signal
US7707034B2 (en) 2005-05-31 2010-04-27 Microsoft Corporation Audio codec post-filter
RU2296377C2 (ru) 2005-06-14 2007-03-27 Михаил Николаевич Гусев Способ анализа и синтеза речи
PL1897085T3 (pl) 2005-06-18 2017-10-31 Nokia Technologies Oy System i sposób adaptacyjnej transmisji parametrów szumu łagodzącego w czasie nieciągłej transmisji mowy
EP1895511B1 (en) 2005-06-23 2011-09-07 Panasonic Corporation Audio encoding apparatus, audio decoding apparatus and audio encoding information transmitting apparatus
FR2888699A1 (fr) 2005-07-13 2007-01-19 France Telecom Dispositif de codage/decodage hierachique
KR100851970B1 (ko) 2005-07-15 2008-08-12 삼성전자주식회사 오디오 신호의 중요주파수 성분 추출방법 및 장치와 이를이용한 저비트율 오디오 신호 부호화/복호화 방법 및 장치
US7610197B2 (en) 2005-08-31 2009-10-27 Motorola, Inc. Method and apparatus for comfort noise generation in speech communication systems
RU2312405C2 (ru) 2005-09-13 2007-12-10 Михаил Николаевич Гусев Способ осуществления машинной оценки качества звуковых сигналов
US20070174047A1 (en) 2005-10-18 2007-07-26 Anderson Kyle D Method and apparatus for resynchronizing packetized audio streams
US7720677B2 (en) 2005-11-03 2010-05-18 Coding Technologies Ab Time warped modified transform coding of audio signals
US7536299B2 (en) 2005-12-19 2009-05-19 Dolby Laboratories Licensing Corporation Correlating and decorrelating transforms for multiple description coding systems
US8255207B2 (en) 2005-12-28 2012-08-28 Voiceage Corporation Method and device for efficient frame erasure concealment in speech codecs
WO2007080211A1 (en) 2006-01-09 2007-07-19 Nokia Corporation Decoding of binaural audio signals
TW200737738A (en) 2006-01-18 2007-10-01 Lg Electronics Inc Apparatus and method for encoding and decoding signal
CN101371296B (zh) 2006-01-18 2012-08-29 Lg电子株式会社 用于编码和解码信号的设备和方法
US8032369B2 (en) 2006-01-20 2011-10-04 Qualcomm Incorporated Arbitrary average data rates for variable rate coders
US7668304B2 (en) 2006-01-25 2010-02-23 Avaya Inc. Display hierarchy of participants during phone call
FR2897733A1 (fr) 2006-02-20 2007-08-24 France Telecom Procede de discrimination et d'attenuation fiabilisees des echos d'un signal numerique dans un decodeur et dispositif correspondant
FR2897977A1 (fr) 2006-02-28 2007-08-31 France Telecom Procede de limitation de gain d'excitation adaptative dans un decodeur audio
US7556670B2 (en) 2006-03-16 2009-07-07 Aylsworth Alonzo C Method and system of coordinating an intensifier and sieve beds
US20070253577A1 (en) 2006-05-01 2007-11-01 Himax Technologies Limited Equalizer bank with interference reduction
EP1852848A1 (en) * 2006-05-05 2007-11-07 Deutsche Thomson-Brandt GmbH Method and apparatus for lossless encoding of a source signal using a lossy encoded data stream and a lossless extension data stream
US7873511B2 (en) 2006-06-30 2011-01-18 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder and audio processor having a dynamically variable warping characteristic
JP4810335B2 (ja) 2006-07-06 2011-11-09 株式会社東芝 広帯域オーディオ信号符号化装置および広帯域オーディオ信号復号装置
EP2040251B1 (en) 2006-07-12 2019-10-09 III Holdings 12, LLC Audio decoding device and audio encoding device
WO2008007700A1 (fr) 2006-07-12 2008-01-17 Panasonic Corporation Dispositif de décodage de son, dispositif de codage de son, et procédé de compensation de trame perdue
US7933770B2 (en) 2006-07-14 2011-04-26 Siemens Audiologische Technik Gmbh Method and device for coding audio data based on vector quantisation
JP5031030B2 (ja) 2006-07-24 2012-09-19 ソニー株式会社 ヘア/ファーパイプラインにおいて使用するためのヘアモーション合成システム及び最適化技術
US7987089B2 (en) 2006-07-31 2011-07-26 Qualcomm Incorporated Systems and methods for modifying a zero pad region of a windowed frame of an audio signal
WO2008022181A2 (en) 2006-08-15 2008-02-21 Broadcom Corporation Updating of decoder states after packet loss concealment
US7877253B2 (en) 2006-10-06 2011-01-25 Qualcomm Incorporated Systems, methods, and apparatus for frame erasure recovery
US8036903B2 (en) 2006-10-18 2011-10-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Analysis filterbank, synthesis filterbank, encoder, de-coder, mixer and conferencing system
US8041578B2 (en) 2006-10-18 2011-10-18 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Encoding an information signal
US8126721B2 (en) 2006-10-18 2012-02-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Encoding an information signal
DE102006049154B4 (de) 2006-10-18 2009-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kodierung eines Informationssignals
US8417532B2 (en) 2006-10-18 2013-04-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Encoding an information signal
EP4300825A3 (en) 2006-10-25 2024-03-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for generating time-domain audio samples
DE102006051673A1 (de) 2006-11-02 2008-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Nachbearbeiten von Spektralwerten und Encodierer und Decodierer für Audiosignale
RU2444071C2 (ru) 2006-12-12 2012-02-27 Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Кодер, декодер и методы кодирования и декодирования сегментов данных, представляющих собой поток данных временной области
FR2911228A1 (fr) 2007-01-05 2008-07-11 France Telecom Codage par transformee, utilisant des fenetres de ponderation et a faible retard.
KR101379263B1 (ko) 2007-01-12 2014-03-28 삼성전자주식회사 대역폭 확장 복호화 방법 및 장치
FR2911426A1 (fr) 2007-01-15 2008-07-18 France Telecom Modification d'un signal de parole
US7873064B1 (en) 2007-02-12 2011-01-18 Marvell International Ltd. Adaptive jitter buffer-packet loss concealment
EP2128855A1 (en) 2007-03-02 2009-12-02 Panasonic Corporation Voice encoding device and voice encoding method
JP4708446B2 (ja) 2007-03-02 2011-06-22 パナソニック株式会社 符号化装置、復号装置およびそれらの方法
SG179433A1 (en) 2007-03-02 2012-04-27 Panasonic Corp Encoding device and encoding method
DE102007013811A1 (de) * 2007-03-22 2008-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur zeitlichen Segmentierung eines Videos in Videobildfolgen und zur Auswahl von Keyframes für das Auffinden von Bildinhalten unter Einbeziehung einer Subshot-Detektion
JP2008261904A (ja) 2007-04-10 2008-10-30 Matsushita Electric Ind Co Ltd 符号化装置、復号化装置、符号化方法および復号化方法
US8630863B2 (en) 2007-04-24 2014-01-14 Samsung Electronics Co., Ltd. Method and apparatus for encoding and decoding audio/speech signal
PT2827327T (pt) 2007-04-29 2020-08-27 Huawei Tech Co Ltd Método para codificação de impulsos de excitação
CN101388210B (zh) 2007-09-15 2012-03-07 华为技术有限公司 编解码方法及编解码器
RU2439721C2 (ru) 2007-06-11 2012-01-10 Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Аудиокодер для кодирования аудиосигнала, имеющего импульсоподобную и стационарную составляющие, способы кодирования, декодер, способ декодирования и кодированный аудиосигнал
US9653088B2 (en) 2007-06-13 2017-05-16 Qualcomm Incorporated Systems, methods, and apparatus for signal encoding using pitch-regularizing and non-pitch-regularizing coding
KR101513028B1 (ko) 2007-07-02 2015-04-17 엘지전자 주식회사 방송 수신기 및 방송신호 처리방법
US8185381B2 (en) 2007-07-19 2012-05-22 Qualcomm Incorporated Unified filter bank for performing signal conversions
CN101110214B (zh) 2007-08-10 2011-08-17 北京理工大学 一种基于多描述格型矢量量化技术的语音编码方法
US8428957B2 (en) 2007-08-24 2013-04-23 Qualcomm Incorporated Spectral noise shaping in audio coding based on spectral dynamics in frequency sub-bands
JP5140730B2 (ja) 2007-08-27 2013-02-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 切り換え可能な時間分解能を用いた低演算量のスペクトル分析/合成
JP4886715B2 (ja) 2007-08-28 2012-02-29 日本電信電話株式会社 定常率算出装置、雑音レベル推定装置、雑音抑圧装置、それらの方法、プログラム及び記録媒体
US8566106B2 (en) 2007-09-11 2013-10-22 Voiceage Corporation Method and device for fast algebraic codebook search in speech and audio coding
CN100524462C (zh) 2007-09-15 2009-08-05 华为技术有限公司 对高带信号进行帧错误隐藏的方法及装置
US8576096B2 (en) 2007-10-11 2013-11-05 Motorola Mobility Llc Apparatus and method for low complexity combinatorial coding of signals
KR101373004B1 (ko) 2007-10-30 2014-03-26 삼성전자주식회사 고주파수 신호 부호화 및 복호화 장치 및 방법
CN101425292B (zh) 2007-11-02 2013-01-02 华为技术有限公司 一种音频信号的解码方法及装置
DE102007055830A1 (de) 2007-12-17 2009-06-18 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Betrieb eines Hybridantriebes eines Fahrzeuges
CN101483043A (zh) 2008-01-07 2009-07-15 中兴通讯股份有限公司 基于分类和排列组合的码本索引编码方法
CN101488344B (zh) * 2008-01-16 2011-09-21 华为技术有限公司 一种量化噪声泄漏控制方法及装置
DE102008015702B4 (de) 2008-01-31 2010-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Bandbreitenerweiterung eines Audiosignals
US8116486B2 (en) 2008-03-04 2012-02-14 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Mixing of input data streams and generation of an output data stream therefrom
US8000487B2 (en) 2008-03-06 2011-08-16 Starkey Laboratories, Inc. Frequency translation by high-frequency spectral envelope warping in hearing assistance devices
JP2009224850A (ja) 2008-03-13 2009-10-01 Toshiba Corp 無線通信装置
FR2929466A1 (fr) 2008-03-28 2009-10-02 France Telecom Dissimulation d'erreur de transmission dans un signal numerique dans une structure de decodage hierarchique
EP2107556A1 (en) 2008-04-04 2009-10-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio transform coding using pitch correction
US8423852B2 (en) 2008-04-15 2013-04-16 Qualcomm Incorporated Channel decoding-based error detection
US8768690B2 (en) * 2008-06-20 2014-07-01 Qualcomm Incorporated Coding scheme selection for low-bit-rate applications
EP2144230A1 (en) 2008-07-11 2010-01-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Low bitrate audio encoding/decoding scheme having cascaded switches
MX2011000375A (es) 2008-07-11 2011-05-19 Fraunhofer Ges Forschung Codificador y decodificador de audio para codificar y decodificar tramas de una señal de audio muestreada.
EP2144171B1 (en) 2008-07-11 2018-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder and decoder for encoding and decoding frames of a sampled audio signal
PL2346029T3 (pl) 2008-07-11 2013-11-29 Fraunhofer Ges Forschung Koder sygnału audio, sposób kodowania sygnału audio i odpowiadający mu program komputerowy
KR101400484B1 (ko) 2008-07-11 2014-05-28 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 시간 워프 활성 신호의 제공 및 이를 이용한 오디오 신호의 인코딩
CA2730355C (en) 2008-07-11 2016-03-22 Guillaume Fuchs Apparatus and method for encoding/decoding an audio signal using an aliasing switch scheme
RU2515704C2 (ru) 2008-07-11 2014-05-20 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Аудиокодер и аудиодекодер для кодирования и декодирования отсчетов аудиосигнала
MY154452A (en) 2008-07-11 2015-06-15 Fraunhofer Ges Forschung An apparatus and a method for decoding an encoded audio signal
US8352279B2 (en) 2008-09-06 2013-01-08 Huawei Technologies Co., Ltd. Efficient temporal envelope coding approach by prediction between low band signal and high band signal
US8380498B2 (en) 2008-09-06 2013-02-19 GH Innovation, Inc. Temporal envelope coding of energy attack signal by using attack point location
US8577673B2 (en) 2008-09-15 2013-11-05 Huawei Technologies Co., Ltd. CELP post-processing for music signals
US8798776B2 (en) 2008-09-30 2014-08-05 Dolby International Ab Transcoding of audio metadata
DE102008042579B4 (de) 2008-10-02 2020-07-23 Robert Bosch Gmbh Verfahren zur Fehlerverdeckung bei fehlerhafter Übertragung von Sprachdaten
MX2011003824A (es) 2008-10-08 2011-05-02 Fraunhofer Ges Forschung Esquema de codificacion/decodificacion de audio conmutado de resolucion multiple.
KR101315617B1 (ko) 2008-11-26 2013-10-08 광운대학교 산학협력단 모드 스위칭에 기초하여 윈도우 시퀀스를 처리하는 통합 음성/오디오 부/복호화기
CN101770775B (zh) 2008-12-31 2011-06-22 华为技术有限公司 信号处理方法及装置
KR101589942B1 (ko) 2009-01-16 2016-01-29 돌비 인터네셔널 에이비 외적 향상 고조파 전치
US8457975B2 (en) 2009-01-28 2013-06-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio decoder, audio encoder, methods for decoding and encoding an audio signal and computer program
BRPI1005300B1 (pt) 2009-01-28 2021-06-29 Fraunhofer - Gesellschaft Zur Forderung Der Angewandten Ten Forschung E.V. Codificador de áudio, decodificador de áudio, informações de áudio codificado e métodos para codificar e decodificar um sinal de áudio com base em uma informação de áudio codificado e em uma informação de áudio de entrada.
EP2214165A3 (en) * 2009-01-30 2010-09-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, method and computer program for manipulating an audio signal comprising a transient event
CN102396024A (zh) 2009-02-16 2012-03-28 韩国电子通信研究院 使用自适应正弦波脉冲编码的用于音频信号的编码/解码方法及其设备
EP2234103B1 (en) * 2009-03-26 2011-09-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for manipulating an audio signal
US8363597B2 (en) 2009-04-09 2013-01-29 Qualcomm Incorporated MAC architectures for wireless communications using multiple physical layers
KR20100115215A (ko) * 2009-04-17 2010-10-27 삼성전자주식회사 가변 비트율 오디오 부호화 및 복호화 장치 및 방법
US8725503B2 (en) * 2009-06-23 2014-05-13 Voiceage Corporation Forward time-domain aliasing cancellation with application in weighted or original signal domain
JP5267362B2 (ja) * 2009-07-03 2013-08-21 富士通株式会社 オーディオ符号化装置、オーディオ符号化方法及びオーディオ符号化用コンピュータプログラムならびに映像伝送装置
CN101958119B (zh) 2009-07-16 2012-02-29 中兴通讯股份有限公司 一种改进的离散余弦变换域音频丢帧补偿器和补偿方法
US8635357B2 (en) * 2009-09-08 2014-01-21 Google Inc. Dynamic selection of parameter sets for transcoding media data
PL2473995T3 (pl) 2009-10-20 2015-06-30 Fraunhofer Ges Forschung Koder sygnału audio, dekoder sygnału audio, sposób dostarczania zakodowanej reprezentacji treści audio, sposób dostarczania dekodowanej reprezentacji treści audio oraz program komputerowy do wykorzystania w zastosowaniach z małym opóźnieniem
ES2453098T3 (es) 2009-10-20 2014-04-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Códec multimodo de audio
KR101411759B1 (ko) 2009-10-20 2014-06-25 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 오디오 신호 인코더, 오디오 신호 디코더, 앨리어싱-소거를 이용하여 오디오 신호를 인코딩 또는 디코딩하는 방법
CN102081927B (zh) 2009-11-27 2012-07-18 中兴通讯股份有限公司 一种可分层音频编码、解码方法及***
US8423355B2 (en) 2010-03-05 2013-04-16 Motorola Mobility Llc Encoder for audio signal including generic audio and speech frames
US8428936B2 (en) 2010-03-05 2013-04-23 Motorola Mobility Llc Decoder for audio signal including generic audio and speech frames
WO2011127832A1 (en) 2010-04-14 2011-10-20 Huawei Technologies Co., Ltd. Time/frequency two dimension post-processing
WO2011147950A1 (en) 2010-05-28 2011-12-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Low-delay unified speech and audio codec
FR2963254B1 (fr) 2010-07-27 2012-08-24 Maurice Guerin Dispositif et procede pour laver des surfaces internes d?une enceinte
MX2013009305A (es) 2011-02-14 2013-10-03 Fraunhofer Ges Forschung Generacion de ruido en codecs de audio.
AU2012217269B2 (en) 2011-02-14 2015-10-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing a decoded audio signal in a spectral domain
CA2844659C (en) 2011-08-10 2020-06-09 Thompson Automotive Labs Llc Methods and apparatus for engine analysis and remote engine analysis
EP2721610A1 (en) * 2011-11-25 2014-04-23 Huawei Technologies Co., Ltd. An apparatus and a method for encoding an input signal
KR20130134193A (ko) 2012-05-30 2013-12-10 삼성전자주식회사 컨커런트 서비스를 제공하기 위한 전자 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2289858C2 (ru) * 2002-06-27 2006-12-20 Самсунг Электроникс Ко., Лтд. Способ и устройство кодирования аудиосигнала с использованием извлечения гармоник
RU2393552C2 (ru) * 2004-09-17 2010-06-27 Конинклейке Филипс Электроникс Н.В. Комбинированное аудиокодирование, минимизирующее воспринимаемое искажение

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773636C2 (ru) * 2017-08-10 2022-06-06 Хуавэй Текнолоджиз Ко., Лтд. Способ кодирования стереопараметров временной области и соответствующий продукт
US11727943B2 (en) 2017-08-10 2023-08-15 Huawei Technologies Co., Ltd. Time-domain stereo parameter encoding method and related product

Also Published As

Publication number Publication date
MX2013009304A (es) 2013-10-03
US9620129B2 (en) 2017-04-11
BR112013020588B1 (pt) 2021-07-13
CA2827266A1 (en) 2012-08-23
KR101525185B1 (ko) 2015-06-02
SG192714A1 (en) 2013-09-30
ES2623291T3 (es) 2017-07-10
PL2676270T3 (pl) 2017-07-31
EP2676270B1 (en) 2017-02-01
RU2013142072A (ru) 2015-03-27
BR112013020588A2 (pt) 2018-07-10
CA2827266C (en) 2017-02-28
AR085217A1 (es) 2013-09-18
JP5914527B2 (ja) 2016-05-11
JP2014510303A (ja) 2014-04-24
KR20140139630A (ko) 2014-12-05
CN103493129B (zh) 2016-08-10
KR20130126708A (ko) 2013-11-20
TW201301265A (zh) 2013-01-01
AU2012217216A1 (en) 2013-09-26
KR101562281B1 (ko) 2015-10-22
CA2920964A1 (en) 2012-08-23
AU2012217216B2 (en) 2015-09-17
WO2012110448A1 (en) 2012-08-23
EP2676270A1 (en) 2013-12-25
ZA201306842B (en) 2014-05-28
PT2676270T (pt) 2017-05-02
US20130332177A1 (en) 2013-12-12
TWI476760B (zh) 2015-03-11
MY166006A (en) 2018-05-21
CA2920964C (en) 2017-08-29
AR098480A2 (es) 2016-06-01
CN103493129A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
RU2573231C2 (ru) Устройство и способ для кодирования части аудиосигнала с использованием обнаружения неустановившегося состояния и результата качества
US7860709B2 (en) Audio encoding with different coding frame lengths
US10706865B2 (en) Apparatus and method for selecting one of a first encoding algorithm and a second encoding algorithm using harmonics reduction
KR101698905B1 (ko) 정렬된 예견 부를 사용하여 오디오 신호를 인코딩하고 디코딩하기 위한 장치 및 방법
RU2618848C2 (ru) Устройство и способ для выбора одного из первого алгоритма кодирования аудио и второго алгоритма кодирования аудио
CA2910878C (en) Apparatus and method for selecting one of a first encoding algorithm and a second encoding algorithm using harmonics reduction
RU2574849C2 (ru) Устройство и способ для кодирования и декодирования аудиосигнала с использованием выровненной части опережающего просмотра