RU2572403C1 - Способ инерциальной навигации и устройство для его осуществления - Google Patents

Способ инерциальной навигации и устройство для его осуществления Download PDF

Info

Publication number
RU2572403C1
RU2572403C1 RU2015111505/28A RU2015111505A RU2572403C1 RU 2572403 C1 RU2572403 C1 RU 2572403C1 RU 2015111505/28 A RU2015111505/28 A RU 2015111505/28A RU 2015111505 A RU2015111505 A RU 2015111505A RU 2572403 C1 RU2572403 C1 RU 2572403C1
Authority
RU
Russia
Prior art keywords
calculator
angular velocity
accelerometers
navigation
inputs
Prior art date
Application number
RU2015111505/28A
Other languages
English (en)
Inventor
Игорь Петрович Шепеть
Original Assignee
Игорь Петрович Шепеть
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Игорь Петрович Шепеть filed Critical Игорь Петрович Шепеть
Priority to RU2015111505/28A priority Critical patent/RU2572403C1/ru
Application granted granted Critical
Publication of RU2572403C1 publication Critical patent/RU2572403C1/ru

Links

Images

Landscapes

  • Navigation (AREA)

Abstract

Изобретение относится к области навигационных измерений и может быть использовано для определения координат местоположения подвижного объекта, например летательного аппарата (ЛА). Для достижения этой цели дополнительно осуществляют компенсацию погрешностей блока акселерометров за счет погрешностей акселерометров второго блока путем разворота чувствительных элементов до достижения максимума разности показаний акселерометров, приведенных к единой системе координат. Устройство является инерциальной навигационной мультисистемой, содержащей два навигационных вычислителя, два блока гироскопов, два блока акселерометров и систему управления пространственным положением блоками чувствительных элементов. Технический результат - повышение точности определения пилотажных и навигационных параметров полета летательного аппарата. 2 н. и 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области навигационных измерений и может быть использовано для определения координат местоположения подвижного объекта, например летательного аппарата (ЛА).
Известен способ компенсации инструментальных погрешностей бесплатформенных инерциальных навигационных систем, заключающийся во вращении по периодическому закону управления инерциального измерительного блока, состоящего из блока акселерометров и блока гироскопов и закрепленного на механизме вращения, коррекции параметров закона управления инерциальным измерительным блоком на основании функциональной зависимости между оптимальными параметрами закона управления и данными об изменении в процессе эксплуатации инструментальных погрешностей лазерных гироскопов [1].
Известно устройство, реализующее данный способ, включающее инерциальный измерительный блок, в состав которого входят блок лазерных гироскопов и блок акселерометров, механизм вращения, блок электроники инерциального измерительного блока и интерфейсы, цифровой микропроцессор, блок сопряжения с навигационной информацией, блок вычисления скоростей, блок управления и отображения информации, аналого-цифровой преобразователь и цифроаналоговый преобразователь, шину навигационной информации, блок коррекции, в состав которого входят счетчик времени, блок определения погрешностей лазерных гироскопов, блок выдачи сигнала коррекции, блок выдачи параметров закона управления, при этом входы блока определения погрешностей лазерных гироскопов соединены с выходами блока управления и отображения информации и счетчика времени, выход которого соединен с блоком выдачи сигнала коррекции; выход блока выдачи параметров закона управления соединен с входом блока электроники инерциального измерительного блока и интерфейсов, а входы - с выходами блока определения погрешностей лазерных гироскопов и блока выдачи сигнала коррекции [1].
Недостатком известных способа и устройства является отсутствие возможности компенсации погрешностей чувствительных элементов (гироскопов и акселерометров) инерциального измерительного блока за счет дополнительного инерциального измерительного блока.
Наиболее близкими к изобретению являются способ определения навигационных параметров летательного аппарата, заключающийся в измерении направления и величины векторов угловой скорости летательного аппарата относительно измерительной системы координат, определении текущей ориентации измерительной системы координат относительно навигационной системы координат, модуляции погрешностей составляющих векторов угловой скорости, определении текущих значений навигационных параметров по измеренным векторам ускорения и угловых скоростей и текущей ориентации измерительной системы координат, определении направления вектора погрешности текущей ориентации измерительной системы координат и модуляции этого вектора погрешности [2].
Наиболее близким устройством, реализующим данный способ, является устройство для определения навигационных параметров летательного аппарата, представляющее собой бесплатформенную инерциальную навигационную систему, содержащую блок датчиков линейных ускорений или линейных скоростей, блок датчиков угловых скоростей и вычислитель вектора состояния объекта, входы которого связаны с блоком датчиков угловых скоростей и блоком датчиков линейных ускорений или линейных скоростей, а также программными механизмами углового разворота, число которых соответствует числу датчиков угловых скоростей в блоке датчиков угловых скоростей, при этом каждый программный механизм программного разворота кинематически связан с соответствующим датчиком угловой скорости, вход каждого из программных механизмов программного разворота связан с выходом вычислителя вектора состояния объекта, дополнительно содержит вторую аналогичную бесплатформенную инерциальную навигационную систему, образуя при этом инерциальную навигационную мультисистему, при этом два блока измерителей которой одновременно разворачиваются в пространстве в противоположных направлениях программными механизмами углового разворота (силовой частью датчиков углов) по сигналу, вырабатываемому устройством управления, состоящим из определителя разности модуля векторов ошибок угловых скоростей и формирователя управляющего сигнала [2].
Недостатки известных способа и устройства - компенсация погрешностей только гироскопов и отсутствие возможности компенсации погрешностей акселерометров.
Технической задачей изобретения является повышение точности определения пилотажных и навигационных параметров полета летательного аппарата путем компенсации погрешностей как гироскопов, так и акселерометров за счет дополнительных гироскопов и акселерометров. Компенсация погрешностей достигается за счет поворота векторов погрешностей акселерометров и гироскопов дополнительных блоков в противоположные направления погрешностям акселерометров и гироскопов основных блоков. Векторы погрешностей противоположны, в случае если разность показаний чувствительных элементов, приведенных к единой системе координат, максимальна.
Технический результат изобретения достигается тем, что в способе инерциальной навигации, заключающемся в измерении угловой скорости и ускорения летательного аппарата, определении текущей ориентации измерительной системы координат относительно навигационной системы координат, компенсации погрешностей измерителей угловой скорости первого блока измерителей угловой скорости за счет погрешностей измерителей угловой скорости второго блока измерителей угловой скорости путем разворота блоков до достижения максимума разности показаний измерителей угловой скорости, приведенных к единой системе координат, определении текущих значений навигационных параметров по измеренным значениям ускорения и угловых скоростей и текущей ориентации измерительной системы координат, дополнительно осуществляют компенсацию погрешностей акселерометров первого блока акселерометров за счет погрешностей акселерометров второго блока акселерометров путем разворота блоков до достижения максимума разности показаний акселерометров, приведенных к единой системе координат.
В устройство для инерциальной навигации, включающее первый и второй навигационные вычислители, первое и второе суммирующие устройства, первое и второе множительные устройства, вычислитель разности сигналов гироскопов, первый формирователь управляющих сигналов, первое поворотное устройство, первый, второй и третий акселерометры, первый, второй и третий измерители угловой скорости, первый, второй и третий датчики угла, четвертый, пятый и шестой акселерометры, четвертый, пятый и шестой измерители угловой скорости, четвертый, пятый и шестой датчики угла, выходы первого, второго и третьего акселерометров соединены с первым, вторым и третьим входами первого навигационного вычислителя, выходы четвертого, пятого и шестого акселерометров соединены с первым, вторым и третьим входами второго навигационного вычислителя, выходы первого, второго и третьего датчиков угла соединены с четвертым, пятым и шестым входами первого навигационного вычислителя, выходы четвертого, пятого и шестого датчиков угла соединены с четвертым, пятым и шестым входами второго навигационного вычислителя, выходы первого, второго и третьего измерителей угловой скорости соединены с седьмым, восьмым и девятым входами первого навигационного вычислителя, выходы четвертого, пятого и шестого измерителей угловой скорости соединены с седьмым, восьмым и девятым входами второго навигационного вычислителя, первый и второй входы первого суммирующего устройства соединены с первыми выходами первого и второго навигационных вычислителей, а выход через первое множительное устройство соединен с первым выходом устройства, первый и второй входы второго суммирующего устройства соединены со вторыми выходами первого и второго навигационных вычислителей, а выход через второе множительное устройство соединен со вторым выходом устройства, первый, второй и третий измерители угловой скорости соединены с первым, вторым и третьим входами вычислителя разности сигналов гироскопов, четвертый, пятый и шестой измерители угловой скорости соединены с четвертым, пятым и шестым входами вычислителя разности сигналов гироскопов, выход которого через первый формирователь управляющих сигналов поступает на вход первого и второго поворотных устройств, первое поворотное устройство осуществляет поворот первого блока измерителей угловой скорости с расположенными на нем первым, вторым и третьим измерителями угловой скорости относительно корпуса летательного аппарата, второе поворотное устройство осуществляет поворот второго блока измерителей угловой скорости с расположенными на нем четвертым, пятым и шестым измерителями угловой скорости относительно корпуса летательного аппарата, дополнительно введены вычислитель разности сигналов акселерометров, второй формирователь управляющих сигналов, третье и четвертое поворотные устройства, седьмой, восьмой, девятый, десятый, одиннадцатый и двенадцатый датчики угла, причем первый, второй, третий акселерометры и седьмой, восьмой, девятый датчики угла объедены в первый блок акселерометров, первый, второй, третий измерители угловой скорости и первый, второй, третий датчики угла объединены в первый блок измерителей угловой скорости, четвертый, пятый, шестой акселерометры и десятый, одиннадцатый, двенадцатый датчики угла объединены во второй блок акселерометров, четвертый, пятый, шестой измерители угловой скорости и четвертый, пятый, шестой датчики угла объединены во второй блок измерителей угловой скорости, выходы первого, второго и третьего датчиков угла соединены с седьмым, восьмым и девятым входами вычислителя разности сигналов гироскопов, выходы четвертого, пятого и шестого датчиков угла соединены с десятым, одиннадцатым и двенадцатым входами вычислителя разности сигналов гироскопов, выходы седьмого, восьмого и девятого датчиков угла соединены с первым, вторым и третьим входами вычислителя разности сигналов акселерометров и десятым, одиннадцатым и двенадцатым входами первого навигационного вычислителя, выходы первого, второго и третьего акселерометров соединены с четвертым, пятым и шестым входами вычислителя разности сигналов акселерометров, выходы десятого, одиннадцатого и двенадцатого датчиков угла соединены с десятым, одиннадцатым и двенадцатым входами второго навигационного вычислителя и с седьмым, восьмым и девятым входами вычислителя разности сигналов акселерометров, выходы четвертого, пятого и шестого акселерометров соединены с вычислителем разности сигналов акселерометров, выход которого через второй формирователь управляющих сигналов соединен с входами третьего и четвертого поворотных устройств, третье поворотное устройство осуществляет поворот первого блока акселерометров с расположенными на нем первым, вторым и третьим акселерометрами относительно корпуса летательного аппарата, четвертое поворотное устройство осуществляет поворот второго блока акселерометров с расположенными на нем четвертым, пятым и шестым акселерометрами относительно корпуса летательного аппарата.
Новыми признаками, обладающими существенными отличиями по способу, является следующая совокупность действий:
осуществляют компенсацию погрешностей акселерометров первого блока акселерометров за счет погрешностей акселерометров второго блока акселерометров путем разворота блоков до достижения максимума разности показаний акселерометров, приведенных к единой системе координат;
по устройству - наличие в схеме устройства вычислителя разности сигналов акселерометров, формирователя управляющих сигналов, двух поворотных устройств, восьми датчиков угла;
новые связи между известными и новыми признаками.
Применение всех новых признаков позволяет повысить точность определения пилотажно-навигационных параметров летательного аппарата путем компенсации погрешностей акселерометров первого блока акселерометров за счет погрешностей акселерометров второго блока акселерометров.
На чертеже изображена блок-схема устройства для инерциальной навигации.
В состав устройства входят два навигационных вычислителя 1 и 2, два блока акселерометров 3 и 5, два блока измерителей угловой скорости 4 и 6, акселерометры 7-9 и 25-27, датчики угла 10-15 и 22-27, измерители угловой скорости 16-18 и 28-30, вычислители матрицы направляющих косинусов 31-34, 36-37, 39 и 41, вычислители параметров ориентации 35 и 38, интегрирующие вычислители 40, 42, 44, 46, 48 и 50, вычислители скоростей 43 и 45, вычислители координат 47 и 49, вычислители угловых скоростей 51 и 52, вычислитель разности сигналов гироскопов 53, формирователи управляющих сигналов 54 и 58, поворотные устройства 55, 56, 59 и 60, вычислитель разности сигналов акселерометров 57, суммирующие устройства 61 и 63, множительные устройства.
Первый навигационный вычислитель 1 состоит из первого вычислителя матрицы направляющих косинусов 31, второго вычислителя матрицы направляющих косинусов 33, третьего вычислителя матрицы направляющих косинусов 34, вычислителя параметров ориентации 35, четвертого вычислителя матрицы направляющих косинусов 39, первого интегрирующего вычислителя 40, вычислителя скоростей 43, второго интегрирующего вычислителя 44, вычислителя координат 47, третьего интегрирующего вычислителя 48, вычислителя угловых скоростей 51.
Второй навигационный вычислитель 2 состоит из первого вычислителя матрицы направляющих косинусов 32, второго вычислителя матрицы направляющих косинусов 36, третьего вычислителя матрицы направляющих косинусов 37, вычислителя параметров ориентации 38, четвертого вычислителя матрицы направляющих косинусов 41, первого интегрирующего вычислителя 42, вычислителя скоростей 45, второго интегрирующего вычислителя 46, вычислителя координат 49, третьего интегрирующего вычислителя 50, вычислителя угловых скоростей 52.
Первый и второй навигационные вычислители 1 и 2 предназначены для вычисления пилотажно-навигационных параметров летательных аппаратов на основании показаний акселерометров и гироскопов.
Первый блок 4 измерителей угловой скорости состоит из первого, второго и третьего измерителей угловой скорости 16, 17, 18 и закреплен на первом поворотном устройстве 55. На осях поворотного устройства расположены датчики 13, 14 и 15 угла, позволяющие измерить углы Эйлера-Крылова [3], определяющие ориентацию блока 4 измерителей угловой скорости относительно связанной с летательным аппаратом системы координат.
Первый блок 3 акселерометров состоит из первого, второго и третьего акселерометров 7, 8, 9 и закреплен на третьем поворотном устройстве 59 с датчиками 7, 8, 9 на осях вращения.
Второй блок 5 акселерометров состоит из четвертого, пятого и шестого акселерометров 19, 20, 21 и закреплен на четвертом поворотном устройстве 60 с датчиками 22, 23, 24 на осях вращения.
Второй блок 6 измерителей угловой скорости состоит из четвертого, пятого и шестого измерителей угловой скорости 28, 29, 30 и закреплен на втором поворотном устройстве 56 с датчиками 25, 26, 27 на осях вращения.
Измерители угловой скорости и акселерометры каждого из блоков 3, 4, 5 и 6 представляют собой ортогональные тройки измерителей.
Поворотные устройства 55, 56, 59 и 60 известны [4] и представляют собой карданный узел.
Выходы первого множительного устройства 62 несут информацию об углах ориентации летательного аппарата - тангаже ϑ, крене γ и курсе ψ.
Выходы второго множительного устройства 64 несут информацию о широте φ, долготе λ, высоте H, азимутальном угле ε, земных скоростях VX, VY и VZ.
Устройство работает следующим образом.
Измерители угловой скорости и акселерометры каждого из блоков 4, 6 и 3, 5 определяют соответствующие параметры, а именно угловые скорости и ускорения, с ошибками. Ошибки ортогональной тройки чувствительных элементов определяют векторы погрешностей блоков чувствительных элементов - векторы дрейфа блоков измерителей угловой скорости 4 и 6, а также векторы погрешностей акселерометров блоков акселерометров 3 и 5.
Первый и второй блоки 4 и 6 измерителей угловой скорости разворачиваются относительно друг друга таким образом, чтобы векторы дрейфа блоков были противоположны. Показателем того, что векторы дрейфа блоков измерителей угловой скорости противоположны, является то, что разность векторов показаний измерителей угловой скорости, приведенных к единой системе координат, максимальна.
Приведение показаний измерителей угловой скорости блоков 4 и 6 к единой системе координат, а также вычисление разностного сигнала осуществляется в вычислителе 53 разности сигналов гироскопов. В качестве единой системы координат, в которой определяются разностные сигналы, определена связанная с ЛА система координат.
Алгоритм работы вычислителя 53 разности сигналов гироскопов определяется следующими соотношениями.
По сигналам, поступающим с датчиков углов 13, 14 и 15, вычисляются элементы матрицы направляющих косинусов (МНК) перехода из системы координат, связанной с первым блоком 4 измерителей угловой скорости, к связанной с ЛА системе координат:
Figure 00000001
где κ 1 1 Г
Figure 00000002
, κ 2 1 Г
Figure 00000003
, κ 3 1 Г
Figure 00000004
- углы поворота первого блока 4 измерителей угловой скорости относительно корпуса ЛА.
Пересчет показаний измерителей 16, 17 и 18 угловой скорости блока 4 к связанной с ЛА системе координат осуществляется на основании соотношения:
Figure 00000005
где ω Х 2 1 Г
Figure 00000006
, ω Y 2 1 Г
Figure 00000007
, ω Z 2 1 Г
Figure 00000008
- показания соответственно первого, второго и третьего измерителей 16, 17 и 18 угловой скорости.
По сигналам, поступающим с датчиков углов 25, 26 и 27, вычисляются элементы матрицы направляющих косинусов (МНК) перехода из системы координат, связанной со вторым блоком 6 измерителей угловой скорости, к связанной с ЛА системе координат:
Figure 00000009
где κ 1 2 Г
Figure 00000010
, κ 2 2 Г
Figure 00000011
, κ 3 2 Г
Figure 00000012
- углы поворота второго блока 6 измерителей угловой скорости относительно корпуса ЛА.
Пересчет показаний измерителей 28, 29 и 30 угловой скорости блока 6 к связанной с ЛА системе координат осуществляется на основании соотношения:
Figure 00000013
где ω x 2 1 Г
Figure 00000014
, ω y 2 1 Г
Figure 00000015
, ω z 2 1 Г
Figure 00000016
- показания соответственно первого, второго и третьего измерителей 16, 17 и 18 угловой скорости.
На основании разности показаний измерителей угловой скорости, приведенных к единой системе координат
Figure 00000017
вычисляется длина данного вектора
Figure 00000018
Величина этого вектора и является показателем, характеризующим направление векторов дрейфов первого и второго блоков 4 и 6 измерителей угловой скорости.
Задача первого формирователя 54 управляющих сигналов - максимизация показателя (6):
ΔГ→max.
Первый формирователь 54 управляющих сигналов выдает сигналы управления на первое поворотное устройство 55 и второе поворотное устройство 56. Первое и второе поворотные устройства 55 и 56 осуществляют вращение соответственно первого и второго блоков 4 и 6 измерителей угловой скорости. Вращение блоков 4 и 6 осуществляется на дискретные углы последовательно вокруг трех осей поворотных устройств. Съем показаний с измерителей угловой скорости осуществляется при неподвижном относительно корпуса ЛА положении блоков измерителей угловой скорости. На основании этих показаний производится вычисление длины вектора ΔГ разности показаний измерителей угловой скорости, приведенных к единой системе координат, при различных дискретных углах поворотных устройств. Из данного массива значений максимальное определяет ориентацию блоков измерителей угловой скорости, при которых их векторы погрешностей противоположны. При такой ориентации блоков 4 и 6 погрешность измерителей угловой скорости первого блока 4 измерителей угловой скорости компенсируется за счет погрешностей измерителей угловой скорости второго блока 6 измерителей угловой скорости.
Аналогично осуществляется определение ориентации и установка блоков 3 и 5 акселерометров для компенсации погрешностей первого блока 3 акселерометров за счет погрешностей второго блока 5 акселерометров.
По сигналам, поступающим с первого, второго и третьего измерителей 16, 17 и 18 угловой скорости первого блока 4 измерителей угловой скорости, в четвертом вычислителе 39 матрицы направляющих косинусов первого НВ и первом интегрирующем вычислителе 40 первого НВ вычисляется МНК перехода из системы координат, связанной с первым блоком 4 измерителей угловой скорости, к навигационной системе координат:
Figure 00000019
где А - МНК перехода из системы координат, связанной с первым блоком 4 измерителей угловой скорости, к навигационной системе координат;
Figure 00000020
- кососимметрическая матрица, составленная из проекций абсолютной угловой скорости системы координат, связанной с первым блоком 4 измерителей угловой скорости, на собственные оси (показания измерителей 16, 17 и 18 угловой скорости);
Figure 00000021
- кососимметрическая матрица, составленная из проекций абсолютной угловой скорости навигационной системы координат на собственные оси.
Соотношение (7) представляет собой обобщенное уравнение Пуассона и определяет ориентацию одной подвижной системы координат относительно другой подвижной системы координат [5].
Аналогично в вычислителях 41 и 42 второго НВ 2 определяется МНК перехода из системы координат, связанной со вторым блоком 6 измерителей угловой скорости, к навигационной системе координат:
Figure 00000022
где А - МНК перехода из системы координат, связанной со вторым блоком 6 измерителей угловой скорости, к навигационной системе координат;
Figure 00000023
- кососимметрическая матрица, составленная из проекций абсолютной угловой скорости системы координат, связанной со вторым блоком 6 измерителей угловой скорости, на собственные оси (показания измерителей 28, 29 и 30 угловой скорости).
По сигналам седьмого, восьмого и девятого датчиков угла 10, 11 и 12, а также первого, второго и третьего датчиков угла 13, 14 и 15 осуществляется пересчет показаний первого, второго и третьего акселерометров 7, 8 и 9 к системе координат связанной с первым блоком 4 измерителей угловой скорости:
Figure 00000024
где a X 2 1 A
Figure 00000025
, a Y 2 1 A
Figure 00000026
, a Z 2 1 A
Figure 00000027
- показания соответственно первого, второго и третьего акселерометров 7, 8 и 9;
Figure 00000028
- МНК перехода из системы координат, связанной с первым блоком 3 акселерометров, к системе координат, связанной с ЛА;
κ 1 1 Г
Figure 00000029
, κ 2 1 Г
Figure 00000030
, κ 3 1 Г
Figure 00000031
- углы поворота первого блока 3 акселерометров относительно корпуса ЛА (показания седьмого, восьмого и девятого датчиков угла 10, 11 и 12);
Т - знак транспонирования матрицы.
Аналогично во втором навигационном вычислителе 2 пересчитываются показания акселерометров 19, 20 и 21 к системе координат, связанной со вторым блоком 6 измерителей угловой скорости.
По сигналам, поступающим с вычислителя 39 матрицы направляющих косинусов и интегрирующего вычислителя 40, а также первого вычислителя 31 матрицы направляющих косинусов первого НВ, в вычислителе 43 скоростей и втором интегрирующем вычислителе 44 первого НВ определяются составляющие земной скорости:
Figure 00000032
Figure 00000033
Figure 00000034
где ΩX, ΩY, ΩZ - составляющие относительной угловой скорости навигационной системы координат;
uX,uZ,uY - проекции угловой скорости Земли на оси навигационной системы координат;
Hб - барометрическая высота;
a - большая полуось земного эллипсоида;
ge - ускорение силы тяжести на экваторе;
q2 - коэффициент обратной связи, обеспечивающий устойчивость канала вертикальной скорости по ошибкам;
k - коэффициент, характеризующий изменение силы тяжести в зависимости от широты.
Аналогично составляющие земной скорости вычисляются во втором навигационном вычислителе 2.
По сигналам, поступающим с вычислителя скоростей 43 первого НВ через второй интегрирующий вычислитель 44 первого НВ в вычислителе координат 47 первого НВ, определяются географические координаты местоположения ЛА:
Figure 00000035
где φ, λ - соответственно географическая широта и долгота местоположения ЛА;
ε - азимутальный угол;
Figure 00000036
- радиус кривизны сечения эллипсоида меридиональной плоскостью;
Figure 00000037
- радиус кривизны сечения эллипсоида плоскостью, приходящей через геодезическую вертикаль места и ортогональную меридиану (радиус кривизны первого вертикала).
Аналогично географические координаты местоположения ЛА вычисляются во втором навигационном вычислителе 2.
В вычислителе 51 угловых скоростей первого НВ определяются относительные, переносные и абсолютные угловые скорости навигационной системы координат:
Figure 00000038
Ориентация ЛА определяется на основании информации о:
а) ориентации первого блока 4 измерителей угловых скоростей относительно навигационной системы координат;
б) ориентации первого блока 4 измерителей угловых скоростей относительно корпуса ЛА.
Вычисления осуществляются в блоках 34 и 35.
Для определения углов ориентации ЛА необходимо определить МНК перехода от связанной с ЛА системы координат к навигационной системе координат:
Figure 00000039
По элементам матрицы D вычисляются углы ориентации ЛА - курс ψ, крен γ, тангаж υ:
Figure 00000040
Аналогично углы ориентации ЛА вычисляются во втором навигационном вычислителе 2.
На основании информации об ориентации ЛА, полученной в первом и втором навигационных вычислителях 1 и 2, в первом суммирующем устройстве 61 и первом множительном устройстве 62 вычисляется ориентация ЛА путем осреднения вычисленных значений.
На основании информации о координатах и скоростях ЛА, полученной в первом и втором навигационных вычислителях 1 и 2, во втором суммирующем устройстве 63 и втором множительном устройстве 64 вычисляются координаты и скорости ЛА путем осреднения вычисленных значений.
Пилотажно-навигационная информация с выходов устройства поступает в системы ЛА.
Источники информации
1. Патент РФ №2362977 С1, кл. G01C 21/10. Способ компенсации инструментальных погрешностей бесплатформенных инерциальных навигационных систем и устройство для его осуществления. 27.07.2009 (аналог).
2. Патент РФ №2313067 С2, кл. G01C 21/12. Способ определения навигационных параметров летательного аппарата и устройство для его осуществления. 27.12.2005 (прототип).
3. Шепеть И.П., Онуфриенко В.В., Слесаренок С.В. Методическое обеспечение управляемых навигационных систем. (Монография). - Воронеж: Военный учебно-научный центр Военно-Воздушных Сил «Военно-Воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина», 2012. - с. 54-60.
4. Гироскопические системы. Гироскопические приборы и системы / Под ред. Д.С. Пельпора. - М.: Высш. шк., 1988. с. 367.
5. Кузовков Н.Т., Салычев О.С. Инерциальная навигация и оптимальная фильтрация. - М.: Машиностроение, 1982.

Claims (3)

1. Способ инерциальной навигации, заключающийся в измерении угловой скорости и ускорения летательного аппарата, определении текущей ориентации измерительной системы координат относительно навигационной системы координат, компенсации погрешностей измерителей угловой скорости первого блока измерителей угловой скорости за счет погрешностей измерителей угловой скорости второго блока измерителей угловой скорости путем разворота блоков до достижения максимума разности показаний измерителей угловой скорости, приведенных к единой системе координат, определении текущих значений навигационных параметров по измеренным значениям ускорения и угловых скоростей и текущей ориентации измерительной системы координат, отличающийся тем, что дополнительно осуществляют компенсацию погрешностей акселерометров первого блока акселерометров за счет погрешностей акселерометров второго блока акселерометров путем разворота блоков до достижения максимума разности показаний акселерометров, приведенных к единой системе координат.
2. Устройство для инерциальной навигации, включающее первый и второй навигационные вычислители, первое и второе суммирующие устройства, первое и второе множительные устройства, вычислитель разности сигналов гироскопов, первый формирователь управляющих сигналов, первое поворотное устройство, первый, второй и третий акселерометры, первый, второй и третий измерители угловой скорости, первый, второй и третий датчики угла, четвертый, пятый и шестой акселерометры, четвертый, пятый и шестой измерители угловой скорости, четвертый, пятый и шестой датчики угла, выходы первого, второго и третьего акселерометров соединены с первым, вторым и третьим входами первого навигационного вычислителя, выходы четвертого, пятого и шестого акселерометров соединены с первым, вторым и третьим входами второго навигационного вычислителя, выходы первого, второго и третьего датчиков угла соединены с четвертым, пятым и шестым входами первого навигационного вычислителя, выходы четвертого, пятого и шестого датчиков угла соединены с четвертым, пятым и шестым входами второго навигационного вычислителя, выходы первого, второго и третьего измерителей угловой скорости соединены с седьмым, восьмым и девятым входами первого навигационного вычислителя, выходы четвертого, пятого и шестого измерителей угловой скорости соединены с седьмым, восьмым и девятым входами второго навигационного вычислителя, первый и второй входы первого суммирующего устройства соединены с первыми выходами первого и второго навигационных вычислителей, а выход через первое множительное устройство соединен с первым выходом устройства, первый и второй входы второго суммирующего устройства соединены со вторыми выходами первого и второго навигационных вычислителей, а выход через второе множительное устройство соединен со вторым выходом устройства, первый, второй и третий измерители угловой скорости соединены с первым, вторым и третьим входами вычислителя разности сигналов гироскопов, четвертый, пятый и шестой измерители угловой скорости соединены с четвертым, пятым и шестым входами вычислителя разности сигналов гироскопов, выход которого через первый формирователь управляющих сигналов поступает на вход первого и второго поворотных устройств, первое поворотное устройство осуществляет поворот первого блока измерителей угловой скорости с расположенными на нем первым, вторым и третьим измерителями угловой скорости относительно корпуса летательного аппарата, второе поворотное устройство осуществляет поворот второго блока измерителей угловой скорости с расположенными на нем четвертым, пятым и шестым измерителями угловой скорости относительно корпуса летательного аппарата, отличающееся тем, что в него введены вычислитель разности сигналов акселерометров, второй формирователь управляющих сигналов, третье и четвертое поворотные устройства, седьмой, восьмой, девятый, десятый, одиннадцатый и двенадцатый датчики угла, причем первый, второй, третий акселерометры и седьмой, восьмой, девятый датчики угла объедены в первый блок акселерометров, первый, второй, третий измерители угловой скорости и первый, второй, третий датчики угла объединены в первый блок измерителей угловой скорости, четвертый, пятый, шестой акселерометры и десятый, одиннадцатый, двенадцатый датчики угла объединены во второй блок акселерометров, четвертый, пятый, шестой измерители угловой скорости и четвертый, пятый, шестой датчики угла объединены во второй блок измерителей угловой скорости, выходы первого, второго и третьего датчиков угла соединены с седьмым, восьмым и девятым входами вычислителя разности сигналов гироскопов, выходы четвертого, пятого и шестого датчиков угла соединены с десятым, одиннадцатым и двенадцатым входами вычислителя разности сигналов гироскопов, выходы седьмого, восьмого и девятого датчиков угла соединены с первым, вторым и третьим входами вычислителя разности сигналов акселерометров и десятым, одиннадцатым и двенадцатым входами первого навигационного вычислителя, выходы первого, второго и третьего акселерометров соединены с четвертым, пятым и шестым входами вычислителя разности сигналов акселерометров, выходы десятого, одиннадцатого и двенадцатого датчиков угла соединены с десятым, одиннадцатым и двенадцатым входами второго навигационного вычислителя и с седьмым, восьмым и девятым входами вычислителя разности сигналов акселерометров, выходы четвертого, пятого и шестого акселерометров соединены с вычислителем разности сигналов акселерометров, выход которого через второй формирователь управляющих сигналов соединен с входами третьего и четвертого поворотных устройств, третье поворотное устройство осуществляет поворот первого блока акселерометров с расположенными на нем первым, вторым и третьим акселерометрами относительно корпуса летательного аппарата, четвертое поворотное устройство осуществляет поворот второго блока акселерометров с расположенными на нем четвертым, пятым и шестым акселерометрами относительно корпуса летательного аппарата.
3. Система по п. 2, отличающаяся тем, что первый и второй навигационные вычислители выполнены однотипными и включают первый вычислитель матрицы направляющих косинусов, второй вычислитель матрицы направляющих косинусов, третий вычислитель матрицы направляющих косинусов, вычислитель параметров ориентации, четвертый вычислитель матрицы направляющих косинусов, первый интегрирующий вычислитель, вычислитель скоростей, второй интегрирующий вычислитель, вычислитель координат, третий интегрирующий вычислитель, вычислитель угловых скоростей, причем первый - девятый входы первого вычислителя матрицы направляющих косинусов соединены с первым - шестым и десятым - двенадцатым входами навигационного вычислителя, а выход первого вычислителя матрицы направляющих косинусов соединен со вторым входом вычислителя скоростей, четвертый - шестой входы навигационного вычислителя соединены с первым - третьим входами второго вычислителя матрицы направляющих косинусов, выход которого соединен с первым входом третьего вычислителя матрицы направляющих косинусов, второй вход которого соединен с выходом первого интегрирующего вычислителя, а выход третьего вычислителя матрицы направляющих косинусов через вычислитель параметров ориентации соединен с первым выходом навигационного вычислителя, седьмой - девятый входы навигационного вычислителя соединены с первым - третьим входами четвертого вычислителя матрицы направляющих косинусов, выход которого через первый интегрирующий вычислитель соединен с первым входом вычислителя скоростей, выход которого соединен с входом второго интегрирующего вычислителя, выход которого соединен с четвертым входом вычислителя скоростей и через последовательно соединенные вычислитель координат и третий интегрирующий вычислитель соединен с третьим входом вычислителя скоростей, вторым выходом навигационного вычислителя и входом вычислителя угловых скоростей, выход которого соединен с пятым входом вычислителя скоростей и четвертым входом четвертого вычислителя матрицы направляющих косинусов.
RU2015111505/28A 2015-03-30 2015-03-30 Способ инерциальной навигации и устройство для его осуществления RU2572403C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015111505/28A RU2572403C1 (ru) 2015-03-30 2015-03-30 Способ инерциальной навигации и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015111505/28A RU2572403C1 (ru) 2015-03-30 2015-03-30 Способ инерциальной навигации и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2572403C1 true RU2572403C1 (ru) 2016-01-10

Family

ID=55072141

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015111505/28A RU2572403C1 (ru) 2015-03-30 2015-03-30 Способ инерциальной навигации и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2572403C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661446C1 (ru) * 2017-08-16 2018-07-16 Сергей Анатольевич Черенков Способ определения навигационных параметров объекта и бесплатформенная инерциальная навигационная система для осуществления способа
RU2744700C1 (ru) * 2020-07-29 2021-03-15 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ инерциальной навигации беспилотного летательного аппарата и устройство для его осуществления

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2082098C1 (ru) * 1993-09-23 1997-06-20 Государственный научно-исследовательский институт авиационных систем Способ комплексирования инерциальных навигационных систем и комбинированная навигационная система
RU2348903C1 (ru) * 2007-11-09 2009-03-10 Олег Степанович Салычев Способ определения навигационных параметров бесплатформенной инерциальной навигационной системой
RU2362977C1 (ru) * 2008-05-26 2009-07-27 Сергей Владимирович Слесаренок Способ компенсации инструментальных погрешностей бесплатформенных инерциальных навигационных систем и устройство для его осуществления
RU2382988C1 (ru) * 2008-12-24 2010-02-27 Олег Степанович Салычев Бесплатформенная инерциальная система ориентации на "грубых" чувствительных элементах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2082098C1 (ru) * 1993-09-23 1997-06-20 Государственный научно-исследовательский институт авиационных систем Способ комплексирования инерциальных навигационных систем и комбинированная навигационная система
RU2348903C1 (ru) * 2007-11-09 2009-03-10 Олег Степанович Салычев Способ определения навигационных параметров бесплатформенной инерциальной навигационной системой
RU2362977C1 (ru) * 2008-05-26 2009-07-27 Сергей Владимирович Слесаренок Способ компенсации инструментальных погрешностей бесплатформенных инерциальных навигационных систем и устройство для его осуществления
RU2382988C1 (ru) * 2008-12-24 2010-02-27 Олег Степанович Салычев Бесплатформенная инерциальная система ориентации на "грубых" чувствительных элементах

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661446C1 (ru) * 2017-08-16 2018-07-16 Сергей Анатольевич Черенков Способ определения навигационных параметров объекта и бесплатформенная инерциальная навигационная система для осуществления способа
RU2744700C1 (ru) * 2020-07-29 2021-03-15 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ инерциальной навигации беспилотного летательного аппарата и устройство для его осуществления

Similar Documents

Publication Publication Date Title
CN107588769B (zh) 一种车载捷联惯导、里程计及高程计组合导航方法
JP4989035B2 (ja) 慣性ナビゲーションシステムの誤差補正
JP4586172B2 (ja) 慣性航法システム
CN111811537A (zh) 一种捷联惯性导航的误差补偿方法及导航***
US11226203B2 (en) Low cost INS
CN109073388B (zh) 旋磁地理定位***
RU2539140C1 (ru) Интегрированная бесплатформенная система навигации средней точности для беспилотного летательного аппарата
CN108871378A (zh) 一种两套旋转惯导***内杆臂与外杆臂误差在线动态标定方法
US20140249750A1 (en) Navigational and location determination system
RU2572403C1 (ru) Способ инерциальной навигации и устройство для его осуществления
RU2487318C1 (ru) Бесплатформенная инерциальная курсовертикаль на чувствительных элементах средней точности
WO2010030565A1 (en) Magnetic sensing device for navigation and detecting inclination
CN111812737B (zh) 水下导航与重力测量一体化***
RU2373562C2 (ru) Способ и устройство контроля горизонтальной ориентации аппарата
RU2608337C1 (ru) Способ автономной начальной выставки стабилизированной платформы трехосного гиростабилизатора в плоскость горизонта и на заданный азимут
US20170138738A1 (en) Remote location determination system
JP2001141507A (ja) 慣性航法装置
RU2539131C1 (ru) Бесплатформенная интегрированная навигационная система средней точности для мобильного наземного объекта
RU2550592C1 (ru) Гирогоризонткомпас
RU2502049C1 (ru) Малогабаритная бесплатформенная инерциальная навигационная система средней точности, корректируемая от системы воздушных сигналов
RU2313067C2 (ru) Способ определения навигационных параметров летательного аппарата и устройство для его осуществления
CA1251563A (en) Doppler-inertial data loop for navigation system
RU134633U1 (ru) Устройство для персональной навигации и ориентации
Krasnov et al. Gyro stabilization system of a gravimeter
RU2634071C1 (ru) Способ определения навигационных параметров и бесплатформенная инерциальная навигационная система для его осуществления