RU2570096C1 - Способ отбраковки кольцевых резонаторов лазерных гироскопов - Google Patents

Способ отбраковки кольцевых резонаторов лазерных гироскопов Download PDF

Info

Publication number
RU2570096C1
RU2570096C1 RU2014124565/28A RU2014124565A RU2570096C1 RU 2570096 C1 RU2570096 C1 RU 2570096C1 RU 2014124565/28 A RU2014124565/28 A RU 2014124565/28A RU 2014124565 A RU2014124565 A RU 2014124565A RU 2570096 C1 RU2570096 C1 RU 2570096C1
Authority
RU
Russia
Prior art keywords
ring resonator
waves
intensities
ring
laser
Prior art date
Application number
RU2014124565/28A
Other languages
English (en)
Inventor
Евгений Александрович Петрухин
Original Assignee
Акционерное общество "Серпуховский завод "Металлист"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Серпуховский завод "Металлист" filed Critical Акционерное общество "Серпуховский завод "Металлист"
Priority to RU2014124565/28A priority Critical patent/RU2570096C1/ru
Application granted granted Critical
Publication of RU2570096C1 publication Critical patent/RU2570096C1/ru

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Lasers (AREA)

Abstract

Изобретение касается отбраковки кольцевых резонаторов лазерных гироскопов по величине порога зоны нечувствительности (порога захвата) и значениям нелинейных искажений масштабного коэффициента. Способ заключается в том, что возбуждают в кольцевом резонаторе волны собственных колебаний с помощью излучения внешнего лазера и определяют величину порога полосы захвата кольцевого резонатора, по превышению допустимого значения которого принимают решение об отбраковке кольцевого резонатора. Дополнительно возбуждают в кольцевом резонаторе собственное колебание во встречном направлении путем установки у выходного зеркала кольцевого резонатора возвратного зеркала, и проводят измерение временных зависимостей интенсивностей встречных волн, выходящих из кольцевого резонатора, при продольном перемещении возвратного зеркала на расстояние, превышающее половину длины волны лазерного излучения, а величину порога полосы захвата кольцевого резонатора определяют по результатам измерений временных зависимостей интенсивностей встречных волн. Технический результат заключается в повышении точности отбраковки. 3 ил.

Description

Изобретение относится к приборостроению и может быть использовано в лазерной гироскопии для отбраковки кольцевых резонаторов лазерных гироскопов по величине порога зоны нечувствительности (порога захвата) и значениям нелинейных искажений масштабного коэффициента.
Предлагаемый способ относится к области лазерных гироскопов на основе кольцевых He-Ne лазеров с длиной волны 633 нм, используемых для решения многих задач навигации, измерения угловых перемещений, геодезии и геофизики. Одним из основных источников погрешности ЛГ является обратное рассеяние (ОР) на зеркалах кольцевого резонатора (КР), приводящее к появлению зоны нечувствительности при малых скоростях вращения (так называемый порог захвата) и нелинейным искажениям масштабного коэффициента [F. Aronowitz. Optical Gyros and their Applications. RTO AGARDograph 339, 3-1, 1999].
Известен способ отбраковки кольцевых резонаторов лазерных гироскопов [F. Aronowitz and R.J. Collins, "Mode coupling Due to Backscattering in a He-Ne Traveling-wave Ring Laser", Applied Physics Letters, 9, 55 1966], основанный на определении величины порога захвата по результатам измерения зависимости частоты биений встречных волн кольцевого резонатора от скорости, и по превышению допустимого значения величины порога захвата принимают решение об отбраковке кольцевого резонатора.
Недостатком такого способа отбраковки является относительно узкая область применения, поскольку величина порога захвата определяется уже на конечном этапе сборки лазерных гироскопов, т.е. после проведения длительного и дорогостоящего комплекса вакуумно-технологической обработки и наполнения моноблочного кольцевого резонатора рабочей Не-Ne газовой смесью.
Наиболее близким к предлагаемому является способ отбраковки кольцевых резонаторов [US 4884283 А, 28.11.1989], заключающийся в том, что в юстируемом кольцевом резонаторе при помощи излучения внешнего He-Ne лазера с длиной волны 633 нм возбуждают собственное колебание в одном из направлений и по результатам измерения обратного рассеяния определяют величину порога захвата, по превышению допустимого значения которого принимают решение от отбраковке кольцевого резонатора.
Недостатком способа является относительно низкая точность отбраковки, поскольку в кольцевых лазерах отсутствует прямая корреляционная связь между величиной обратного рассеяния и порогом захвата. Т.е. «большая» величина интенсивности обратного рассеяния не всегда приводит к «большой» величине порога захвата. Это легко видеть из соотношения для порога захвата ΩL, приведенного в работе [F. Aronowitz. Optical Gyros and their Applications. RTO AGARDograph 339, 3-1, 1999]:
Figure 00000001
где с - скорость света;
L - периметр кольцевого резонатора;
rcw и rccw - модули коэффициентов связи (КС) встречных волн кольцевого лазера в направлении по часовой стрелке (cw) и против часовой стрелки (ccw) соответственно;
φ - суммарный фазовый сдвиг, возникающий при обратном рассеянии.
Нетрудно видеть, что модули коэффициентов связи прямо пропорциональны квадратному корню из интенсивности обратного рассеяния зеркал кольцевого резонатора, поэтому наиболее близкое техническое решение не позволяет корректно осуществлять отбраковку кольцевых резонаторов.
Величина порога захвата определяется тремя параметрами: модулями КС встречных волн и фазовым сдвигом φ. Наиболее близкое техническое решение дает возможность определить только величину модуля КС в одном из направлений. Этого недостаточно, чтобы корректно прогнозировать величину порога захвата в кольцевом резонаторе. Например, «большое» значение одного из модулей КС (его величина пропорциональна квадратному корню из интенсивности обратного рассеяния) не обязательно приводит к «большой» величине порога захвата. В случае, когда rcw=rccw, а φ=π, мы имеем ΩL=0. Можем иметь и другую ситуацию, когда rcw=0, а rccw не равен нулю, и мы имеем «большую» величину порога захвата.
Задача, на решение которой направлено изобретение, является повышение точности отбраковки кольцевых резонаторов.
Требуемый технический результат заключается в повышении точности отбраковки кольцевых резонаторов.
Поставленная задача решается, а требуемый технический результат достигается тем, что в способе, заключающемся в том, что, возбуждают в кольцевом резонаторе волны собственных колебаний с помощью излучения внешнего лазера и определяют величину порога полосы захвата кольцевого резонатора, по превышению допустимого значения которого принимают решение об отбраковке кольцевого резонатора, согласно изобретению дополнительно возбуждают в кольцевом резонаторе собственное колебание во встречном направлении путем установки у выходного зеркала кольцевого резонатора возвратного зеркала, и проводят измерение временных зависимостей интенсивностей встречных волн, выходящих из кольцевого резонатора, при продольном перемещении возвратного зеркала на расстояние, превышающее половину длины волны лазерного излучения, а величину порога полосы захвата кольцевого резонатора определяют по результатам измерений временных зависимостей интенсивностей встречных волн.
На чертеже представлены:
на фиг. 1 - функциональная схема кольцевого резонатора с возвратным зеркалом, установленным у выходного зеркала кольцевого резонатора;
на фиг. 2 - функциональная схема устройства для отбраковки кольцевых резонаторов;
на фиг. 3 - временные зависимости интенсивностей встречных волн, выходящих из кольцевого резонатора при продольном перемещении возвратного зеркала.
На чертеже обозначены:
1 - лазер, 2 - кольцевой резонатор, 3 - первое фотоприемное устройство, 4 - второе фотоприемное устройство, 5 - блок стабилизации частоты, 6 - оптический изолятор, 7 - делительная пластина, 8 - возвратное зеркало, 9 - пьезокерамический корректор, 10 - первый синхронный детектор, 11 - второй синхронный детектор, 12 - высоковольтный усилитель, 13 - цифровой осциллограф, 14 - персональный компьютер.
Блок 5 стабилизации частоты используется для «привязки» частоты генерации лазера к частоте собственного колебания кольцевого резонатора.
На графике временной зависимости интенсивностей встречных волн, выходящих из кольцевого резонатора при продольном перемещении возвратного зеркала, «нижняя» по чертежу зависимость соответствует волне, направленной против часовой стрелки (собственное колебание во встречном направлении). «Точка поворота» пилообразного напряжения на пьезокорректоре возвратного зеркала достигалась примерно на 10-й секунде.
Предложенный способ отбраковки кольцевых резонаторов лазерных гироскопов реализуется следующим образом.
Сущность способа заключается в том, что при перемещении возвратного зеркала 8 в продольном направлении, в интенсивностях встречных волн, выходящих из кольцевого резонатора 2, наблюдается чередование максимумов и минимумов (с периодом, равным λ/2). Сдвиг между положениями экстремумов равняется суммарному фазовому сдвигу, возникающему при обратном рассеянии. Таким образом, измерения интенсивностей встречных волн, выходящих из кольцевого резонатора 2, позволяют корректно прогнозировать величину порога захвата кольцевого резонатора 2 на стадии его сборки и юстировки.
Для измерения величины модулей коэффициентов связи (КС) встречных волн кольцевого лазера в направлении по часовой стрелке (cw) и против часовой стрелки (ccw), а также фазового сдвига из-за обратного рассеяния, может быть использована оптическая схема (фиг. 1), в которой собственные колебания кольцевого резонатора возбуждались одновременно в обоих встречных направлениях.
В этой схеме часть излучения, выходящего из кольцевого резонатора 2, возвращается в него при помощи возвратного зеркала 8. В результате, во встречных направлениях кольцевого резонатора 2 возбуждаются основные колебания (полагаем, что частота генерации лазера 1 совпадает с частотой собственного колебания кольцевого резонатора 2). Перемещая возвратное зеркало 8 при помощи пьезокерамического корректора 9 в продольном направлении, регистрируют изменения в интенсивностях встречных волн кольцевого резонатора 2, вызванных интерференцией между прямыми и обратно рассеянными волнами. Роль «сильных» волн играют собственные колебания кольцевого резонатора 2, возбуждаемые при помощи внешнего зондирующего лазера 1 и возвратного зеркала 8. «Слабыми» волнами являются части каждого из этих колебаний, рассеянных в обратном направлении. Перед входным зеркалом кольцевого резонатора 2 устанавливается делительная пластинка 7 с коэффициентом пропускания по интенсивности 50%, что позволяет измерять интенсивность волны, выходящей из кольцевого резонатора 2 в направлении против часовой стрелки.
Запишем поля волн, выходящих из кольцевого резонатора 2 в направлении по часовой стрелке (cw) и против часовой стрелки (ccw), учитывая, что все эти волны имеют одно и то же значение частоты, исключим из этих соотношений множитель exp(iωt) (ω - круговая частота генерации лазера 1, t - время).
В направлении по часовой стрелке (cw) и против часовой стрелки (ccw) суммарное поле представляет собой суперпозицию двух волн:
Figure 00000002
Figure 00000003
Множители 2r/δ в этих соотношениях появились в результате учета связи интенсивностей прямой и обратной волны. Несложно также установить связь между напряженностями полей прямой и отраженной от возвратного зеркала 8 волны и вышедшей затем из кольцевого резонатора 2:
Figure 00000004
где R - коэффициент отражения (по интенсивности) от возвратного зеркала.
Фазы «сильных» волн, направленных по и против часовой стрелки, связаны следующим соотношением:
Figure 00000005
Возвратное зеркало 8 играет роль линии задержки (l - расстояние между выходным и возвратным зеркалами) и при его перемещении остальные слагаемые, формирующие значения фаз двух волн, не изменяются.
Уравнения для интенсивности встречных волн можно представить в виде:
Figure 00000006
Figure 00000007
Исключив из этих уравнений члены, пропорциональные квадрату модулей связи (полагаем, что R½/T2» rccw, rcw), получаем
Figure 00000008
Figure 00000009
При перемещении возвратного зеркала 8 в продольном направлении, в интенсивностях встречных волн, выходящих из кольцевого резонатора 2, будет наблюдаться чередование максимумов и минимумов (с периодом, равным λ/2). Сдвиг между положениями экстремумов равняется суммарному фазовому сдвигу, возникающему при обратном рассеянии. В случае φcwccw=90 градусов, изменение интенсивностей встречных волн, выходящих из кольцевого резонатора 2, происходит в противофазе, т.е. максимум интенсивности одной из волн достигается при том же положении возвратного зеркала 8, что и минимум другой волны.
Приведем также соотношения для контрастов наблюдаемых экстремумов интенсивностей встречных волн. Определим их как отношение разности максимального и минимального значений (при перемещении возвратного зеркала) к сумме этих же значений:
Figure 00000010
Figure 00000011
В качестве примера проведем численные оценки величин контрастов. Полагаем, что T2=150 ppm, δ=400 ppm, r=1 ppm, R=0,5. Для этих значений параметров кольцевого резонатора имеем: Ccw=0,53 10-2, Cccw=1,9 10-2. Т.е. при перемещении возвратного зеркала относительные изменения в интенсивностях волн, выходящих из кольцевого резонатора 2, будут достигать порядка одного процента.
Этот способ был реализован на установке, схема которой представлена на фиг. 2.
Основу установки составляют внешний He-Ne лазер 1, снабженный пьезокорретором, управляющим частотой генерации, измеряемый кольцевой резонатор 2 и блок 5 стабилизации частоты 5, осуществляющий привязку частоты генерации лазера к собственным колебаниям кольцевого резонатора. Два фотоприемных устройства 3 и 4 используются для измерения интенсивностей излучений, выходящих из кольцевого резонатора. Сигнал с фотоприемного устройства 3 используется также для управления блоком 5. Возвратное зеркало 8 установлено на пьезокорректоре 9, который перемещает его при помощи высоковольтного усилителя 12. Для регистрации временных зависимостей излучений, выходящих из кольцевого резонатора 2, используется два синхронных детектора 10 и 11, цифровой осциллограф 13 и персональный компьютер 14. Для ослабления оптической связи между кольцевым резонатором 2 и лазером 1 используется оптический изолятор 6.
Таким образом, благодаря введению дополнительных операций способа (в частности, дополнительно возбуждают в кольцевом резонаторе собственное колебание во встречном направлении путем установки у выходного зеркала кольцевого резонатора возвратного зеркала, и проводят измерение временных зависимостей интенсивностей встречных волн, выходящих из кольцевого резонатора, при продольном перемещении возвратного зеркала на расстояние, превышающее половину длины волны лазерного излучения, а величину порога полосы захвата кольцевого резонатора определяют по результатам измерений временных зависимостей интенсивностей встречных волн), обеспечивается более высокая точность отбраковки, поскольку обеспечивается прямая корреляционная связь между величиной обратного рассеяния и порогом захвата.

Claims (1)

  1. Способ отбраковки кольцевых резонаторов лазерного гироскопа, заключающийся в том, что возбуждают в кольцевом резонаторе волны собственных колебаний с помощью излучения внешнего лазера и определяют величину порога полосы захвата кольцевого резонатора, по превышению допустимого значения которого принимают решение об отбраковке кольцевого резонатора, отличающийся тем, что дополнительно возбуждают в кольцевом резонаторе собственное колебание во встречном направлении путем установки у выходного зеркала кольцевого резонатора возвратного зеркала, и проводят измерение временных зависимостей интенсивностей встречных волн, выходящих из кольцевого резонатора, при продольном перемещении возвратного зеркала на расстояние, превышающее половину длины волны лазерного излучения, а величину порога полосы захвата кольцевого резонатора определяют по результатам измерений временных зависимостей интенсивностей встречных волн.
RU2014124565/28A 2014-06-18 2014-06-18 Способ отбраковки кольцевых резонаторов лазерных гироскопов RU2570096C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014124565/28A RU2570096C1 (ru) 2014-06-18 2014-06-18 Способ отбраковки кольцевых резонаторов лазерных гироскопов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014124565/28A RU2570096C1 (ru) 2014-06-18 2014-06-18 Способ отбраковки кольцевых резонаторов лазерных гироскопов

Publications (1)

Publication Number Publication Date
RU2570096C1 true RU2570096C1 (ru) 2015-12-10

Family

ID=54846426

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014124565/28A RU2570096C1 (ru) 2014-06-18 2014-06-18 Способ отбраковки кольцевых резонаторов лазерных гироскопов

Country Status (1)

Country Link
RU (1) RU2570096C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2626725C1 (ru) * 2016-04-08 2017-07-31 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ сборки кольцевого резонатора лазерного гироскопа (варианты)
RU2629704C1 (ru) * 2016-04-14 2017-08-31 Акционерное общество "Серпуховский завод "Металлист" Способ измерения комплексных коэффициентов связи в кольцевых резонаторах лазерных гироскопов
RU218489U1 (ru) * 2022-11-08 2023-05-29 Акционерное общество "Серпуховский завод "Металлист" Устройство измерения комплексных коэффициентов связи в кольцевом резонаторе лазерного гироскопа

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884283A (en) * 1988-12-20 1989-11-28 Litton Systems, Inc. Ring laser gyroscope mirror orientation system and method
US5208653A (en) * 1991-08-06 1993-05-04 Litton Systems, Inc. Multioscillator ring laser gyroscope adaptive digitally controlled cavity length control system
RU2045117C1 (ru) * 1991-08-02 1995-09-27 Кравцов Николай Владимирович Способ активной стабилизации частоты излучения кольцевого лазера
US6424419B1 (en) * 2000-07-28 2002-07-23 Northrop Grumman Corporation System and method for providing cavity length control of a ring laser gyroscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884283A (en) * 1988-12-20 1989-11-28 Litton Systems, Inc. Ring laser gyroscope mirror orientation system and method
RU2045117C1 (ru) * 1991-08-02 1995-09-27 Кравцов Николай Владимирович Способ активной стабилизации частоты излучения кольцевого лазера
US5208653A (en) * 1991-08-06 1993-05-04 Litton Systems, Inc. Multioscillator ring laser gyroscope adaptive digitally controlled cavity length control system
US6424419B1 (en) * 2000-07-28 2002-07-23 Northrop Grumman Corporation System and method for providing cavity length control of a ring laser gyroscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2626725C1 (ru) * 2016-04-08 2017-07-31 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ сборки кольцевого резонатора лазерного гироскопа (варианты)
RU2629704C1 (ru) * 2016-04-14 2017-08-31 Акционерное общество "Серпуховский завод "Металлист" Способ измерения комплексных коэффициентов связи в кольцевых резонаторах лазерных гироскопов
RU218489U1 (ru) * 2022-11-08 2023-05-29 Акционерное общество "Серпуховский завод "Металлист" Устройство измерения комплексных коэффициентов связи в кольцевом резонаторе лазерного гироскопа
RU2819304C1 (ru) * 2023-07-14 2024-05-17 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ измерения расстояния между точками пересечения осей каналов и посадочными плоскостями моноблока резонатора кольцевого лазера с неплоским оптическим контуром и устройство для его реализации

Similar Documents

Publication Publication Date Title
JP2896782B2 (ja) パルス方式の光波距離計
US8982332B2 (en) Distance measuring device and distance measuring method
JP6404656B2 (ja) 共振器の自由スペクトルレンジのトラッキング/ロッキングの方法及び装置並びに共振器光ファイバジャイロスコープへの応用
Matsumoto et al. Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb
JP2016136143A (ja) 剛体光導波路共振器を有する光周波数コム誘導ブリュアン散乱ジャイロスコープのためのシステムおよび方法
JP3911575B2 (ja) パルス方式の光波距離計
JP2000205814A (ja) ヘテロダイン干渉計
JPH1082858A (ja) 光学式距離計
JP2016048188A (ja) 距離測定装置
RU2570096C1 (ru) Способ отбраковки кольцевых резонаторов лазерных гироскопов
US20020131048A1 (en) Method and system for stabilizing and demodulating an interferometer at quadrature
EP0366720A1 (en) Apparatus and method for sensing rotation rate and direction and for controlling cavity length
Strandjord et al. Resonator fiber optic gyro progress including observation of navigation grade angle random walk
JP2014102258A (ja) 距離測定装置および距離測定方法
RU2616348C2 (ru) Способ юстировки кольцевых резонаторов лазерных гироскопов
US11133117B2 (en) Atomic interferometer system
JP7128516B2 (ja) デュアルコム分光法における干渉信号の測定方法
EP3327404B1 (en) Apparatus and method for diminishing bias error in resonant fiber optic gyroscopes
JPH03269302A (ja) アブソリュート測長器
Grigor'yants et al. Laser optical fibre heterodyne interferometer with frequency indicating of the phase shift of a light signal in an optical waveguide
RU2629704C1 (ru) Способ измерения комплексных коэффициентов связи в кольцевых резонаторах лазерных гироскопов
RU160760U1 (ru) Устройство измерения коэффициента поглощения света в зеркалах кольцевого резонатора
RU138509U1 (ru) Установка для измерения порога статического захвата в зеемановском кольцевом лазере
Broslavets et al. Controlling the coupling of counterpropagating waves in a laser gyroscope with a nonplanar cavity when working with a Zeeman dither
RU218489U1 (ru) Устройство измерения комплексных коэффициентов связи в кольцевом резонаторе лазерного гироскопа

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160619

NF4A Reinstatement of patent

Effective date: 20190312