RU2565074C2 - Способ получения этиленгликоля каталитической реакцией оксалата в псевдоожиженном слое - Google Patents

Способ получения этиленгликоля каталитической реакцией оксалата в псевдоожиженном слое Download PDF

Info

Publication number
RU2565074C2
RU2565074C2 RU2013143309/04A RU2013143309A RU2565074C2 RU 2565074 C2 RU2565074 C2 RU 2565074C2 RU 2013143309/04 A RU2013143309/04 A RU 2013143309/04A RU 2013143309 A RU2013143309 A RU 2013143309A RU 2565074 C2 RU2565074 C2 RU 2565074C2
Authority
RU
Russia
Prior art keywords
ethylene glycol
catalyst
oxalate
fluidized bed
range
Prior art date
Application number
RU2013143309/04A
Other languages
English (en)
Other versions
RU2013143309A (ru
Inventor
Вэйминь ЯН
Цзюньтао ЛЮ
Ваньминь ВАН
Цзюнь КУАИ
Original Assignee
Чайна Петролеум Энд Кемикал Корпорейшн
Шанхай Ресерч Инститьют Оф Петрокемикал Текнолоджи, Синопек
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110045364.8A external-priority patent/CN102649075B/zh
Priority claimed from CN201110045356.3A external-priority patent/CN102649064B/zh
Application filed by Чайна Петролеум Энд Кемикал Корпорейшн, Шанхай Ресерч Инститьют Оф Петрокемикал Текнолоджи, Синопек filed Critical Чайна Петролеум Энд Кемикал Корпорейшн
Publication of RU2013143309A publication Critical patent/RU2013143309A/ru
Application granted granted Critical
Publication of RU2565074C2 publication Critical patent/RU2565074C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Настоящее изобретение относится к способу получения этиленгликоля в реакторе с псевдоожиженным слоем катализатора путем приведения исходного сырья оксалата в контакт с катализатором в следующих условиях: температура реакции составляет от около 170°С до около 270°С, объемная скорость оксалата составляет от около 0,2 ч-1 до около 7 ч-1, молярное соотношение водород/сложный эфир составляет примерно 20-200:1, давление реакции составляет от около 1,5 МПа до около 10 МПа, а разница температур реакции ΔТ составляет от около 1°С до около 15°С, с получением потока, содержащего этиленгликоль. При этом указанный катализатор псевдоожиженного слоя содержит в мас.ч.: 5-80 меди и ее оксида, 10-90 по меньшей мере одного носителя, выбранного из оксида кремния, молекулярного сита или оксида алюминия, 0,01-30 элементов металлов висмута и вольфрама или их оксидов, или элементов металлов церия и ниобия или их оксидов, где средняя удельная площадь поверхности катализатора псевдоожиженного слоя изменяется в интервале от около 50 м2/г до около 800 м2/г, и средний диаметр частиц катализатора псевдоожиженного слоя изменяется в интервале от около 20 микрон до около 300 микрон. Технический результат - высокие степень превращения оксалата, селективность этиленгликоля и высокая стабильность катализатора. 10 з.п. ф-лы, 12 пр.

Description

Данное изобретение относится к способу получения этиленгликоля из оксалата каталитической реакцией в псевдоожиженном слое, в частности к способу получения этиленгликоля из диметилоксалата или диэтилоксалата каталитической реакцией в псевдоожиженном слое.
Этиленгликоль (ЭГ) представляет собой важное органическое химическое сырье, которое используют, главным образом, для получения полиэфирных волокон, антифризов, ненасыщенных полиэфирных смол, смазочных материалов, пластификаторов, неионогенных поверхностно-активных веществ и взрывчатых веществ. Кроме того, этиленгликоль можно также применять в качестве покрытия, фотографического проявителя, тормозной жидкости и чернил, в качестве растворителя и среды для пербората аммония и для получения специальных растворителей, таких как гликолевый эфир. У этиленгликоля широкий ряд применений.
В настоящее время Китай обогнал США и стал крупнейшим потребителем этиленгликоля в мире; средний годовой рост потребления с 2001 по 2006 год составляет 17,4%. Несмотря на то что объем выпуска и производство этиленгликоля в Китае быстро возрастает благодаря энергичному развитию промышленности, в частности полиэфирной, оно не может удовлетворить растущий рыночный спрос и требует ежегодных импортных поставок в больших количествах. Более того, объем импортных поставок возрастает год от года.
В настоящее время как в национальном, так и в зарубежном крупномасштабном промышленном производстве этиленгликоля распространен способ прямой гидратации окиси этилена, а именно гидратации под давлением. Технология производства, в основном, монополизирована тремя компаниями, включая Royal Dutch Shell, U.S. Halcon-SD и U.S.UCC. Кроме того, в работе по исследованию и развитию новой технологии синтеза этиленгликоля достигнуты успехи; например, такие компании, как Shell, UCC, Российский химико-технологический Университет им. Д.И. Менделеева, Шанхайский исследовательский институт нефтехимической технологии и так далее, успешно разработали технологию получения этиленгликоля каталитической гидратацией окиси этилена, Halcon-SD, UCC, Dow Chemical, NsKK и MCC успешно разработали технологию получения этиленгликоля из этиленкарбоната, Dow Chemical и другие компании разработали технологию получения этиленгликоля совмещенным производством ЭГ и диметилкарбоната (ДМК).
Что касается прямой гидратации, в результате получают продукты реакции с высоким содержанием воды, что обуславливает длительный последующий процесс с использованием дополнительных установок (испаритель), громоздкого оборудования и высокого энергопотребления, а общий выход составляет лишь 70%, что непосредственно влияет на стоимость производства ЭГ. По сравнению со способом прямой гидратации, в способе каталитической гидратации значительно снижена доля воды, и в то же время достигается сравнительно высокая степень превращения ЭК и селективность по этиленгликолю. В случае благополучного решения проблем со стабильностью катализатора и инженерно-технических проблем, получение ЭГ способом каталитической гидратации ЭК вместо некаталитической гидратации станет общепринятым. Технология получения этиленгликоля способом на основе этиленкарбоната (ЭК), который имеет значительные преимущества по сравнению с прямой гидратацией ОЭ в отношении степени превращения ЭК, селективности по этиленгликолю, расхода сырья и энергии, представляет собой передовой способ. В технологии совместного производства этиленгликоля и ДМК можно полностью использовать ресурсы СО2, образующегося в качестве побочного продукта при окислении этилена. В существующих установках по производству ЭК только при добавлении стадии реакции для получения ЭК можно получать два весьма ценных продукта. Указанная технология очень перспективна.
Однако общим недостатком описанных выше способов является значительный расход этилена. В настоящее время, когда этилен получают, главным образом, стандартной переработкой нефтяных ресурсов, а мировые цены на нефть будут находиться на высоком уровне в последующий период времени, получение этиленгликоля за счет использования природного газа или угля, которые имеются в изобилии и дешевы, вместо нефти (не нефтяной способ, называемый также CO-способ), имеет преимущества, поскольку может конкурировать с общепринятым способом на основе этилена. Среди них новая технология синтеза ЭГ через синтез-газ может оказать существенное влияние на внедрение способа производства ЭГ. Очень перспективен способ из области углехимической промышленности, в котором диметилоксалат получают с использованием оксида углерода в качестве сырья с последующим получением этиленгликоля гидрированием диметилоксалата. В настоящее время как в отечественных, так и в зарубежных исследованиях получения диметилоксалата с использованием оксида углерода в качестве сырья достигнуты значительные результаты и разработано промышленное производство диметилоксалата. Однако в отношении получения этиленгликоля гидрированием диметилоксалата все еще требуются многочисленные исследования, поскольку отсутствуют достижения в отношении повышения селективности по этиленгликолю и повышения стабильности катализатора.
В документе CN101138725A описан катализатор для синтеза этиленгликоля гидрированием эфира щавелевой кислоты и способ его получения, при этом в катализаторе используют металлическую медь в качестве активного компонента и цинк в качестве промотора, и его получают способом совместного осаждения. Однако указанный катализатор приводит к низкой степени превращения эфира щавелевой кислоты. Между тем данные о стабильности данного катализатора отсутствуют.
В документе «Petrochemical Technology», 2007, vol.36, No.4, p.340-344 описано исследование синтеза этиленгликоля гидрированием диметилоксалата при использовании Cu/SiO2. Однако указанный катализатор обуславливает низкую селективность, и отсутствуют данные о стабильности данного катализатора.
Сущность изобретения
Техническая задача, которую предстоит решить в данном изобретении, заключается в преодолении проблемы низкой селективности по этиленгликолю, который является продуктом гидрирования, имеющей место в уровне техники, и обеспечении нового способа получения этиленгликоля из оксалата каталитической реакцией в псевдоожиженном слое. Указанный способ имеет преимущество, заключающееся в высокой селективности по этиленгликолю, который является продуктом гидрирования.
Для решения упомянутой выше технической проблемы в настоящем изобретении предложено следующее техническое решение: способ получения этиленгликоля, включающий применение реактора с псевдоожиженным слоем, применение оксалата в качестве сырья и приведение сырья в контакт с катализатором в псевдоожиженном слое при следующих условиях: температура реакции составляет от около 170°С до около 270°С, объемная скорость оксалата составляет от около 0,2 часа-1 до около 7 часов-1, молярное соотношение водород/сложный эфир составляет от около 20 до около 200:1, давление реакции составляет от около 1,5 МПа до около 10 МПа, и разность температур реакции ΔТ составляет от около 1°С до около 15°С, с получением потока, содержащего этиленгликоль, в котором указанный катализатор псевдоожиженного слоя содержит медь и ее оксид.
Из расчета на массовые части, указанный катализатор псевдоожиженного слоя содержит а) от около 5 до около 80 частей меди и ее оксида, b) от около 10 до около 90 частей по меньшей мере одного носителя, выбранного из оксида кремния, молекулярного сита или оксида алюминия, с) от около 0,01 до около 30 частей элементов металлов висмута и вольфрама или их оксидов, или элементов металлов церия и ниобия или их оксидов, где средняя удельная площадь поверхности носителя катализатора псевдоожиженного слоя изменяется в интервале от около 50 до около 800 м2/г, средний диаметр частиц катализатора изменяется в интервале от около 20 до около 300 микрон, индекс износостойкости катализатора изменяется в интервале от около 0,1 до около 1,5, предпочтительно от около 0,2 до около 0,8.
Условия реакции в реакторе с псевдоожиженным слоем в упомянутом выше техническом решении являются следующими: температура реакции составляет от около 180°С до около 260°С, объемная скорость оксалата составляет от около 0,3 ч-1 до около 3 ч-1, молярное соотношение водород/сложный эфир составляет от около 50 до около 150:1, давление реакции составляет от около 2,0 МПа до около 6,0 МПа. Оксалат предпочтительно выбирают из диметилоксалата, диэтилоксалата или их смеси.
Преимущество применения реактора с псевдоожиженным слоем в настоящем изобретении заключается в том, что при его использовании объемная скорость оксалата составляет от около 0,2 до около 7 ч-1, разницу температур реакции ΔТ регулируют от около 1 до около 15°С, предпочтительно от около 1 до около 10°С, более предпочтительно от около 1 до около 5°С. Указанная разница температур реакции ΔТ представляет собой разницу между температурой горячего пятна катализатора реактора и начальной температурой реакции, между сырьем, входящим в реактор, и катализатором.
В упомянутом выше техническом решении, из расчета на массовые части, указанный катализатор псевдоожиженного слоя предпочтительно содержит а) от около 10 до около 60 частей меди и ее оксида; b) от около 15 до около 90 частей по меньшей мере одного носителя, выбранного из оксида кремния или оксида алюминия; с) от около 0,05 до около 20 частей элементов металлов висмута и вольфрама или их оксидов, или элементов металлов церия и ниобия или их оксидов. Средняя удельная площадь поверхности носителя предпочтительно составляет от около 50 м2/г до около 600 м2/г, и средний диаметр частиц катализатора предпочтительно изменяется в интервале от около 50 микрон до около 200 микрон. Из расчета на массовые части, более предпочтительно, количество элемента металла висмута и его оксида в качестве промотора составляет от около 0,01 до около 20 частей, а более предпочтительно, количество элемента металла вольфрама и его оксида в качестве промотора составляет от около 0,01 до около 20 частей. Из расчета на массовые части, более предпочтительно, количество элемента металла церия и его оксида в качестве промотора составляет от около 0,01 до около 20 частей, и более предпочтительно, количество элемента металла ниобия и его оксида в качестве промотора составляет от около 0,01 до около 20 частей.
Катализатор в способе настоящего изобретения получают в результате следующих стадий: (а) получение раствора из смеси нитратов меди, висмута и вольфрама или меди, церия и ниобия в определенных концентрациях, и раствора карбоната натрия в определенной концентрации; (b) совместное осаждение упомянутых выше растворов при температуре от около 60 до около 80°С и постоянное перемешивание в процессе осаждения, так чтобы в конце осаждения рН=5-8; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до исчезновения Na+, последующее добавление связывающего вещества, а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением в соответствии с требуемым размером частиц, где средний размер частиц катализатора изменяется в интервале от около 20 микрон до около 300 микрон, предпочтительно от около 50 микрон до около 200 микрон, а частицы имеют сферическую форму; (е) сушка в течение от около 4 часов до около 10 часов при температуре примерно 120°С и прокаливание в течение от около 2 часов до около 6 часов при температуре от около 300°С до около 500°С.
Катализатор в способе настоящего изобретения имеет следующие характеристики.
1. Катализатор получают методом распылительной сушки с образованием микросферических частиц катализатора, подходящих для псевдоожиженного слоя.
2. Введение висмута и вольфрама или церия и ниобия в качестве промоторов в данный катализатор, что обеспечивает более высокую производительность катализатора.
В случае применения способа настоящего изобретения и катализатора, полученного согласно настоящему изобретению, с использованием реактора с псевдоожиженным слоем, и использованием оксалатов в качестве сырья в следующих условиях: температура реакции составляет от около 170°С до около 270°С, объемная скорость оксалата составляет от около 0,2 часа-1 до около 5 ч-1, молярное соотношение водород/сложный эфир составляет примерно 40-200:1, и давление реакции составляет от около 1,5 МПа до около 10 МПа, степень превращения оксалата составляет примерно 100%, селективность по этиленгликолю превышает 90%, стабильность катализатора возрастает, и получают более хороший технический эффект.
Настоящее изобретение дополнительно иллюстрировано следующими примерами и сравнительными примерами, но настоящее изобретение не ограничено данными примерами.
Конкретные варианты осуществления
[Пример 1]
Катализатор получали в соответствии с содержанием 20 мас.% Cu + 0,8 мас.% Bi + 2 мас.% W и оксида кремния в качестве остатка, где стадии при этом были следующие: (а) получение раствора из смеси нитратов меди, висмута и вольфрама и раствора карбоната натрия; (b) совместное осаждение упомянутых выше растворов примерно при 70°С, и постоянное перемешивание в процессе осаждения, так чтобы в конце осаждения рН=6; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до исчезновения Na+, последующее добавление носителя на основе оксида кремния (с удельной площадью поверхности 150 м2/г) и связывающего вещества на основе золя оксида кремния в концентрации 10%, а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением для регулирования среднего диаметра сферических частиц катализатора на уровне 100 микрон; (е) сушка в течение 6 часов при 120°С, и прокаливание в течение 4 часов при 450°С. Получали катализатор А1 псевдоожиженного слоя с индексом износостойкости 0,2.
Использовали реактор с псевдоожиженным слоем и чистый диметилоксалат (полученный от Shanghai Sinopharm, марки ч.д.а.) в качестве сырья. В условиях температуры реакции, составляющей 218°С, объемной скорости, составляющей 0,5 ч-1, молярного соотношения водород/сложный эфир, составляющего 80:1, и давления реакции, составляющего 2,8 МПа, исходное вещество контактировало с катализатором А1, и в результате реакции получали поток, содержащий этиленгликоль. Результаты реакции были следующими: степень превращения диметилоксалата составляла 100%, и селективность по этиленгликолю составляла 97,6%.
[Пример 2]
По аналогии с методикой и условиями, аналогичными Примеру 1, за исключением того, что средний диаметр сферических частиц катализатора при получении катализатора регулировали на уровне 150 микрон, и средняя удельная площади поверхности носителя составляла 280 м2/г. Полученный в результате катализатор В1 содержал 30 мас.% Cu + 10 мас.% Bi + 1 мас.% W и оксид кремния в качестве остатка, и индекс его износостойкости составлял 0,4. Использовали реактор с псевдоожиженным слоем и раствор диметилоксалата в метаноле в качестве сырья. В следующих условиях: температура реакции составляет 250°С, объемная скорость составляет 6 ч-1, молярное соотношение водород/сложный эфир составляет 100:1, давление реакции составляет 3,0 МПа, и массовый процент диметилоксалата составляет 35% (при использовании метана в качестве остатка), степень превращения диметилоксалата составляла 100%, и селективность по этиленгликолю составляла 95%.
[Пример 3]
Катализатор получали в соответствии с содержанием 40 мас.% Cu + 0,8 мас.% Bi + 15 мас.% W и оксида кремния и оксида алюминия в качестве остатка, где стадии при этом были следующие: (а) получение раствора из смеси нитратов меди, висмута и вольфрама и раствора карбоната натрия; (b) совместное осаждение упомянутых выше растворов при 65°С и постоянное перемешивание в процессе осаждения, так чтобы в конце осаждения рН=7; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до полного удаления Na+, последующее добавление носителя оксида алюминия (с удельной площадью поверхности 300 м2/г) и связывающего вещества на основе золя оксида кремния в концентрации 15%, а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением для регулирования среднего диаметра сферических частиц катализатора на уровне 150 микрон; (е) сушка в течение 6 часов при 120°С и прокаливание в течение 4 часов при 450°С. Получали катализатор С1 псевдоожиженного слоя с индексом износостойкости 0,6.
Использовали реактор с псевдоожиженным слоем и диэтилоксалат (полученный от Shanghai Sinopharm, марки ч.д.а.) в качестве сырья. В следующих условиях: температура реакции составляла 205°С, объемная скорость составляла 0,5 ч-1, молярное соотношение водород/сложный эфир составляло 100:1, и давление реакции составляло 2,8 МПа, степень превращения диэтилоксалата составляла 99%, и селективность по этиленгликолю составляла 96,5%.
[Пример 4]
Катализатор получали в соответствии с содержанием 30 мас.% Cu + 2 мас.% Bi + 6 мас.% W и оксида кремния и оксида алюминия в качестве остатка, где стадии при этом были следующие: (а) получение раствора из смеси нитратов меди, висмута и вольфрама и раствора карбоната натрия; (b) совместное осаждение упомянутых выше растворов при 65°С и постоянное перемешивание в процессе осаждения, так что в конце осаждения рН=7; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до полного удаления Na+, последующее добавление носителя оксида алюминия (с удельной площадью поверхности 100 м2/г) и связывающего вещества на основе золя оксида кремния в концентрации 6%, а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением для регулирования среднего диаметра сферических частиц катализатора на уровне 120 микрон; (е) сушка в течение 6 часов при 120°С и прокаливание в течение 4 часов при 450°С. Получали катализатор D1 псевдоожиженного слоя с индексом износостойкости 1,2.
Использовали реактор с псевдоожиженным слоем и диэтилоксалат (полученный от Shanghai Sinopharm, марки ч.д.а.) в качестве сырья. В следующих условиях: температура реакции составляла 235°С, объемная скорость составляла 4 ч-1, молярное соотношение водород/сложный эфир составляло 60:1, и давление реакции составляло 3,8 МПа, степень превращения диэтилоксалата составляла 99%, и селективность по этиленгликолю составляла 94,8%.
[Пример 5]
Катализатор получали в соответствии с содержанием 45 мас.% Cu + 8 мас.% Bi + 2 мас.% W и молекулярного сита ZSM-5 в качестве остатка, где стадии при этом были следующие: (а) получение раствора из смеси нитратов меди, висмута и вольфрама и раствора карбоната натрия; (b) совместное осаждение упомянутых выше растворов при 65°С и постоянное перемешивание в процессе осаждения, так чтобы в конце осаждения рН=5; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до полного удаления Na+, последующее добавление носителя на основе молекулярного сита ZSM-5 (с удельной площадью поверхности 450 м2/г), а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением для регулирования среднего диаметра сферических частиц катализатора на уровне 140 микрон; (е) сушка в течение 6 часов при 120°С и прокаливание в течение 4 часов при 450°С. Получали катализатор Е1 псевдоожиженного слоя с индексом износостойкости 0,3.
Использовали реактор с псевдоожиженным слоем и диэтилоксалат (полученный от Shanghai Sinopharm, марки ч.д.а.) в качестве сырья. В следующих условиях: температура реакции составляла 230°С, объемная скорость составляла 0,3 ч-1, молярное соотношение водород/сложный эфир составляло 70:1, и давление реакции составляло 2,2 МПа, степень превращения диэтилоксалата составляла 100%, и селективность по этиленгликолю составляла 95%.
[Пример 6]
Катализатор получали в соответствии с содержанием 25 мас.% Cu + 0,8 мас.% Bi + 4 мас.% W и молекулярного сита ZSM-5 в качестве остатка, где стадии при этом были следующие: (а) получение раствора из смеси нитратов меди, висмута и вольфрама и раствора карбоната натрия; (b) совместное осаждение упомянутых выше растворов при 65°С и постоянное перемешивание в процессе осаждения, так чтобы в конце осаждения рН=5; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до полного удаления Na+, последующее добавление носителя на основе молекулярного сита ZSM-5 (с удельной площадью поверхности 400 м2/г), а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением для регулирования среднего диаметра сферических частиц катализатора на уровне 140 микрон; (е) сушка в течение 6 часов при 120°С и прокаливание в течение 4 часов при 450°С. Получали катализатор F1 для псевдоожиженного слоя с индексом износостойкости 0,7.
Использовали реактор с псевдоожиженным слоем и диметилоксалат (полученный от Shanghai Sinopharm, марки ч.д.а.) в качестве сырья. В следующих условиях: температура реакции составляла 230°С, объемная скорость составляла 0,2 ч-1, молярное соотношение водород/сложный эфир составляло 100:1, давление реакции составляло 2,8 МПа, и массовый процент диметилоксалата составлял 14,5%. Степень превращения диметилоксалата составляла 100%, и селективность по этиленгликолю составляла 98%.
[Пример 7]
Катализатор получали в соответствии с содержанием 20 мас.% Cu + 5 мас.% Се + 2 мас.% Nb и оксида кремния в качестве остатка, где стадии при этом были следующие: (а) получение раствора из смеси нитратов меди, церия и ниобия и раствора карбоната натрия; (b) совместное осаждение упомянутых выше растворов при 70°С и постоянное перемешивание в процессе осаждения, так что в конце осаждения рН=6; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до полного удаления Na+, последующее добавление носителя на основе оксида кремния (с удельной площадью поверхности 150 м2/г) и связывающего вещества на основе золя оксида кремния в концентрации 10%, а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением для регулирования среднего диаметра сферических частиц катализатора на уровне 100 микрон; (е) сушка в течение 6 часов при 120°С и прокаливание в течение 4 часов при 450°С. Получали катализатор А2 псевдоожиженного слоя с индексом износостойкости 0,4.
Использовали реактор с псевдоожиженным слоем и диметилоксалат (полученный от Shanghai Sinopharm, марки ч.д.а.) в качестве сырья. В условиях, когда температура реакции составляла 220°С, объемная скорость составляла 0,5 ч-1, молярное соотношение водород/сложный эфир составляло 80:1, и давление реакции составляло 2,8 МПа, сырьевое вещество контактировало с катализатором А2, и в результате реакции получали поток, содержащий этиленгликоль. Результаты реакции были следующими: степень превращения диметилоксалата составляла 100%, и селективность по этиленгликолю составляла 92%.
[Пример 8]
Применяли ту же методику и условия, что и в примере 7, за исключением того, что при получении катализатора средний диаметр сферических частиц катализатора регулировали на уровне 150 микрон, и средняя удельная площадью поверхности носителя составляла 280 м2/г. Полученный при этом катализатор В2 содержал 30 мас.% Cu + 10 мас.% Се + 1 мас.% Nb и оксид кремния в качестве остатка, и индекс его износостойкости составлял 0,5. Использовали реактор с псевдоожиженным слоем и раствор диметилоксалата в метаноле в качестве сырья. В следующих условиях: температура реакции составляла 250°С, объемная скорость составляла 6 ч-1, молярное соотношение водород/сложный эфир составляло 100:1, и давление реакции составляло 3,0 МПа, и массовый процент диметилоксалата составлял 35% (при использовании метана в качестве остатка), степень превращения диметилоксалата составляла 100%, и селективность по этиленгликолю составляла 95%.
[Пример 9]
Катализатор получали в соответствии с содержанием 40 мас.% Cu + 1,5 мас.% Се + 15 мас.% Nb и оксида кремния и оксида алюминия в качестве остатка, где стадии при этом были следующие: (а) получение раствора из смеси нитратов меди, церия и ниобия и раствора карбоната натрия; (b) совместное осаждение упомянутых выше растворов при 65°С и постоянное перемешивание в процессе осаждения, так чтобы в конце осаждения рН=7; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до полного удаления Na+, последующее добавление носителя на основе оксида алюминия (с удельной площадью поверхности 300 м2/г) и связывающего вещества на основе золя оксида кремния в концентрации 15%, а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением для регулирования среднего диаметра сферических частиц катализатора на уровне 150 микрон; (е) сушка в течение 6 часов при 120°С и прокаливание в течение 4 часов при 450°С. Получали катализатор С2 псевдоожиженного слоя с индексом износостойкости 0,4.
Использовали реактор с псевдоожиженным слоем и диэтилоксалат (полученный от Shanghai Sinopharm, марки ч.д.а.) в качестве сырья. В следующих условиях: температура реакции составляла 203°С, объемная скорость составляла 0,5 ч-1, молярное соотношение водород/сложный эфир составляло 100:1, и давление реакции составляло 2,8 МПа, степень превращения диметилоксалата составляла 99%, и селективность по этиленгликолю составляла 97,3%.
[Пример 10]
Катализатор получали в соответствии с содержанием 30 мас.% Cu + 1 мас.% Се + 8 мас.% Nb и оксида кремния и оксида алюминия в качестве остатка, где стадии при этом были следующие: (а) получение раствора из смеси нитратов меди, церия и ниобия и раствора карбоната натрия; (b) совместное осаждение упомянутых выше растворов при 65°С и постоянное перемешивание в процессе осаждения, так чтобы в конце осаждения рН=7; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до полного удаления Na+, последующее добавление носителя на основе оксида алюминия (с удельной площадью поверхности 100 м2/г) и золя оксида кремния в концентрации 6%, а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением для регулирования среднего диаметра сферических частиц катализатора на уровне 120 микрон; (е) сушка в течение 6 часов при 120°С и прокаливание в течение 4 часов при 450°С. Получали катализатор D2 псевдоожиженного слоя с индексом износостойкости 0,2.
Использовали реактор с псевдоожиженным слоем и диэтилоксалат (полученный от Shanghai Sinopharm, марки ч.д.а.) в качестве сырья. В следующих условиях: температура реакции составляла 230°С, объемная скорость составляла 4 ч-1, молярное соотношение водород/сложный эфир составляло 60:1, и давление реакции составляло 3,8 МПа, степень превращения диэтилоксалата составляла 99%, и селективность по этиленгликолю составляла 95,8%.
[Пример 11]
Катализатор получали в соответствии с содержанием 45 мас.% Cu + 8 мас.% Се + 2 мас.% Nb, и молекулярного сита ZSM-5 в качестве остатка, где стадии при этом были следующие: (а) получение раствора из смеси нитратов меди, церия и ниобия и раствора карбоната натрия; (b) совместное осаждение упомянутых выше растворов при 65°С и постоянное перемешивание в процессе осаждения, так чтобы в конце осаждения рН=5; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до полного удаления Na+, последующее добавление носителя на основе молекулярного сита ZSM-5 (с удельной площадью поверхности 450 м2/г), а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением для регулирования среднего диаметра сферических частиц катализатора на уровне 140 микрон; (е) сушка в течение 6 часов при 120°С и прокаливание в течение 4 часов при 450°С. Получали катализатор Е2 псевдоожиженного слоя с индексом износостойкости 0,3.
Использовали реактор с псевдоожиженным слоем и диметилоксалат (полученный от Shanghai Sinopharm, марки ч.д.а.) в качестве сырья. В следующих условиях: температура реакции составляла 230°С, объемная скорость составляла 0,3 ч-1, молярное соотношение водород/сложный эфир составляло 70:1, и давление реакции составляло 2,2 МПа, степень превращения диметилоксалата составляла 100%, и селективность по этиленгликолю составляла 95%.
[Пример 12]
Катализатор получали в соответствии с содержанием 25 мас.% Cu + 0,8 мас.% Се + 4 мас.% Nb и молекулярного сита ZSM-5 в качестве остатка, где стадии при этом были следующие: (а) получение раствора из смеси нитратов меди, церия и ниобия и раствора карбоната натрия; (b) совместное осаждение упомянутых выше растворов при 65°С и постоянное перемешивание в процессе осаждения, так чтобы в конце осаждения рН=5; (c) многократное промывание упомянутой выше осажденной суспензии дистиллированной водой до полного удаления Na+, последующее добавление носителя на основе молекулярного сита ZSM-5 (с удельной площадью поверхности 400 м2/г), а затем перемешивание суспензии; (d) получение спрея при использовании распылительной сушилки под давлением для регулирования среднего диаметра сферических частиц катализатора на уровне 140 микрон; (е) сушка в течение 6 часов при 120°С и прокаливание в течение 4 часов при 450°С. Получали катализатор F2 псевдоожиженного слоя с индексом износостойкости 0,1.
Использовали реактор с псевдоожиженным слоем и раствор диметилоксалата (полученный от Shanghai Sinopharm марки ч.д.а.) в метаноле в качестве сырья. В следующих условиях: температура реакции составляла 230°С, объемная скорость составляла 0,2 ч-1, молярное соотношение водород/сложный эфир составляло 100:1, и давление реакции составляло 2,8 МПа, и массовый процент диметилоксалата составлял 14,5%, степень превращения диметилоксалата составляла 100%, и селективность по этиленгликолю составляла 98%.
[Сравнительный пример 1]
Применяли катализатор согласно документу US4440873. В соответствии с методикой и условиями примера 6 результаты реакции были следующими: степень превращения диметилоксалата составляла 99%, и селективность по этиленгликолю составляла 95%.
[Сравнительный пример 2]
Применяли тот же катализатор и условия реакции, что и в примере 2, за исключением того, что реакцию проводили в реакторе с неподвижным слоем катализатора. Степень превращения диметилоксалата составляла 100%, и селективность по этиленгликолю составляла 87%.
[Сравнительный пример 3]
Применяли тот же катализатор, условия реакции и сырье, что и в примере 10, за исключением того, что реакцию проводили в реакторе с неподвижным слоем катализатора. Степень превращения диэтилоксалата составляла 99%, и селективность по этиленгликолю составляла 88%.

Claims (11)

1. Способ получения этиленгликоля, отличающийся тем, что он включает применение реактора с псевдоожиженным слоем, использование оксалата в качестве сырья и приведение сырья в контакт с катализатором псевдоожиженного слоя в следующих условиях: температура реакции составляет от около 170°С до около 270°С, объемная скорость оксалата составляет от около 0,2 ч-1 до около 7 ч-1, молярное соотношение водород/сложный эфир составляет примерно 20-200:1, давление реакции составляет от около 1,5 МПа до около 10 МПа, и разница температур реакции ΔТ составляет от около 1°С до около 15°С, с получением потока, содержащего этиленгликоль;
где указанный катализатор псевдоожиженного слоя содержит медь и ее оксид.
2. Способ получения этиленгликоля по п.1, отличающийся тем, что температура реакции в псевдоожиженном слое изменяется в интервале от около 180°С до около 260°С, объемная скорость оксалатов изменяется в интервале от около 0,3 ч-1 до около 3 ч-1, молярное соотношение водород/сложный эфир изменяется в интервале от около 50-150:1, и давление реакции изменяется в интервале от около 2,0 МПа до около 6,0 МПа.
3. Способ получения этиленгликоля по любому одному из пп.1 или 2, отличающийся тем, что указанный катализатор псевдоожиженного слоя содержит: а) от около 5 до около 80 мас.ч. меди и ее оксида, b) от около 10 до около 90 мас.ч. по меньшей мере одного носителя, выбранного из оксида кремния, молекулярного сита или оксида алюминия, с) от около 0,01 до около 30 мас.ч. элементов металлов висмута и вольфрама или их оксидов, или элементов металлов церия и ниобия или их оксидов.
4. Способ получения этиленгликоля по любому одному из пп.1 или 2, отличающийся тем, что средняя удельная площадь поверхности катализатора псевдоожиженного слоя изменяется в интервале от около 50 м2/г до около 800 м2/г.
5. Способ получения этиленгликоля по любому одному из пп.1 или 2, отличающийся тем, что средний диаметр частиц катализатора псевдоожиженного слоя изменяется в интервале от около 20 микрон до около 300 микрон, и индекс износостойкости изменяется в интервале от около 0,1 до около 1,5.
6. Способ получения этиленгликоля по любому одному из пп.1 или 2, отличающийся тем, что объемная скорость оксалата изменяется в интервале от около 0,2 ч-1 до около 7 ч-1, разница температур реакции ΔТ изменяется в интервале от около 1°С до около 10°С.
7. Способ получения этиленгликоля по любому одному из пп.1 или 2, отличающийся тем, что указанный катализатор псевдоожиженного слоя содержит: а) от около 10 до около 60 мас.ч. меди и ее оксида, b) от около 15 до около 90 мас.ч. по меньшей мере одного носителя, выбранного из оксида кремния или оксида алюминия, с) от около 0,05 до около 20 мас.ч. элементов металлов висмута и вольфрама или их оксидов, или элементов металлов церия и ниобия или их оксидов.
8. Способ получения этиленгликоля по любому одному из пп.1 или 2, отличающийся тем, что средняя удельная площадь поверхности катализатора псевдоожиженного слоя изменяется в интервале от около 50 м2/г до около 600 м2/г, а средний диаметр частиц катализатора псевдоожиженного слоя изменяется в интервале от около 50 микрон до около 200 микрон.
9. Способ получения этиленгликоля по любому одному из пп.1 или 2, отличающийся тем, что данный катализатор содержит от около 0,01 до около 20 мас.ч. элементов металлов висмута и его оксида и от около 0,01 до около 20 мас.ч. элементов металлов вольфрама и его оксида.
10. Способ получения этиленгликоля по любому одному из пп.1 или 2, отличающийся тем, что данный катализатор содержит от около 0,01 до около 20 мас.ч. элементов металлов церия и его оксида и от около 0,01 до около 20 мас.ч. элементов металлов ниобия и его оксида.
11. Способ получения этиленгликоля по любому одному из пп.1 или 2, отличающийся тем, что оксалат выбирают из диметилоксалата, диэтилоксалата или их смесей.
RU2013143309/04A 2011-02-25 2012-02-24 Способ получения этиленгликоля каталитической реакцией оксалата в псевдоожиженном слое RU2565074C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201110045364.8A CN102649075B (zh) 2011-02-25 2011-02-25 草酸酯通过流化床催化反应生成乙二醇的方法
CN201110045356.3A CN102649064B (zh) 2011-02-25 2011-02-25 草酸酯通过流化床反应生成乙二醇的方法
CN201110045364.8 2011-02-25
CN201110045356.3 2011-02-25
PCT/CN2012/000236 WO2012113267A1 (zh) 2011-02-25 2012-02-24 草酸酯通过流化床催化反应生产乙二醇的方法

Publications (2)

Publication Number Publication Date
RU2013143309A RU2013143309A (ru) 2015-03-27
RU2565074C2 true RU2565074C2 (ru) 2015-10-20

Family

ID=46720109

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013143309/04A RU2565074C2 (ru) 2011-02-25 2012-02-24 Способ получения этиленгликоля каталитической реакцией оксалата в псевдоожиженном слое

Country Status (5)

Country Link
US (1) US9102583B2 (ru)
AU (1) AU2012220218B2 (ru)
MY (1) MY184173A (ru)
RU (1) RU2565074C2 (ru)
WO (1) WO2012113267A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706684C1 (ru) * 2018-10-22 2019-11-20 Пуцзин Кемикал Индастри Ко., Лтд Гидрирующий катализатор, а также его получение и его применения

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10077223B2 (en) * 2015-07-29 2018-09-18 Basf Se Method for producing monoethylene glycol
CN107930661B (zh) * 2016-10-13 2020-02-18 中国石油化工股份有限公司 一步法合成丙酮下游缩合产品的镍基催化剂
CN109569622B (zh) * 2017-09-29 2021-11-30 中国石油化工股份有限公司 催化剂组合物、合成方法及其用途
CN114054024B (zh) * 2021-09-29 2024-06-11 中触媒新材料股份有限公司 一种草酸二甲酯加氢催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112245A (en) * 1976-08-18 1978-09-05 Atlantic Richfield Company Process for the preparation of ethylene glycol
RU2058285C1 (ru) * 1993-06-25 1996-04-20 Чебоксарское производственное объединение "Химпром" Способ получения алкан( c2-c3 )диолов
CN101474561A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 草酸酯加氢生产乙二醇的催化剂
CN101475443A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 乙二醇的生产方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045938B2 (ja) 1981-04-30 1985-10-12 宇部興産株式会社 シュウ酸ジエステルの水素添加触媒の製造法
US4649226A (en) 1986-03-27 1987-03-10 Union Carbide Corporation Hydrogenation of alkyl oxalates
DE102004007498A1 (de) 2004-02-13 2005-09-01 Basf Ag Hydrierverfahren zur Herstellung optisch aktiver Alkohole oder Carbonsäuren
WO2006137165A1 (ja) 2005-06-20 2006-12-28 Kanto Kagaku Kabushiki Kaisha 水素化触媒及びそれを利用したアルコール化合物の製法
US20090014057A1 (en) * 2007-07-13 2009-01-15 Miasole Photovoltaic modules with integrated devices
CN101138725B (zh) 2007-10-10 2010-08-18 天津大学 草酸酯加氢合成乙二醇的催化剂及其制备方法
CN102219640A (zh) * 2010-04-15 2011-10-19 中国石油化工股份有限公司 提高草酸酯加氢制乙二醇选择性的方法
CN101879448B (zh) * 2010-06-24 2012-05-23 天津大学 用于草酸酯加氢制乙二醇的规整结构催化剂及其制备方法
AU2012220219B2 (en) * 2011-02-25 2016-06-30 China Petroleum & Chemical Corporation Ethylene glycol preparation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112245A (en) * 1976-08-18 1978-09-05 Atlantic Richfield Company Process for the preparation of ethylene glycol
RU2058285C1 (ru) * 1993-06-25 1996-04-20 Чебоксарское производственное объединение "Химпром" Способ получения алкан( c2-c3 )диолов
CN101474561A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 草酸酯加氢生产乙二醇的催化剂
CN101475443A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 乙二醇的生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706684C1 (ru) * 2018-10-22 2019-11-20 Пуцзин Кемикал Индастри Ко., Лтд Гидрирующий катализатор, а также его получение и его применения

Also Published As

Publication number Publication date
MY184173A (en) 2021-03-24
WO2012113267A1 (zh) 2012-08-30
US20130331617A1 (en) 2013-12-12
AU2012220218B2 (en) 2016-07-21
RU2013143309A (ru) 2015-03-27
US9102583B2 (en) 2015-08-11
AU2012220218A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
CN101138725B (zh) 草酸酯加氢合成乙二醇的催化剂及其制备方法
RU2565074C2 (ru) Способ получения этиленгликоля каталитической реакцией оксалата в псевдоожиженном слое
CN101992115B (zh) 高选择性催化剂
CN102649073A (zh) 草酸酯加氢制乙二醇流化床催化剂的制备方法
RU2570573C2 (ru) Способ получения этиленгликоля
CN102649698B (zh) 乙二醇的高效率生产方法
CN102649081B (zh) 草酸酯加氢制备乙二醇催化剂还原的方法
CN107586254A (zh) 一种草酸酯加氢合成乙二醇的方法
CN101168124A (zh) 一种乙醇脱水制乙烯催化剂及制备方法
CN102649705B (zh) 乙二醇的生产方法
CN102649076B (zh) 草酸酯催化氢化为乙二醇的流化床催化剂
CN102649071B (zh) 草酸酯催化反应为乙二醇的流化床催化剂
CN102649703B (zh) 采用草酸酯生产乙二醇的方法
CN102649694B (zh) 草酸酯氢化为乙二醇的方法
CN102649075B (zh) 草酸酯通过流化床催化反应生成乙二醇的方法
CN102649064B (zh) 草酸酯通过流化床反应生成乙二醇的方法
CN102649078B (zh) 草酸酯氢化为乙二醇的催化剂
CN116474758B (zh) 一种用于辛醇脱水制备1-辛烯的催化剂及制备方法和用途
CN111195517B (zh) 一种酯加氢催化剂及其制备方法与应用
CN101513616A (zh) 一种酸性纳米钴催化剂及其制备方法和应用
CN101993346A (zh) 草酸酯氢化为乙二醇的方法
CN109569622A (zh) 催化剂组合物、合成方法及其用途
CN101474562B (zh) 草酸酯加氢生产乙二醇催化剂高活性母体的制备方法
CN102649693A (zh) 草酸酯催化氢化为乙二醇的方法
CN107930634A (zh) 合成甲基异丁基酮并联产异丙醇的镍基催化剂