RU2563777C1 - Способ контроля состояния обмоток с монолитными металлическими сердечниками - Google Patents

Способ контроля состояния обмоток с монолитными металлическими сердечниками Download PDF

Info

Publication number
RU2563777C1
RU2563777C1 RU2014128067/28A RU2014128067A RU2563777C1 RU 2563777 C1 RU2563777 C1 RU 2563777C1 RU 2014128067/28 A RU2014128067/28 A RU 2014128067/28A RU 2014128067 A RU2014128067 A RU 2014128067A RU 2563777 C1 RU2563777 C1 RU 2563777C1
Authority
RU
Russia
Prior art keywords
hodograph
winding
impedance
locus
criterion
Prior art date
Application number
RU2014128067/28A
Other languages
English (en)
Inventor
Алексей Алексеевич Афонасов
Александр Васильевич Корнеев
Евгений Александрович Петров
Original Assignee
Открытое акционерное общество "Ордена Ленина Научно-исследовательский и конструкторский институт энерготехники им. Н.А. Доллежаля" (ОАО "НИКИЭТ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Ордена Ленина Научно-исследовательский и конструкторский институт энерготехники им. Н.А. Доллежаля" (ОАО "НИКИЭТ") filed Critical Открытое акционерное общество "Ордена Ленина Научно-исследовательский и конструкторский институт энерготехники им. Н.А. Доллежаля" (ОАО "НИКИЭТ")
Priority to RU2014128067/28A priority Critical patent/RU2563777C1/ru
Application granted granted Critical
Publication of RU2563777C1 publication Critical patent/RU2563777C1/ru

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

Изобретение относится к области электротехники и может использоваться для диагностирования межвиткового замыкания в обмотках электрических машин с монолитными металлическими сердечниками. Сущность: при различных значениях частоты измеряют действительную и мнимую компоненты импеданса обмотки, строят годограф импеданса, проводят его сравнение с реперным годографом и затем на основе критерия констатируют возникновение дефекта в обмотке, вызванного межвитковым замыканием. В качестве реперного используют годограф предыдущего измерения. Сравнение проводят по почастотно построенному годографу векторных разностей импедансов годографов. В качестве критерия принимают увеличение площади годографа векторных разностей. Технический результат: повышение точности, надежности результатов испытаний. 4 ил.

Description

Изобретение относится к области электротехники и может использоваться при диагностике обмоток электрических машин с монолитными металлическими сердечниками, например, электродвигателей и электромагнитов.
Во время эксплуатации электрических машин могут происходить межвитковые замыкания в обмотках. Для их своевременного выявления и предотвращения аварийных ситуаций проводят периодические плановые проверки состояния обмоток. В ряде случаев такие испытания на наличие короткозамкнутых витков (КЗВ) выполняют на месте дислокации изделий без демонтажа оборудования (неразрушающий контроль). Когда прямой доступ к обмоткам невозможен, измерительные приборы подключают к ним дистанционно, при этом из-за протяженности подводящих линий и наличия промежуточных элементов в электрической цепи возрастают помехи, увеличиваются экспериментальные погрешности и выявление КЗВ становится затруднительным.
В настоящее время известны различные способы и устройства для выполнения неразрушающего контроля обмоток. Однако они оказались неэффективными применительно к классу электрических машин, у которых обмотки снабжены монолитными металлическими сердечниками. В этом конкретном случае КЗВ диагностируются на фоне сердечника, который фактически тоже является массивным замкнутым витком и при измерениях маскирует сигнал, информирующий об искомом дефекте. Для данного класса машин с монолитными сердечниками разрабатываются специфические способы контроля, обладающие большей чувствительностью и селективностью.
Наиболее близким к заявленному изобретению является способ контроля электрических обмоток на короткое замыкание по патенту РФ 2413955 С1, опубл. 30.11.2009. В известном способе к обмотке подсоединяют измеритель иммитанса, включающий гармонический генератор, измерители тока и напряжения, измеряют действительную и мнимую компоненты импеданса при различных значениях частоты. Затем строят годограф импеданса обмотки, сравнивают его с реперным годографом и на основании заданного критерия принимают решение о наличии дефекта. Для определения реперного годографа используют тест-образец с эталонной обмоткой, идентичной контролируемой по размерам, количеству витков и материалу сердечника. В тест-образце с помощью переключаемой перемычки имитируют межвитковые замыкания. В качестве реперного выбирают годограф с наименьшим отклонением от годографа без имитации КЗВ. Далее на реперном годографе выбирают участок диапазона частот с максимальной чувствительностью к дефекту. Затем в пределах этого участка определяют значения модуля импеданса реперного тест-образца и исследуемой обмотки. Если у исследуемой обмотки это значение оказывается меньшим, принимают решение о наличии КЗВ.
Известный способ имеет ряд недостатков. Один из них обусловлен тем, что эталонная и исследуемая обмотки изначально не могут быть идентичными, а отличия между ними со временем возрастают даже при бездефектной эксплуатации изделия. Поэтому критерий, основанный на сравнении электрических характеристик работающего изделия и тест-образца с имитацией КЗВ не представляется вполне надежным. Другой недостаток связан с ограниченным набором имитаций КЗВ, при котором не учитываются все возможные формы дефектов. Кроме того, сравнение с реперным годографом проводят лишь по нескольким или даже по единственному измерению в одном узком частотном диапазоне. При дистанционных испытаниях с протяженными подводящими линиями, промежуточными элементами и электрическими помехами в цепи это приводит к значительным экспериментальным погрешностям и снижению чувствительности. В известном способе не удается надежно отделить полезный сигнал от фонового воздействия монолитного сердечника, в особенности на начальных стадиях развития дефектов с одиночными КЗВ, достоверность выявления дефектов недостаточно высока. Кроме того, испытания дополнительно усложняются из-за необходимости замещающего подключения тест-образца в электрическую цепь изделия.
С учетом вышеизложенного, применение известного способа не в лабораторных, а в реальных производственных условиях на месте дислокации изделия представляется проблематичным.
Заявленное изобретение направлено на преодоление перечисленных недостатков прототипа. Его задачей является повышение надежности диагностирования межвитковых замыканий в обмотках электрических машин с монолитными металлическими сердечниками, ранняя идентификация таких дефектов за счет чувствительности на уровне регистрации одиночных КЗВ.
Технический результат изобретения состоит в том, что селективно и с высокой точностью выявляются те изменения электрических характеристик обмотки, которые достоверно свидетельствуют о возникновении КЗВ, а решение о наличии КЗВ принимается на основе более надежного критерия. При этом процесс испытаний отличается простотой и не требует подключения дополнительных эталонных тест-образцов, а отказ от эталонного сравнения в пользу динамического анализа собственных состояний обмотки уменьшает вероятность принятия ошибочных решений. Надежность нового критерия диагностирования проявляется за счет использования в нем параметров, специфически меняющихся при появлении КЗВ. При расчете критерия учитываются данные измерений на большом массиве исследуемых частот во всем их рабочем диапазоне. Это позволяет повысить точность результатов испытаний и статистически скомпенсировать знакопеременные погрешности, вызванные электрическими помехами.
Технический результат изобретения достигается за счет того, что в способе контроля состояния обмоток с монолитными металлическими сердечниками в электрических машинах при различных значениях частоты измеряют действительную и мнимую компоненты импеданса обмотки, строят годограф импеданса, проводят его сравнение с реперным годографом и на основе критерия констатируют возникновение дефекта в обмотке, вызванного межвитковым замыканием, при этом в качестве реперного используют годограф предыдущего измерения, сравнение проводят по почастотно построенному годографу векторных разностей импедансов годографов, а в качестве критерия принимают увеличение площади годографа векторных разностей.
Изобретение поясняется чертежами, где на фиг. 1 схематично показаны графики годографов импеданса электрической цепи обмотки до и после появления КЗВ, фиг. 2 иллюстрирует построение годографа векторных разностей этих графиков в соответствие с изобретением, на фиг. 3 приведены примеры реальных графиков годографов при разных положениях КЗВ в обмотке, а на фиг. 4 представлены соответствующие годографы векторных разностей обмотки.
Согласно изобретению, для контроля состояния обмотки периодически определяют действительную и мнимую компоненты ее импеданса. Для этого к электрической цепи, содержащей исследуемую обмотку, подключают измеритель иммитанса, например, стандартный промышленный определитель RLC с генератором гармонических колебаний и измерителями тока и напряжения. Затем измеряют значения модуля комплексного сопротивления и угла фазового сдвига при разных рабочих частотах генератора и вычисляют компоненты импеданса. Получаемые экспериментальные данные должны быть репрезентативными и детализированными как по ширине исследуемого частотного диапазона, чтобы гарантированно охватить область влияния КЗВ на характеристики обмотки, так и по количеству измерений, чтобы статистически компенсировать экспериментальные погрешности. Этот массив рабочих частот генератора выбирают заранее перед первым испытанием и в дальнейшем оставляют неизменным.
В соответствии с изобретением, после этапа измерений проводят сравнение полученных данных с результатами предыдущего испытания, с тем чтобы на основе заданного критерия установить, произошло ли межвитковое замыкание в обмотке за предшествующий период эксплуатации. Для этого используют графики годографа импеданса, то есть решение о наличии КЗВ принимают на основании того, какие изменения наблюдаются в текущем графике годографа по сравнению с реперным графиком, полученным в предыдущем испытании.
График годографа импеданса является известным и широко используемым в электротехнике показателем, описывающим свойства элементов электрических систем. Он строится на комплексной плоскости координат активного R и реактивного JX сопротивлений и представляет собой кривую, соединяющую концы векторов комплексного сопротивления исследуемого элемента электрической цепи при изменении частоты f (фиг. 2).
Опытным путем установлено, что возникновение КЗВ в обмотке вызывает изменение формы графика годографа. Преимущественно это проявляется в стягивании точек графика к началу координат. Указанные изменения иллюстрируются на фиг. 1, где схематично показаны годографы обмотки с монолитным сердечником до появления КЗВ (годограф А) и при его наличии (годограф В). В реальности, из-за влияния сердечника и большого числа витков в обмотке, эти графики оказываются расположенными близко друг к другу (рис. 3), что существенно затрудняет диагностирование дефекта, однако независимо от места расположения КЗВ все же наблюдается выраженный участок на протяженном диапазоне частот, на котором годограф с КЗВ оказывается смещенным во внутреннюю сторону от графика годографа без КЗВ. Вне этого участка в областях соответственно малых и больших значений частот рассматриваемые графики практически сливаются. При этом узкая замкнутая область, располагающаяся между графиками, отражает информацию об ухудшении эксплуатационных свойств обмотки из-за образования КЗВ.
Формоизменение годографа можно определить как совокупность смещений всех образующих его векторов импеданса, соответствующих определённым частотам измерения fn. Каждое такое смещение описывается вектором разности d(В-А)n, соединяющим концы векторов импеданса текущего (фиг. 1, график В, с КЗВ) и предыдущего (график А, без КЗВ) испытания, измеренных на той же частоте.
Отложив полученные векторы разностей от одной общей точки путём их параллельного к ней переноса, можно построить годограф векторных разностей (ГВР), описывающий отличия текущего годографа от предыдущего. ГВР определяется, как разность комплексных функций (фиг.2):
Figure 00000001
где dR(f) и jdX(f) - вещественная и мнимая компоненты годографа векторных разностей;
dRA(f) и jdXA(f) - вещественная и мнимая компоненты годографа А обмотки без КЗВ;
dRB(f) и jdXB(f) - вещественная и мнимая компоненты годографа В обмотки с КЗВ;
График ГВР учитывает изменение импеданса обмотки как по модулю, так и по углу фазового сдвига, поэтому он имеет большую информативность по сравнению с характеристиками, ранее предлагавшимися для контроля состояния обмоток.
Экспериментально подтверждено, что если график ГВР представляет собой выраженную замкнутую кривую, проходящую через начало координат (фиг.4), то это достоверно свидетельствует о возникновении КЗВ в обмотке, а степень повреждения, вызванного данным дефектом, характеризуется величиной ограниченной внутри него площади. Данный экспериментальный факт используется в заявляемом способе. Целевым параметром, по которому судят о возникновения КЗВ, принимается график ГВР, а величина площади внутри графика служит интегральным критерием при оценке степени повреждения обмотки и надежности его диагностирования.
Интегральный критерий определяется из соотношений
Figure 00000002
где ИКСвр - интегральный критерий сравнения годографов по векторным разностям,
Sn - площадь треугольного элемента ГВР, соответствующего измерениям на частотах fn и fn-1 (фиг.2, точечная штриховка). Sn определяется через векторное произведение и может принимать как положительные, так и отрицательные значения;
dRn и dXn - координаты вектора d(B-A)n;
dRn-1 и dXn-1 - координаты вектора d(B-A)n-1.
Как ранее указывалось, в заявленном способе расчет критерия ИКСвр проводится на статистически репрезентативном массиве экспериментальных данных, охватывающем весь рабочий диапазон частот. С одной стороны, за счет большей детализированности измерений (см. фиг. 4) это позволяет увеличить чувствительность способа по сравнению с решением-прототипом. С другой стороны, его чувствительность и точность повышаются вследствие того, что при суммировании площадей согласно соотношению (1) взаимно сокращаются знакопеременные вклады случайных погрешностей, вызванные фоновыми помехами. Данное обстоятельство подтверждено экспериментами, в которых значение ИКСвр при появлении КЗВ возрастало на один-два порядка по отношению к фоновой ненулевой величине ИКСвр, регистрируемой при отсутствии КЗВ (вследствие случайных измерительных погрешностей).
Заявленный способ прошел промышленную апробацию. Контроль обмоток серийных шаговых электродвигателей с монолитными металлическими сердечниками с числом витков более 1000 проводился в диапазоне частот от 0.1 до 120 кГц. Когда массив измерений в испытании включал более 20 значений (равномерно распределенных по шкале частот), чувствительность диагностирования дефектов обмоток обеспечивалась на уровне единичных КЗВ.

Claims (1)

  1. Способ контроля состояния обмоток с монолитными металлическими сердечниками в электрических машинах, заключающийся в том, что при различных значениях частоты измеряют действительную и мнимую компоненты импеданса обмотки, строят годограф импеданса, проводят его сравнение с реперным годографом и на основе критерия констатируют возникновение дефекта в обмотке, вызванного межвитковым замыканием, отличающийся тем, что в качестве реперного используют годограф предыдущего измерения, сравнение проводят по почастотно построенному годографу векторных разностей импедансов годографов, а в качестве критерия используют увеличение площади годографа векторных разностей.
RU2014128067/28A 2014-07-08 2014-07-08 Способ контроля состояния обмоток с монолитными металлическими сердечниками RU2563777C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014128067/28A RU2563777C1 (ru) 2014-07-08 2014-07-08 Способ контроля состояния обмоток с монолитными металлическими сердечниками

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014128067/28A RU2563777C1 (ru) 2014-07-08 2014-07-08 Способ контроля состояния обмоток с монолитными металлическими сердечниками

Publications (1)

Publication Number Publication Date
RU2563777C1 true RU2563777C1 (ru) 2015-09-20

Family

ID=54147964

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014128067/28A RU2563777C1 (ru) 2014-07-08 2014-07-08 Способ контроля состояния обмоток с монолитными металлическими сердечниками

Country Status (1)

Country Link
RU (1) RU2563777C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU995031A1 (ru) * 1980-12-17 1983-02-07 Ташкентский Ордена Трудового Красного Знамени Институт Инженеров Железнодорожного Транспорта Способ контрол целостности обмотки электрической машины
WO2005091004A1 (en) * 2004-03-23 2005-09-29 Univ British Columbia Electric winding displacement detection method and apparatus
RU2305291C1 (ru) * 2006-04-21 2007-08-27 Федеральное Государственное Унитарное Предприятие "Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля" Способ определения короткозамкнутых витков в электрических обмотках
RU2413955C1 (ru) * 2009-11-30 2011-03-10 Открытое акционерное общество "Ордена Ленина Научно-исследовательский и конструкторский институт энерготехники имени Н.А.Доллежаля" Способ контроля электрических обмоток на короткое замыкание
US20110187304A1 (en) * 2010-02-02 2011-08-04 Gm Global Technology Operations, Inc. Motor phase winding fault detection method and apparatus
JP2013148481A (ja) * 2012-01-19 2013-08-01 Tomoo Kayano 電動機巻線の劣化診断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU995031A1 (ru) * 1980-12-17 1983-02-07 Ташкентский Ордена Трудового Красного Знамени Институт Инженеров Железнодорожного Транспорта Способ контрол целостности обмотки электрической машины
WO2005091004A1 (en) * 2004-03-23 2005-09-29 Univ British Columbia Electric winding displacement detection method and apparatus
RU2305291C1 (ru) * 2006-04-21 2007-08-27 Федеральное Государственное Унитарное Предприятие "Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля" Способ определения короткозамкнутых витков в электрических обмотках
RU2413955C1 (ru) * 2009-11-30 2011-03-10 Открытое акционерное общество "Ордена Ленина Научно-исследовательский и конструкторский институт энерготехники имени Н.А.Доллежаля" Способ контроля электрических обмоток на короткое замыкание
US20110187304A1 (en) * 2010-02-02 2011-08-04 Gm Global Technology Operations, Inc. Motor phase winding fault detection method and apparatus
JP2013148481A (ja) * 2012-01-19 2013-08-01 Tomoo Kayano 電動機巻線の劣化診断方法

Similar Documents

Publication Publication Date Title
Rahimpour et al. Mathematical comparison methods to assess transfer functions of transformers to detect different types of mechanical faults
EP2474832B1 (en) Method and system for monitoring transformer health
CN108983744B (zh) 异常诊断设备和异常诊断方法
US8988071B2 (en) Nondestructive inspection of a structure in an aircraft
US10451268B2 (en) Method for evaluating the clogging of a heat exchanger
JP2011253885A (ja) 変圧器の健全性診断方法、健全性診断装置及び健全性診断プログラム
RU2013138125A (ru) Способ ранжирования технических устройств технологических установок химических, нефтехимических и нефтеперерабатывающих комплексов на основе их экспертно-бальной оценки
RU2614414C1 (ru) Способ комплексного наземного бесконтактного технического диагностирования подземного трубопровода
RU2563777C1 (ru) Способ контроля состояния обмоток с монолитными металлическими сердечниками
Miyazaki et al. Proposal of objective criterion in diagnosis of abnormalities of power-transformer winding by Frequency Response Analysis
JP7227846B2 (ja) 開閉装置の診断方法及び装置
JP7147801B2 (ja) 磁気探傷方法、磁界計測処理装置及び磁気探傷装置
RU2234079C2 (ru) Способ и устройство определения остаточного ресурса тонкостенных оболочек из резервуарных и трубных сталей
JP2016173340A (ja) 配管検査装置
US20190121715A1 (en) Systems and methods for determination of health indicators using rank correlation analysis
Schadler et al. Fault detection using online selected data and updated regression models
JP2018169356A (ja) き裂監視機能を備えた応力拡大係数測定用ひずみゲージ、応力拡大係数算出方法およびき裂監視方法
Secue et al. New SFRA measurement interpretation methodology for the diagnosis of power transformers
JP2011158438A (ja) コンクリート柱の鉄筋腐食検査方法
RU2449264C1 (ru) Способ мониторинга коррозионного состояния трубопровода
Dobizha et al. Checking features of the transformer winding mechanical joint conditions by the method of low-voltage impulse
Hamed et al. The effect of different weight functions on calibrating corrosion measurements using KNN technique
JPH03246472A (ja) モータ用巻線コイルの巻装異常検出装置
Joneit et al. Correction of eddy current measurements to obtain accordance with simulation results
Chlada et al. Remote AE monitoring of fatigue crack growth in complex aircraft structures