RU2562767C1 - Способ адаптивного повышения адекватности модели системы связи - Google Patents

Способ адаптивного повышения адекватности модели системы связи Download PDF

Info

Publication number
RU2562767C1
RU2562767C1 RU2014111876/08A RU2014111876A RU2562767C1 RU 2562767 C1 RU2562767 C1 RU 2562767C1 RU 2014111876/08 A RU2014111876/08 A RU 2014111876/08A RU 2014111876 A RU2014111876 A RU 2014111876A RU 2562767 C1 RU2562767 C1 RU 2562767C1
Authority
RU
Russia
Prior art keywords
communication system
probability
model
adequacy
value
Prior art date
Application number
RU2014111876/08A
Other languages
English (en)
Inventor
Евгения Александровна Алисевич
Павел Владимирович Закалкин
Татьяна Викторовна Кириллова
Юрий Иванович Стародубцев
Елена Валерьевна Сухорукова
Александр Геннадьевич Чукариков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный торгово-экономический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный торгово-экономический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный торгово-экономический университет"
Priority to RU2014111876/08A priority Critical patent/RU2562767C1/ru
Application granted granted Critical
Publication of RU2562767C1 publication Critical patent/RU2562767C1/ru

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Предлагаемое техническое решение относится к области моделирования систем связи. Техническим результатом является адаптивное повышение степени адекватности модели системы связи. Способ адаптивного повышения адекватности модели системы связи заключается в том, что описывают структуру сети связи, формируют модель системы связи с демаскирующими признаками, имитируют возникновение демаскирующих признаков элементов системы связи, процессы их обнаружения и распознавания, имитируют возникновение различных видов отказов, повреждений и сбоев, рассчитывают значение показателя разведзащищенности, в случае несоответствия показателя разведзащищенности требуемому значению реконфигурируют моделируемую систему связи, в случае выполнения требований развертывают реальную систему связи, в случае невыполнения требования реконфигурируют функционирующую систему связи, дополнительно имитируют служебную и оперативную нагрузку, рассчитывают вероятность своевременной передачи сообщений в системе связи, рассчитывают степень адекватности модели ε1, ε2, ε3 по полученным новым значениям показателей, проверяют выполнение условия ε1≥εтр1 для значения вероятности своевременной передачи информации, дополнительно в реально функционирующей системе связи разворачивают систему комплексного мониторинга, определяют параметры, влияющие на показатели, осуществляют их корректировку. 2 ил.

Description

Предлагаемое изобретение относится к области радиотехники, а именно к области моделирования систем связи и анализа различных динамических процессов, происходящих в данных системах.
Под системой связи (СС) будем понимать организационно-техническое объединение средств связи, развернутых в соответствии с решаемыми задачами и принятой системой управления для обмена всеми видами сообщений (информации) между пунктами (узлами связи), органами и объектами управления (А.Г. Ермишян. Теоретические основы построения систем военной связи в объединениях, соединениях. Часть 1. Методологические основы организационно-технических систем военной связи. ВАС, СПб. 2005 г., 741 с., стр.71).
Моделирование - замещение одного исходного объекта другим объектом, называемым моделью, и проведение экспериментов с моделью с целью получения информации о системе путем исследования свойств модели (Т.И. Алиев. Основы моделирования дискретных систем. СПб, СПбГУ ИТМО, 2009 г., 363 с., стр.8).
Известен способ моделирования процессов обеспечения технической готовности сетей связи при технической эксплуатации [Способ моделирования процессов обеспечения технической готовности сетей связи при технической эксплуатации и система для его реализации. Патент РФ №2336566, кл. G06N 1/00, 2008]. В способе определяют схемотехнические характеристики элементов сложной технологической структуры (СТС), устанавливают их взаимосвязи, разделяют все связи между всеми элементами принципиальной схемы СТС на основные и резервные, задают произвольную комбинацию повреждений элементов СТС, определяют значения показателя аварийности состояния связей между элементами СТС, в случае неравенства этого показателя нулевому значению восстанавливают работоспособность СТС, изменяя ее замещением поврежденных связей резервными, определяют значения показателя восстановления работоспособности СТС и вырабатывают прогноз состояния измененной СТС, производят описание структуры сети связи, моделируют процесс обеспечения технической готовности при эксплуатации сети связи, имитируют различные виды отказов, повреждений и сбоев основных элементов сетей связи, обеспечение технической готовности сетей связи моделируют на нескольких уровнях, причем на первом уровне (оперативном) обеспечение технической готовности моделируют за счет введения резервных линий (каналов) связи, на втором уровне (оперативно-техническом) обеспечение технической готовности моделируют за счет введения резервных средств связи, на третьем (техническом) уровне обеспечение технической готовности моделируют за счет проведения восстановления отказавших (поврежденных) средств связи, осуществляют сбор статистики и прогнозирование технического состояния основных элементов сетей связи, осуществляют расчет основных показателей функционирования сетей связи.
Недостатком способа является то, что моделируется только применение объектов по назначению, восстановление (реконфигурация) сетей связи осуществляется только после воздействий, учитываются не все показатели, определяемые требованиями к связи (А.Г. Ермишян. Теоретические основы построения систем военной связи в объединениях, соединениях. Часть 1. Методологические основы организационно-технических систем военной связи. ВАС, СПб. 2005 г., 741 с., стр.335-339), не производится оценка степени адекватности модели.
Наиболее близким (принятым за прототип) по технической сущности к предлагаемому техническому решению является способ контроля демаскирующих признаков системы связи (Способ контроля демаскирующих признаков системы связи. Патент RU №2419153 С2, кл. G06N 5/00, опубл. 20.05.2011 г., бюл. №14).
Данный способ заключается в следующем: описывают структуру сети связи, формируют модель системы связи с демаскирующими признаками ее элементов до начала функционирования, с использованием модели системы связи имитируют возникновение демаскирующих признаков элементов системы связи, процессы их обнаружения и распознавания, моделируют появление демаскирующих признаков элементов системы связи, таких как узлов связи, линий и каналов связи, образованных средствами волоконно-оптической, проводной, радиорелейной, тропосферной, спутниковой связи, на основе имитации возникновения различных видов эксплуатационных отказов (сбоев), аварийных повреждений, отказов (сбоев) программного обеспечения элементов системы связи, по результатам моделирования системы связи определяют набор наиболее информативных демаскирующих признаков элементов системы связи, подлежащих контролю, рассчитывают значение показателя разведзащищенности моделируемой системы связи, сравнивают с требуемым значением, в случае несоответствия показателя разведзащищенности требуемому значению реконфигурируют моделируемую систему связи и заново имитируют процесс ее функционирования, в случае выполнения требований по показателю разведзащищенности рассчитывают значения показателей достоверности и полноты контроля моделируемой системы связи и сравнивают их с требуемыми значениями, в случае несоответствия показателей достоверности и полноты контроля требуемым значениям изменяют параметры контроля, в случае выполнения требований развертывают реальную систему связи, на которой измеряют значения параметров демаскирующих признаков, на основе которых рассчитывают и сравнивают показатель разведзащищенности реально функционирующей системы связи с требуемым значением, в случае невыполнения требования реконфигурируют функционирующую систему связи, в случае выполнения требований рассчитывают значения показателей достоверности и полноты контроля функционирующей системы связи и сравнивают их с требуемыми значениями, в случае несоответствия показателей достоверности и полноты контроля требуемым значениям изменяют параметры контроля функционирующей системы связи.
Недостатком данного способа является то, что при моделировании не осуществляется имитация служебной и оперативной нагрузки, т.е. отсутствует возможность оценить качество связи, при несоответствии значений рассчитанных показателей функционирующей сети требуемым, не производится корректировка модели, учитываются не все показатели, определяемые требованиями к связи, не производится оценка адекватности модели.
Адекватность (от лат. adaequatus - приравненный, равный) - соответствие модели оригиналу, характеризуемое степенью близости свойств модели свойствам исследуемой системы (Т.И. Алиев. Основы моделирования дискретных систем. СПб, СПбГУ ИТМО, 2009 г., 363 с., стр.16).
Необходимо отметить, что одной из основных особенностей современных систем связи является их чрезвычайно высокая сложность, заключающаяся в сложности их построения, функционирования, управления данными системами. Вследствие этого проектирование, внедрение, эксплуатация систем связи невозможны без использования различных видов моделирования. (Советов Б.Я., Яковлев С.А. «Моделирование систем». - М.: Высшая школа, 2009, - 343 с.; Шелухин О.И., Тенякшев A.M., Осин А.В. «Моделирование информационных систем». Учебное пособие. - М.: Радиотехника, 2005. - 368 с.: ил.).
Однако при моделировании в ходе проведения экспериментов в основном используются случайные числа, случайные переменные, цепочки случайных событий, сложным образом взаимодействующие друг с другом. При этом процессам, происходящим в модели и реальной системе, свойственны расхождения. Кроме того, могут возникнуть ошибки при построении, программировании, в использовании данных при применении модели. (Р. Шеннон. Имитационное моделирование систем - искусство и наука. - М.: Издательство «Мир», 1978. - 418 с., стр.234-235).
Соответственно, необходимо обеспечивать требуемую степень адекватности построенных моделей.
Методы оценки адекватности модели описаны в (А.В. Духанов, О.Н. Медведева. Имитационное моделирование сложных систем. Владимир: ВГУ, 2010. - 115 с., стр.67-84; Р. Шеннон. Имитационное моделирование систем - искусство и наука. - М.: Издательство «Мир», 1978. - 418 с., стр.234-263; В. Кельтон, А. Лоу. Имитационное моделирование. Классика CS. 3-е изд-е. - СПб: Питер, Киев: Издательская группа BHV, 2004. - 847 с.; Ю.С. Харин, Малюгин В.И., Кирлица В.П. Основы имитационного и статистического моделирования. - Мн.: Дизайн ПРО, 1997. - 288 с.; Бусленко Н.П. Моделирование сложных систем. - М.: Главная редакция физико-математической литературы изд-ва «Наука», 1968. - 356 с.).
В основном это статистические методы.
Однако наиболее полно позволяют убедиться в применимости модели натурные испытания, в ходе которых могут быть проверены логические решения, заложенные в основу построения модели [Р. Шеннон. Имитационное моделирование систем - искусство и наука. - М.:
Издательство «Мир», 1978. - 418 с., стр.257-258], что реально позволяет определить степень ее адекватности.
Техническим результатом изобретения является устранение или существенное уменьшение в указанных выше способах недостатков, в том числе расширение функциональных возможностей технических решений с обеспечением адаптивного повышения степени адекватности модели системы связи.
Технический результат достигается тем, что в известном способе-прототипе, заключающемся в том, что описывают структуру сети связи, формируют модель системы связи с демаскирующими признаками ее элементов до начала функционирования, с использованием модели системы связи имитируют возникновение демаскирующих признаков элементов системы связи, процессы их обнаружения и распознавания, имитируют возникновение различных видов отказов, повреждений и сбоев основных элементов системы связи, рассчитывают значение показателя разведзащищенности моделируемой системы связи и сравнивают с требуемым значением, в случае несоответствия показателя разведзащищенности требуемому значению реконфигурируют моделируемую систему связи, в случае выполнения требований развертывают реальную систему связи, на которой измеряют значения параметров демаскирующих признаков, на основе которых рассчитывают и сравнивают показатель разведзащищенности реально функционирующей системы связи с требуемым значением, в случае невыполнения требования реконфигурируют функционирующую систему связи, дополнительно при моделировании системы связи дополнительно имитируют служебную и оперативную нагрузку, рассчитывают вероятность своевременной передачи сообщений в системе связи, сравнивают рассчитанное значение вероятности своевременной передачи сообщений с требуемым, в случае несоответствия требуемому значению реконфигурируют моделируемую систему, в случае выполнения требования рассчитывают значение вероятности правильного приема сообщений, сравнивают рассчитанное значение вероятности правильного приема сообщений с требуемым, в случае несоответствия требуемому значению реконфигурируют моделируемую систему, в случае соответствия требуемому значению проверяют, проводился ли расчет степени адекватности модели, если расчет степени адекватности модели ранее проводился, то рассчитывают степень адекватности модели ε1, ε2, ε3 по полученным новым значениям показателей, проверяют выполнение условия ε1≥εтр1 для значения вероятности своевременной передачи информации, в случае не выполнения условия определяют параметры, влияющие на данный показатель, осуществляют их корректировку при моделировании системы связи, повторяют вышеперечисленные действия для оценки степени адекватности модели по значению вероятности правильного приема сообщений ε2 и показателя разведзащищенности ε3, если расчет степени адекватности не проводился, дополнительно в реально функционирующей системе связи разворачивают систему комплексного мониторинга, измеряют значения параметров всех характеристик развернутой системы связи, на основе измеренных значений рассчитывают вероятность своевременной передачи сообщений в реально функционирующей системе связи, сравнивают рассчитанное значение вероятности своевременной передачи сообщений с требуемым, в случае несоответствия требуемому значению реконфигурируют моделируемую систему, в случае выполнения требования, рассчитывают значение вероятности правильного приема сообщений в реально функционирующей системе связи, сравнивают рассчитанное значение вероятности правильного приема сообщений с требуемым, в случае несоответствия требуемому значению реконфигурируют моделируемую систему, рассчитывают степень адекватности модели ε1, ε2, ε3 по полученным новым значениям показателей, проверяют выполнение условия ε1≥εтр1 для значения вероятности своевременной передачи информации, в случае не выполнения условия определяют параметры, влияющие на данный показатель, осуществляют их корректировку при моделировании системы связи, повторяют вышеперечисленные действия для оценки степени адекватности модели по значению вероятности правильного приема сообщений ε2 и показателю разведзащищенности ε3.
Это позволит построить (реконфигурировать) систему связи с учетом служебной и оперативной нагрузки, а также соответствия количественных показателей ко всем требованиям, предъявляемым к связи, требуемым нормативам, а также адаптивно повышать степень адекватности модели.
Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностями признаков, тождественным всем признакам заявленного способа, отсутствуют. Следовательно, заявленное изобретение соответствует условию патентоспособности "новизна".
Результаты поиска известных решений в данной и смежной областях техники с целью выявления признаков, совпадающих с отличительными от прототипов признаками заявленного изобретения, показали, что они не следуют явным образом из уровня техники. Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности "изобретательский уровень". "Промышленная применимость" способа обусловлена наличием элементной базы, на основе которой могут быть выполнены устройства, реализующие данный способ.
Заявленный способ поясняется чертежами, на которых показаны:
фиг.1 - обобщенная схема способа адаптивного повышения достоверности;
фиг.2 - блок-схема алгоритма способа адаптивного повышения адекватности модели системы связи.
Рассмотрим возможность реализации заявленного способа (фиг.1).
На основе заданных исходных данных формируют модель системы связи. Имитируют служебную и оперативную нагрузку, а также возникновение отказов, сбоев, повреждений элементов СС и появление на их основе ДМП. Далее оценивают смоделированную СС на выполнение таких требований, предъявляемых к связи, как своевременность, достоверность, безопасность. Для этого рассчитывают количественные показатели указанных характеристик (вероятность своевременной передачи сообщений, вероятность правильного приема сообщений, показатель разведзащищенности), которые сравнивают с заданными требуемыми значениями. В случае несоответствия значений показателей требуемым проводят реконфигурацию системы связи.
По итогам моделирования разворачивают реальную систему связи. В процессе ее функционирования измеряют значения параметров характеристик развернутой системы связи и на их основе рассчитывают те же количественные показатели (вероятность своевременной передачи сообщений, вероятность правильного приема сообщений, показатель разведзащищенности), которые также сравниваются с заданными требуемыми значениями. В случае несоответствия значений показателей требуемым, производится не только реконфигурация реально функционирующей системы связи, но и корректируется модель системы (связи 1.1-1.3, фиг.1).
В случае соответствия значений показателей требуемым оценивается степень адекватности модели. Для этого сравниваются значения одноименных показателей (вероятность своевременной передачи сообщений, вероятность правильного приема сообщений, показатель разведзащищенности) моделируемой и реально функционирующей систем связи.
В случае если степень адекватности не соответствует заданному значению, производится корректировка параметров, влияющих на показатели, отклонившиеся от требуемого значения (связь 3.1-3.3, фиг.1). При этом делаем допущение, что выбранные показатели независимы, а параметры сгруппированы так, что оказывают определяющее влияние на один из показателей, не влияют или влияют незначительно на остальные.
Реально функционирующая система связи не реконфигурируется.
Данные действия реализуются в виде блок-схемы алгоритма способа адаптивного повышения адекватности модели системы связи, представленной на фиг.1:
В блоке 1 происходит ввод данных. Исходными данными являются:
- данные о системе связи: состав, структура системы связи; матрица связности системы связи; матрица маршрутизации; матрица приоритетов сообщений, передаваемых по системе связи;
- заданные значения вероятностей: обнаружения ДМП элементов системы связи Pобн и распознавания ДМП элементов системы связи Ррасп;
- требуемые значения вероятностей: своевременности передачи сообщений P с в т р
Figure 00000001
, правильного приема сообщений P п с т р
Figure 00000002
, разведзащищенности системы связи P р з т р
Figure 00000003
; требуемые значения степени адекватности по всем вышеперечисленным показателям εтр1, εтр2, εтр3,
- явления характерных ДМП элементов системы связи;
- данные по оперативной и служебной нагрузке (пределы изменения величин, законы изменения величин).
В блоке 2 происходит формирование модели системы. Формирование модели системы связи является известной процедурой и проводится по правилам, изложенным в кн.: Иванов Е.В. Имитационное моделирование средств и комплексов связи и автоматизации. СПб.: ВАС, 1992. - 206 с., стр.109-124.
В блоке 3 происходит имитация служебной и оперативной нагрузки.
Служебная электросвязь - предоставление и использование услуг электрической связи для организации технологических процессов на сетях связи, а также для оперативно-технического и административного управления ими. [Федеральный закон «О связи» от 07.07.2003 №126-ФЗ]
Оперативная связь - передача и прием деловой информации в пределах учреждения, предприятия и т.д. [Большой энциклопедический политехнический словарь, 2004].
В блоке 4 происходит имитация возникновения отказов, сбоев, повреждений элементов СС и появления на их основе ДМП.
Имитация возникновения отказов, сбоев элементов СС и появления на их основе ДМП осуществляется с использованием известных методов генерации (имитации), зависящих от вида распределения разыгрываемых величин, характеризующих математические ожидания времени возникновения внешних воздействий (Имитационное моделирование средств и комплексов связи и автоматизации. Иванов Е.В. СПб.: ВАС, 1992. С.9-18; Моделирование систем. Инструментальные средства GPSS World: Учеб. пособие. - СПб.: БХВ-Петербург, 2004. - 368 с.).
В блоках 5-10 производится оценка смоделированной СС на выполнение требований, предъявляемых к связи, - своевременность, достоверность, безопасность.
Своевременность - способность связи обеспечить передачу и доставку сообщений или ведение переговоров в заданное время [Советская военная энциклопедия. Т.7. М.: Воениздат, 1979. - 687 с., стр.271].
Достоверность - способность связи обеспечивать прием переданных сообщений с заданной точностью (Советская военная энциклопедия. Т.7. М.: Воениздат, 1979. - 687 с., стр.271).
Критерии оценки и количественные показатели своевременности и достоверности описаны в (А.Г. Ермишян. Теоретические основы построения систем военной связи в объединениях, соединениях. Часть 1. Методологические основы организационно-технических систем военной связи. ВАС, СПб. 2005 г., 741 с., стр.335-339).
Безопасность - состояние защищенности связи с помощью совокупности специальных средств и методов, а также организационных мер с целью сохранения таких ее качественных характеристик (свойств), как разведзащищенность и иммитостойкость, определяющую способность связи противостоять вводу в нее ложной информации. [Министерство обороны Российской Федерации. Энциклопедия. [Офиц. сайт] LJRL: http://encyclopedia.mil.ru/encyclopedia/dictionary/details.htm?id=12641@morfDictionary. Дата обращения 22.01.2014].
В блоке 5 происходит расчет вероятности своевременности передачи сообщений в СС.
Вероятность своевременной передачи сообщений в системе связи может быть рассчитана по формуле (Е.С. Вентцель. Теория вероятностей. - М.: КНОРУС, 2010. - 664 с., с 27):
Figure 00000004
где Nсв - количество своевременно переданных сообщений,
N - количество всех переданных сообщений.
В блоке 6 осуществляется проверка условия P с в Р с в т р
Figure 00000005
. В случае выполнения условий осуществляется переход на блок 7, в противном случае на блок 11.
В блоке 7 осуществляется расчет вероятности правильного приема сообщения СС.
Вероятность правильного приема сообщений может быть рассчитана по формуле (Е.С. Вентцель. Теория вероятностей. - М.: КНОРУС, 2010. - 664 с., с 27):
Figure 00000006
где Nпс - количество правильно принятых сообщений, N - количество всех переданных сообщений.
В блоке 8 осуществляется проверка условия P с в Р п с т р
Figure 00000007
. В случае выполнения условий осуществляется переход на блок 9, в противном случае на блок 11.
В блоке 9 осуществляется расчет показателя разведзащищенности СС.
Расчет показателя разведзащищенности описан в (Способ контроля демаскирующих признаков системы связи. Патент RU №2419153С2, кл. G06N 5/00, опубл. 20.05.2011 г., бюл. №14).
В блоке 10 осуществляется проверка условия P с в Р р з т р
Figure 00000008
. В случае выполнения условий осуществляется переход на блок 12, в противном случае на блок 11.
В блоке 11 осуществляется реконфигурация СС, которая заключается в изменении структуры функционирующей системы связи, ее топологии, режимов работы линий и средств связи, введением в работу резерва каналов, линий и средств связи, восстановлением поврежденных и отказавших средств связи, изменением частот передачи, приема, мощности, видов сигнала, азимутов и видов антенных устройств РЭС, использования помехозащищенных режимов, маршрутов и интенсивности передачи сообщений.
В блоке 12 осуществляется проверка: «Оценка степени адекватности модели проводилась?». В случае выполнения условия осуществляется переход на блок 25, в противном случае - на блок 13.
В блоке 13 осуществляется проверка условия «Система связи развернута?». В случае выполнения условий осуществляется переход на блок 14, в противном случае на блок 15.
В блоке 14 осуществляется реконфигурация развернутой СС с учетом данных, полученных в ходе моделирования.
В блоке 15 развертывают реальную систему связи на основе выходных результатов моделирования.
В блоке 16 осуществляется функционирование реальной СС с характерными ДМП.
В блоке 17 развертывают комплексную систему мониторинга, предназначенную для систематического измерения значений параметров характеристик системы связи.
В блоке 18 система комплексного мониторинга измеряет значения параметров всех характеристик развернутой системы связи, необходимых для расчета показателя реальной разведзащищенности, вероятности своевременной передачи сообщений в развернутой СС, вероятности правильного приема сообщений в развернутой СС.
В блоке 19 происходит расчет вероятности своевременности передачи сообщений в развернутой СС.
В блоке 20 осуществляется проверка условия P с в р а з в с с Р с в т р
Figure 00000009
, в случае выполнения условий осуществляется переход на блок 21, в противном случае на блок 11.
В блоке 21 осуществляется расчет вероятности правильного приема сообщения развернутой СС.
В блоке 22 осуществляется проверка условия P п с р а з в с с Р п с т р
Figure 00000010
, в случае выполнения условий осуществляется переход на блок 23, в противном случае на блок 11.
В блоке 23 рассчитывают показатель реальной разведзащищенности развернутой СС.
В блоке 24 осуществляется проверка условия P р з р а з в с с Р р з т р
Figure 00000011
, в случае выполнения условий осуществляется переход на блок 25, в противном случае на блок 11.
В блоке 25 осуществляется оценка степени адекватности модели.
Степень адекватности модели оценивается по каждому показателю (вероятности своевременной передачи сообщений, вероятности правильного приема сообщения, показателя разведзащищенности) и может быть рассчитана по формулам:
- для вероятности своевременной передачи сообщения:
Figure 00000012
где Рсп разв сс - вероятность своевременной передачи сообщений в развернутой системе связи,
Pсп - вероятность своевременной передачи сообщений в смоделированной системе связи,
- для вероятности правильного приема сообщений:
Figure 00000013
где Рпс разв сс - вероятность правильного приема сообщений в развернутой системе связи,
Рпс - вероятность правильного приема сообщений в смоделированной системе связи,
- для показателя разведзащищенности:
Figure 00000014
Ррз разв сс - показатель разведзащищенности в развернутой системе связи,
Ррз - показатель разведзащищенности в смоделированной системе связи.
Полное совпадение значений показателей оценивается 1. В исходных данных задается требуемая степень адекватности модели по каждому показателю εтр1, εтр2, εтр3, которая может быть отлична от 1. В случае, если рассчитанная степень адекватности модели хотя бы одного из показателей ε1, ε2, ε3 не соответствует требуемому значению, определяются параметры, влияющие на данный показатель, и производится их корректировка в модели до достижения требуемого значения. При достижении требуемых значений модель считается адекватной.
В этих целях в блоке 26 осуществляется проверка условия ε1≥εтр1. В случае выполнения условий осуществляется переход на блок 29, в противном случае на блок 27.
В блоке 27 определяются параметры, влияющие на данный показатель.
В блоке 28 производится их корректировка.
В блоке 29 осуществляется проверка условия ε2≥εтр2. В случае выполнения условий осуществляется переход на блок 30, в противном случае на блок 27.
В блоке 30 осуществляется проверка условия ε3≥εтр3. В случае выполнения условий осуществляется переход на блок 31, в противном случае на блок 27.
В блоке 31 осуществляется вывод результатов моделирования.
Выходными данными являются: степень адекватности модели. Таким образом, за счет введения имитации служебной и оперативной нагрузки в модель системы связи, учета всех основных требований, предъявляемых к связи, и их соответствия требуемым нормам, корректировки на этапах несоответствия требуемым нормам не только реально функционирующей системы, но и модели, повышается степень адекватности модели, то есть достигается реализация сформированного технического результата.

Claims (1)

  1. Способ адаптивного повышения адекватности модели системы связи, заключающийся в том, что описывают структуру сети связи, формируют модель системы связи с демаскирующими признаками ее элементов до начала функционирования, с использованием модели системы связи имитируют возникновение демаскирующих признаков элементов системы связи, процессы их обнаружения и распознавания, имитируют возникновение различных видов отказов, повреждений и сбоев основных элементов системы связи, рассчитывают значение показателя разведзащищенности моделируемой системы связи и сравнивают с требуемым значением, в случае несоответствия показателя разведзащищенности требуемому значению реконфигурируют моделируемую систему связи, в случае выполнения требований развертывают реальную систему связи, на которой измеряют значения параметров демаскирующих признаков, на основе которых рассчитывают и сравнивают показатель разведзащищенности реально функционирующей системы связи с требуемым значением, в случае невыполнения требования реконфигурируют функционирующую систему связи, отличающийся тем, что при моделировании системы связи дополнительно имитируют служебную и оперативную нагрузку, рассчитывают вероятность своевременной передачи сообщений в системе связи, сравнивают рассчитанное значение вероятности своевременной передачи сообщений с требуемым, в случае несоответствия требуемому значению реконфигурируют моделируемую систему, в случае выполнения требования рассчитывают значение вероятности правильного приема сообщений, сравнивают рассчитанное значение вероятности правильного приема сообщений с требуемым, в случае несоответствия требуемому значению реконфигурируют моделируемую систему, в случае соответствия требуемому значению проверяют, проводился ли расчет степени адекватности модели, если расчет степени адекватности модели ранее проводился, то рассчитывают степень адекватности модели ε1, ε2, ε3 по полученным новым значениям показателей, проверяют выполнение условия ε1≥εтр1 для значения вероятности своевременной передачи информации, в случае не выполнения условия определяют параметры, влияющие на данный показатель, осуществляют их корректировку при моделировании системы связи, повторяют вышеперечисленные действия для оценки степени адекватности модели по значению вероятности правильного приема сообщений ε2 и показателя разведзащищенности ε3, если расчет степени адекватности не проводился, дополнительно в реально функционирующей системе связи разворачивают систему комплексного мониторинга, измеряют значения параметров всех характеристик развернутой системы связи, на основе измеренных значений рассчитывают вероятность своевременной передачи сообщений в реально функционирующей системе связи, сравнивают рассчитанное значение вероятности своевременной передачи сообщений с требуемым, в случае несоответствия требуемому значению реконфигурируют моделируемую систему, в случае выполнения требования, рассчитывают значение вероятности правильного приема сообщений в реально функционирующей системе связи, сравнивают рассчитанное значение вероятности правильного приема сообщений с требуемым, в случае несоответствия требуемому значению реконфигурируют моделируемую систему, рассчитывают степень адекватности модели ε1, ε2, ε3 по полученным новым значениям показателей, учтенных при моделировании, проверяют выполнение условия ε1≥εтр1 для значения вероятности своевременной передачи информации, в случае не выполнения условия определяют параметры, влияющие на данный показатель, осуществляют их корректировку при моделировании системы связи, повторяют вышеперечисленные действия для оценки степени адекватности модели по значению вероятности правильного приема сообщений ε2 и показателю разведзащищенности ε3.
RU2014111876/08A 2014-03-27 2014-03-27 Способ адаптивного повышения адекватности модели системы связи RU2562767C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014111876/08A RU2562767C1 (ru) 2014-03-27 2014-03-27 Способ адаптивного повышения адекватности модели системы связи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014111876/08A RU2562767C1 (ru) 2014-03-27 2014-03-27 Способ адаптивного повышения адекватности модели системы связи

Publications (1)

Publication Number Publication Date
RU2562767C1 true RU2562767C1 (ru) 2015-09-10

Family

ID=54073792

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014111876/08A RU2562767C1 (ru) 2014-03-27 2014-03-27 Способ адаптивного повышения адекватности модели системы связи

Country Status (1)

Country Link
RU (1) RU2562767C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675762C1 (ru) * 2017-12-22 2018-12-24 Ольга Александровна Баленко Способ максимизации степени адекватности модели системы связи

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577830A2 (en) * 2004-01-23 2005-09-21 Neal E. Solomon Adaptive dynamic computer system
RU2336566C2 (ru) * 2006-12-06 2008-10-20 Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Способ моделирования процессов обеспечения технической готовности сетей связи при технической эксплуатации и система для его реализации
RU97550U1 (ru) * 2010-04-22 2010-09-10 Ирина Евгеньевна Сафонова Устройство моделирования связей сетевых элементов на основе иерархического комплекса многоуровневого представления корпоративных функционально-ориентированных сетей
RU101601U1 (ru) * 2010-05-11 2011-01-20 Юрий Александрович Нифонтов Система адаптивного моделирования фильтрации случайных процессов
RU2419153C2 (ru) * 2009-06-30 2011-05-20 Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Способ контроля демаскирующих признаков системы связи

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577830A2 (en) * 2004-01-23 2005-09-21 Neal E. Solomon Adaptive dynamic computer system
RU2336566C2 (ru) * 2006-12-06 2008-10-20 Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Способ моделирования процессов обеспечения технической готовности сетей связи при технической эксплуатации и система для его реализации
RU2419153C2 (ru) * 2009-06-30 2011-05-20 Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Способ контроля демаскирующих признаков системы связи
RU97550U1 (ru) * 2010-04-22 2010-09-10 Ирина Евгеньевна Сафонова Устройство моделирования связей сетевых элементов на основе иерархического комплекса многоуровневого представления корпоративных функционально-ориентированных сетей
RU101601U1 (ru) * 2010-05-11 2011-01-20 Юрий Александрович Нифонтов Система адаптивного моделирования фильтрации случайных процессов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675762C1 (ru) * 2017-12-22 2018-12-24 Ольга Александровна Баленко Способ максимизации степени адекватности модели системы связи

Similar Documents

Publication Publication Date Title
Kulkarni Modeling, analysis, design, and control of stochastic systems
CN111104732B (zh) 一种基于深度强化学习的机动通信网智能规划方法
RU2336566C2 (ru) Способ моделирования процессов обеспечения технической готовности сетей связи при технической эксплуатации и система для его реализации
Hasan et al. Reliability block diagrams based analysis: A survey
Chen et al. A Bayesian-driven Monte Carlo approach for managing construction schedule risks of infrastructures under uncertainty
RU2562767C1 (ru) Способ адаптивного повышения адекватности модели системы связи
RU2665506C1 (ru) Способ динамического моделирования сетей связи с учетом взаимной зависимости их элементов
RU2488165C1 (ru) Способ моделирования сетей связи
US11605144B1 (en) System and methods for planning and optimizing the recovery of critical infrastructure/key resources
RU2634169C1 (ru) Способ моделирования мониторинга рисков для информационно-управляющей системы в условиях информационно-технических воздействий
RU2419153C2 (ru) Способ контроля демаскирующих признаков системы связи
US20190163847A1 (en) Method, apparatus, and system for predicting spread of disaster using scenario
US20230039827A1 (en) Tool for business resilience to disaster
Xue et al. A game theoretical approach for distributed resource allocation with uncertainty
RU2675762C1 (ru) Способ максимизации степени адекватности модели системы связи
CN103905252A (zh) 一种基于灾难模拟的灾备***评估工具
Samonte et al. Crowdsourced mobile app for flood risk management
Axel Gran et al. Estimating dependability of programmable systems using BBNs
CN113205204A (zh) 一种基于贝叶斯网络的配电网停运节点预测方法
Miller et al. A FORM-based analysis of lifeline networks using a multivariate seismic intensity model
Neto et al. Externalizing patterns for simulations in software engineering of systems-of-systems
RU2772548C1 (ru) Способ обеспечения скрытности функционирования элементов системы связи, использующей ресурсы сети связи общего пользования
Pujadi Early warning systems using dynamics system for social empowerment society environment
Bush et al. An agent based framework for improved strategic bridge asset management
Lummen An analysis of link and node level resilience on network resilience

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160328