RU2560649C1 - Поршневой насос-компрессор - Google Patents

Поршневой насос-компрессор Download PDF

Info

Publication number
RU2560649C1
RU2560649C1 RU2014121958/06A RU2014121958A RU2560649C1 RU 2560649 C1 RU2560649 C1 RU 2560649C1 RU 2014121958/06 A RU2014121958/06 A RU 2014121958/06A RU 2014121958 A RU2014121958 A RU 2014121958A RU 2560649 C1 RU2560649 C1 RU 2560649C1
Authority
RU
Russia
Prior art keywords
cavity
piston
liquid
consumer
gas
Prior art date
Application number
RU2014121958/06A
Other languages
English (en)
Inventor
Александр Павлович Болштянский
Виктор Евгеньевич Щерба
Акан Каербаевич Кужбанов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет"
Priority to RU2014121958/06A priority Critical patent/RU2560649C1/ru
Application granted granted Critical
Publication of RU2560649C1 publication Critical patent/RU2560649C1/ru

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

Изобретение относится к области насосо- и компрессоростроения и может быть использовано в поршневых машинах объемного действия, для одновременной или попеременной подачи жидкостей и газов. Насос-компрессор содержит поршень 2, установленный с зазором 3 в цилиндре 4 с всасывающим 5 и нагнетательным 6 обратными клапанами, соединяющими компрессорную полость 7 цилиндра 4 с источником и потребителем сжатого газа. В нижней части цилиндра 4 имеется заполненная жидкостью насосная полость 8, соединенная всасывающим 9 и нагнетательным 10 обратными клапанами с источником и потребителем жидкости под давлением. Поршень 2 имеет внутреннюю полость 11. Нижняя часть 12 полости 11 заполнена жидкостью, а верхняя 13 - газом. Параллельно цилиндру 4 установлен золотник, с корпусом 14 с поджатым пружиной 15 элементом 16 с выточками 17 и 18. К нижнему торцу элемента 16 подведен канал 19, соединяющий этот торец с жидкостной линией нагнетания. Корпус 14 имеет сквозные отверстия 20 и 21, выходящие одной стороной в атмосферу, а другой стороной - в зазор 3. В отверстии 21 со стороны атмосферы установлен обратный самодействующий клапан 23. При возвратно-поступательном движении поршня 2 изменяются объемы полостей 7 и 8, в результате чего газ всасывается через клапан 5 в компрессорную полость 7, сжимается в ней и нагнетается потребителю через клапан 6, жидкость всасывается через клапан 9 в полость 8, сжимается в ней и нагнетается потребителю через клапан 10. Обеспечивается поддержание постоянного давления потребителя в большем диапазоне производительности. 3 ил.

Description

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании поршневых машин объемного действия, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов.
Известен поршневой насос-компрессор, содержащий картер, цилиндр и поршень, разделяющий цилиндр на верхнюю компрессорную и нижнюю насосную полости, которые соединены с источником и потребителем соответственно газа и жидкости с помощью обратных самодействующих газовых и жидкостных клапанов (RU 118371 U1, 20.07.2012).
Известен также поршневой насос-компрессор, содержащий цилиндр и поршень, разделяющий цилиндр на верхнюю компрессорную и нижнюю насосную полости, которые соединены через газовую и жидкостную линии всасывания и нагнетания соответственно с источником и потребителем газа и жидкости с помощью обратных самодействующих газовых и жидкостных клапанов, причем поршень имеет внутреннюю полость, обращенную в сторону насосной полости, и эта внутренняя полость в ее верхней части заполнена газом (RU 125635 U1 10.03.2013).
Недостатком известных конструкций является узкий диапазон адаптации производительности насосной полости к давлению потребителя, которая осуществляется за счет наличия в поршне частично заполненной газом полости, из-за того, что объем этой полости ограничен размерами поршня и реально может занимать лишь около половины от объема тела поршня.
Эта адаптация заключается в том, что, например, при повышении давления потребителя жидкости (например, системы смазки двигателя внутреннего сгорания, давление в которой растет при увеличении частоты вращения двигателя из-за того, что растет производительность насосной полости при постоянном гидравлическом сопротивлении системы смазки, т.к. насос-компрессор приводится в движение от вала двигателя), изменение объема жидкости под поршнем при возвратно-поступательном движении последнего уменьшается, т.к. часть изменения общего объема подпоршневого пространства осуществляется за счет изменения объема газа, находящегося под поршнем над жидкостью. Это приводит к требуемому эффекту - снижению производительности насосной полости и, как следствие, - к поддержанию нормального давления в системе смазки без затрат дополнительной мощности, что имеет место при питании системы смазки обычным насосом, когда «излишки жидкости», образующиеся при повышении частоты вращения привода насоса, на создание давления в которой уже затрачена работа, сбрасываются через переливной предохранительный клапан.
Однако у известной конструкции эта адаптация невозможна в широких пределах, т.к. масса газа, находящегося в полости поршня, постоянна и ограничена. В то же время, например, частота вращения двигателей внутреннего сгорания, для смазки которых удобно использовать именно насос-компрессор, т.к. сжатый газ широко используется в системах автотранспорта (привод тормозов, пневмоусилитель сцепления, привод дверей в автобусах и т.д.), изменяется в широких пределах (в несколько раз).
Задачей изобретения является расширение диапазона адаптации насос-компрессора к переменным параметрам потребителя жидкости.
Указанная задача решается тем, что известный насос-компрессор снабжен золотником, имеющим корпус с установленным в нем подвижным поджатым пружиной элементом, причем к одному торцу подвижного элемента подведена жидкостная линия нагнетания, в другой упирается упомянутая пружина, и подпружиненный элемент имеет две выточки, соединяющие через отверстия в корпусе золотника атмосферу с отверстием в боковой стенке поршня в его положениях, близких к нижней и верхней мертвым точкам, а упомянутое отверстие в боковой стенке поршня находится в верхней части его внутренней полости. Сущность изобретения поясняется чертежами.
На фиг. 1 схематично показано продольное сечение насоса-компрессора с поршнем в промежуточном положении при условии, что давление нагнетания потребителя жидкости превышает заданное.
На фиг. 2 при этом же условии показано сечение насоса-компрессора при положении поршня, близком к верхней мертвой точке (ВМТ).
На фиг. 3 показано сечение насоса-компрессора при условии, что давление потребителя жидкости ниже нормы, а поршень находится в положении, близком к нижней мертвой точке (НМТ).
Поршневой насос-компрессор состоит (см. фиг. 1) из картера с механизмом привода (на рисунке условно не показан), к которому с помощью штока 1 присоединен поршень 2, находящийся с минимальным зазором 3 в цилиндре 4, в верхней части которого имеются газовые всасывающий 5 и нагнетательный 6 самодействующие обратные клапаны, соединяющие компрессорную полость 7 цилиндра 4 через линии всасывания и нагнетания (условно показаны стрелками) с источником и потребителем сжатого газа. В нижней части цилиндра 4 имеется заполненная жидкостью насосная полость 8, соединенная самодействующими жидкостными всасывающим 9 и нагнетательным 10 клапанами с источником и потребителем жидкости под давлением через линии всасывания и нагнетания (условно показаны стрелками). Поршень 2, разделяющий цилиндр 4 на верхнюю компрессорную 7 и нижнюю насосную 8 полости, имеет внутреннюю полость 11, обращенную в сторону насосной полости 8, причем нижняя часть 12 полости 11 заполнена жидкостью, а верхняя 13 - газом.
Насос-компрессор также снабжен золотником с корпусом 14, выполненном в данном примере как часть стенки цилиндра 4, в котором с минимальным, близким к нулю, зазором установлен подвижный вдоль оси, поджатый пружиной сжатия 15, элемент 16 с двумя выточками 17 и 18. Натяжение пружины 15 регулируется винтом, пружина упирается в верхний торец элемента 16, а к нижнему торцу элемента 16 подведен канал 19, соединяющий этот торец с жидкостной линией нагнетания. Корпус 14 имеет сквозные отверстия 20 и 21, выходящие одной стороной в атмосферу, а другой стороной - в зазор 3 между поршнем 2 и цилиндром 4. Причем при положении поршня 2, близком к ВМТ, ось отверстия 20 совпадает с осью отверстия 22 в боковой стенке поршня 2, которое находится в верхней части внутренней полости 11, а при положении поршня 2, близком к НМТ, ось отверстия 22 совпадает с осью отверстия 21. В отверстии 21 со стороны атмосферы установлен обратный самодействующий клапан 23.
Положение днища поршня в положениях ВМТ и НМТ показано штриховой линией и обозначено одноименной аббревиатурой. Рабочая жидкость на рисунках обозначена волнистой штриховкой.
Насос-компрессор работает следующим образом (фиг. 1).
При возвратно-поступательном движении поршня 2 изменяются объемы полостей 7 и 8, в результате чего газ всасывается через клапан 5 в компрессорную полость 7, сжимается в ней и нагнетается потребителю через клапан 6, жидкость всасывается через клапан 9 в полость 8, сжимается в ней и нагнетается потребителю через клапан 10.
При ходе поршня 2 вниз он сначала сжимает газ в части 13 полости 11, и только после того, как давление в ней достигнет давления нагнетания (давления потребителя), открывается клапан 10, и начинается процесс нагнетания жидкости потребителю из суммарного объема полостей 8 и 12. Чем выше давление потребителя, тем до большего давления будет сжат газ в части 13 полости 11, тем больший ход поршня 2 потребуется для этого сжатия, и тем меньше жидкости будет вытеснено потребителю.
При ходе поршня 2 вверх происходит суммарное увеличение объема полостей 8 и 11, в результате чего сначала происходит расширение газа в части 13 полости 11, и только после того, как давление газа в части 13 станет меньше давления в жидкостной всасывающей магистрали (в части 13 образуется разрежение), открывается клапан 9 и жидкость всасывается в полость 8.
Таким образом, в связи с наличием газа в части 13 полости 11 объем нагнетаемой жидкости всегда меньше объема, описанного поршнем 2.
При увеличении давления нагнетания жидкости у потребителя (фиг. 1 и фиг. 2) элемент 16 преодолевает тарированное усилие пружины 15 и перемещается в верхнее положение. При этом в конце хода поршня 2 вверх, когда он приближается к ВМТ, происходит частичное, а затем и полное совпадение отверстий 20 и 22, часть 13 полости 11 через выточку 17 соединяется с атмосферой, атмосферный воздух попадает в часть 13, разрежение в ней исчезает, давление в полостях 8 и 11 становится равным атмосферному, клапан 9 закрывается, и жидкость перестает поступать в полость 8, т.е. ее количество в этой полости (фактически сумма количества жидкости в полости 6 и части 12) снижается по сравнению с ситуацией, когда отверстия 22 и 20 не совпадают.
В начале хода поршня 2 вниз некоторое время продолжается полное, а затем и частичное совпадение отверстий 22 и 20, в результате чего уменьшение суммарного объема полостей 8 и 11 не приводит к повышению в них давления, т.к. газ из части 13 полости 11 истекает в атмосферу.
После того как при дальнейшем движении поршня 2 вниз отверстия 22 и 20 разобщаются, начинается сжатие газа в части 13 до давления нагнетания потребителя жидкости, затем клапан 10 открывается, и начинается нагнетание жидкости из полости 8 потребителю. Однако, в связи с тем, что жидкости в полость 8 поступило меньше, ее количество, поданное потребителю в течение хода поршня 2 вниз, уменьшилось на некоторую величину, определяемую диаметрами отверстии 22 и 20, т.е. фактически временем, в течение которого сначала не происходило всасывание жидкости в полость 8, а затем не осуществлялось сжатие газа в части 13 полости 11. Последнее фактически задержало повышение давления в полостях 8 и 11.
Таким образом, подача жидкости потребителю снижается, что приводит к снижению давления потребителя.
Такая работа насоса-компрессора продолжается до тех пор, пока давление нагнетания удерживает элемент 16 в верхнем, изображенном на фиг. 1 и фиг. 2 положении, обусловленном усилием сжатой пружины 15. При снижении давления потребителя до нормы элемент 16 опускается под действием пружины 15 и занимает промежуточное положение, при котором выточки 17 и 18 оказываются между отверстиями 20 и 21.
При снижении давления потребителя (фиг. 3) пружина 15 перемещает элемент 16 в нижнее положение, в результате чего при подходе поршня 2 к положению НМТ в процессе нагнетания жидкости из полости 8 потребителю через клапан 10 выточка 18 соединяет отверстия 21 и 22, т.е. происходит сообщение между частью 13, в которой давление повышено до давления нагнетания жидкости, и атмосферой. При этом газ из части 13 полости 12 частично перетекает в атмосферу через открывшийся клапан 23, давление в части 13, а также в полости 12 и 8 падает, клапан 10 закрывается, истечение жидкости из полости 8 потребителю прекращается, и поршень 2, продолжая движение вниз, вытесняет из части 13 «лишний» воздух, объем части 13 уменьшается до минимума.
При ходе поршня 2 вверх из НМТ объем части 13 возрастает, давление в ней падает ниже атмосферного, и клапан 23 закрывается, в результате чего давление в полостях 8 и 12 также падает, клапан 9 открывается, и практически сразу в начале хода поршня 2 вверх из НМТ начинается всасывание жидкости через этот клапан в полость 8. Таким образом, в процессе всасывания объем поступившей в суммарный объем полостей 8 и 12 жидкости увеличивается за счет уменьшения массы и объема газа в части 13 полости 11. По этой же причине при ходе поршня из ВМТ вниз процесс сжатия газа в части 13 до давления нагнетания жидкости займет малый отрезок пути поршня, и потребителю будет подан больший объем жидкости, что за определенное число подобных ходов поднимет в нем давление до нормы, в результате чего элемент 16 сожмет пружину 15 и поднимется вверх, а его выточки 17 и 18 займут нейтральное, вышеописанное положение.
Таким образом, предложенное устройство насоса-компрессора позволяет уменьшить влияние объема внутренней полости поршня на возможность корректировки его расходной характеристики и обеспечивает поддержание постоянного давления потребителя в большем диапазоне производительности, расширив тем самым диапазон адаптации своих параметров к параметрам потребителя жидкости под давлением.

Claims (1)

  1. Поршневой насос-компрессор, содержащий цилиндр и поршень, разделяющий цилиндр на верхнюю компрессорную и нижнюю насосную полости, которые соединены через газовую и жидкостную линии всасывания и нагнетания соответственно с источником и потребителем газа и жидкости с помощью обратных самодействующих газовых и жидкостных клапанов, причем поршень имеет внутреннюю полость, обращенную в сторону насосной полости, и эта внутренняя полость в ее верхней части заполнена газом, отличающийся тем, что насос-компрессор снабжен золотником, имеющим корпус с установленным в нем подвижным поджатым пружиной элементом, причем к одному торцу подвижного элемента подведена жидкостная линия нагнетания, в другой упирается упомянутая пружина, и подпружиненный элемент имеет две выточки, соединяющие через отверстия в корпусе золотника атмосферу с отверстием в боковой стенке поршня в его положениях, близких к нижней и верхней мертвым точкам, а упомянутое отверстие в боковой стенке поршня находится в верхней части его внутренней полости.
RU2014121958/06A 2014-05-29 2014-05-29 Поршневой насос-компрессор RU2560649C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014121958/06A RU2560649C1 (ru) 2014-05-29 2014-05-29 Поршневой насос-компрессор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014121958/06A RU2560649C1 (ru) 2014-05-29 2014-05-29 Поршневой насос-компрессор

Publications (1)

Publication Number Publication Date
RU2560649C1 true RU2560649C1 (ru) 2015-08-20

Family

ID=53880765

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014121958/06A RU2560649C1 (ru) 2014-05-29 2014-05-29 Поршневой насос-компрессор

Country Status (1)

Country Link
RU (1) RU2560649C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2614317C1 (ru) * 2015-11-03 2017-03-24 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Способ работы поршневой вертикальной гибридной машины объемного действия и устройство для его осуществления
RU2763099C1 (ru) * 2021-03-18 2021-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" (ОмГТУ) Способ работы системы жидкостного охлаждения машины объемного действия и устройство для его осуществления
RU2817577C1 (ru) * 2023-07-17 2024-04-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Сильфонный насос-компрессор

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU16217A1 (ru) * 1929-03-15 1930-08-31 И.Е. Столяров Парораспределительный механизм дл паровых насосов, компрессоров и т.п. пр мого действи
SU22015A1 (ru) * 1930-01-05 1931-08-31 Т.Г. Руденко Парораспределительный механизм дл машин пр мого действи (напр., вод ных насосов, компрессоров и т.д.)
US5713314A (en) * 1994-10-18 1998-02-03 Beare; Malcolm J. Dual piston internal combustion engine
RU118371U1 (ru) * 2012-03-01 2012-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Поршневой насос-компрессор
RU125635U1 (ru) * 2012-09-24 2013-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Поршневой насос-компрессор

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU16217A1 (ru) * 1929-03-15 1930-08-31 И.Е. Столяров Парораспределительный механизм дл паровых насосов, компрессоров и т.п. пр мого действи
SU22015A1 (ru) * 1930-01-05 1931-08-31 Т.Г. Руденко Парораспределительный механизм дл машин пр мого действи (напр., вод ных насосов, компрессоров и т.д.)
US5713314A (en) * 1994-10-18 1998-02-03 Beare; Malcolm J. Dual piston internal combustion engine
RU118371U1 (ru) * 2012-03-01 2012-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Поршневой насос-компрессор
RU125635U1 (ru) * 2012-09-24 2013-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Поршневой насос-компрессор

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2614317C1 (ru) * 2015-11-03 2017-03-24 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Способ работы поршневой вертикальной гибридной машины объемного действия и устройство для его осуществления
RU2763099C1 (ru) * 2021-03-18 2021-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" (ОмГТУ) Способ работы системы жидкостного охлаждения машины объемного действия и устройство для его осуществления
RU2817577C1 (ru) * 2023-07-17 2024-04-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Сильфонный насос-компрессор

Similar Documents

Publication Publication Date Title
US3005412A (en) Automatic pressure compensator for reciprocating pumps
US20110116957A2 (en) Reciprocating pump
US9726160B2 (en) Double acting fluid pump with spring biased piston
CA2522762A1 (en) Air compressor with inlet control mechanism and automatic inlet control mechanism
US3912045A (en) Lubricating pump
RU2005139184A (ru) Диафрагменный насос (варианты)
RU2560649C1 (ru) Поршневой насос-компрессор
TWM484014U (zh) 隔膜壓縮機之泵油結構以及隔膜壓縮機
US1261061A (en) Pump mechanism.
RU2649176C1 (ru) Плунжерный насос
US2900917A (en) Pneumatic oil pumping device
US2372375A (en) Pump for use in hydraulic transmission of power
US2470380A (en) Variable-capacity controller for compressors
RU2594540C1 (ru) Поршневой насос высокого давления с электроприводом
KR100277176B1 (ko) 자동차 오일펌프의 압력조절장치
US570528A (en) Double-acting pump
US11085581B2 (en) Lubricating-grease pump and method for recovery of leakage grease of a lubricating-grease pump
RU2592661C1 (ru) Способ работы поршневой машины и устройство для его осуществления
RU2565951C1 (ru) Способ работы газожидкостного агрегата и устройство для его осуществления
RU2443906C2 (ru) Гидравлический насос
RU131423U1 (ru) Машина объемного действия с регулируемым приводом
US3382808A (en) Hydraulic pump
RU2565932C1 (ru) Способ работы поршневого гидропневматического агрегата и устройство для его реализации
RU2565943C1 (ru) Машина объемного действия
KR101575290B1 (ko) 펌프 이를 이용한 기체부스터

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180530