RU2559878C1 - Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения - Google Patents

Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения Download PDF

Info

Publication number
RU2559878C1
RU2559878C1 RU2014123850/04A RU2014123850A RU2559878C1 RU 2559878 C1 RU2559878 C1 RU 2559878C1 RU 2014123850/04 A RU2014123850/04 A RU 2014123850/04A RU 2014123850 A RU2014123850 A RU 2014123850A RU 2559878 C1 RU2559878 C1 RU 2559878C1
Authority
RU
Russia
Prior art keywords
nickel
catalyst
methane
partial oxidation
temperature
Prior art date
Application number
RU2014123850/04A
Other languages
English (en)
Inventor
Александр Евгеньевич Ушаков
Алексей Александрович Марков
Илья Аркадьевич Леонидов
Михаил Валентинович Патракеев
Виктор Леонидович Кожевников
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2014123850/04A priority Critical patent/RU2559878C1/ru
Application granted granted Critical
Publication of RU2559878C1 publication Critical patent/RU2559878C1/ru

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к катализатору парциального окисления метана, который представляет собой никель-алюминиевую шпинель. Данная шпинель имеет общую химическую формулу (Ni1-x2O3)x)y·γ-Аl2O3, где М - Сr, Мn или Fe, 0,01≤x≤0,99, 0,01≤y≤1. Изобретение также относится к способу получения такого катализатора. Предлагаемый катализатор позволяет достигать высокой конверсии метана наряду с высокой селективностью по СО и Н2 и отсутствием сажеобразования. 2 н.п. ф-лы, 1 ил., 6 пр.

Description

Изобретение относится к соединениям, полученным химическим путем - никель-алюминиевой шпинели, допированной переходным металлом, которые могут быть использованы в качестве катализатора парциального окисления метана для получения синтез-газа в газохимической промышленности.
Известен катализатор парциального окисления углеводородов, в частности метана, содержащий рений и металл, выбранный из группы, включающей платину, родий, рутений, иридий, в атомном отношении приблизительно 4:1, и тугоплавкую оксидную подложку, выполненную из оксида алюминия или оксида алюминия, допированного редким металлом, или оксида алюминия, модифицированного щелочно-земельным металлом (патент US 7871961, МПК B01J 23/00, 2011 год).
Недостатком известного катализатора является экономическая нецелесообразность его использования, обусловленная наличием в его составе дефицитных и дорогостоящих металлов.
Известен катализатор для парциального окисления метана, содержащий 5-20 вес.% никеля; 0,1-5 вес.% оксида церия, 0,1-5 вес.% рутения, остальное - носитель, выбранный из группы: Al2O3, MgAl2O4, CaAl2O4, SrAl2O4, BaAl2O4 (патент CN 101279271, МПК B01J 23/89, 2008 год). Катализатор характеризуется стабильностью и высокой селективностью ~ 95%.
Однако недостатком катализатора является экономическая нецелесообразность его использования, обусловленная наличием в его составе дефицитного и дорогостоящего рутения.
Известен катализатор парциального окисления металла, представляющий собой монолитный сплав никеля-хрома, или никеля-хрома-кобальта, или никеля-рутения (заявка US 20020012624, МПК С01В 3/26, С01В 31/18, B01J 23/755, 2002 год). Катализатор используют в виде металлических листов, сетки, пены, перфорированной и гофрированной фольги. Катализатор характеризуется механической прочностью, высокой активностью и селективностью по водороду порядка 92-96%, конверсией по метану 77-82%.
Недостатком катализатора является его невысокая удельная поверхность вследствие его конструктивной конфигурации, что в свою очередь не позволяет достичь более высокой конверсии по метану.
Известный катализатор может быть получен путем осаждения на подложку соответствующего металла с последующим отжигом, в результате которого металл диффундирует в подложку, проникая в атомную решетку никеля (заявка US 20020012624, МПК С01В 3/26, С01В 31/18, B01J 23/755, 2002 год). Катализатор получают, например, путем электроосаждения на перфорированную никелевую фольгу хрома или хрома и кобальта с последующим отжигом в атмосфере Ar и Н2 при температуре 1000°С в течение 4 часов.
Таким образом, перед авторами стояла задача разработать катализатор для парциального окисления метана, позволяющий достигать высокую конверсию метана наряду с высокой селективностью по СО и Н2, при этом избежать использования в его составе дорогостоящих и дефицитных металлов. Кроме того, желательно подавление до минимума сажеобразования в процессе окисления метана.
Поставленная задача решена путем использования в качестве катализатора для парциального окисления метана нового химического соединения - никель-алюминиевой шпинели с общей химической формулой (Ni1-x(M2O3)x)y·γ-Al2O3, где М - Cr, Mn или Fe, 0,01≤x≤0,99, 0,01≤y≤1.
Поставленная задача также решена в способе получения никель-алюминиевой шпинели с общей химической формулой (Ni1-x(M2O3)x)y·γ-Al2O3, где М - Cr, Mn или Fe, 0,01≤x≤0,99, 0,01≤y≤1, включающем помещение оксида алюминия γ-Al2O3 в виде гранул в водный раствор нитрата никеля и нитрата марганца или железа или бихромата аммония, взятых для получения атомного соотношения в шпинели Ni:Mn:Al=(y-xy):(2xy):2, и выдержку в течение 10-15 минут, затем сушку полученного продукта при температуре 250-260°C в течение 30-40 минут с последующей прокалкой при температуре 700-1200°C в атмосфере воздуха в течение 5-6 часов, при этом всю последовательность операций повторяют по крайней мере три раза.
В настоящее время из патентной и научно-технической литературы не описана никель-алюминиевая шпинель с общей химической формулой (Ni1-x(M2O3)x)y·γ-Al2O3, где М - Cr, Mn или Fe, 0,01≤x≤0,99, 0,01≤y≤1, а также способ ее получения.
Авторами было получено химическое соединение с общей химической формулой (Ni1-x(M2O3)x)y·γ-Al2O3, где М - Cr, Mn или Fe, 0,01≤x≤0,99, 0,01≤y≤1, которое может быть эффективно использовано в качестве катализатора парциального окисления метана для производства синтез-газа.
Исследования, проведенные авторами, позволили сделать вывод, что новое соединение состава (Ni1-x(M2O3)x)y·γ-Al2O3, где М - Cr, Mn или Fe, 0,01≤x≤0,99, 0,01≤y≤1, обладающее каталитическими свойствами, которые позволяют использовать его в процессе парциального окисления метана, может быть получено только при условии соблюдения соотношения исходных компонентов и параметров, заявленных в предлагаемом способе. Несоблюдение заявленных интервалов соотношения исходных компонентов приведет к снижению эффективности процесса парциального окисления метана. Температуры прокалки ниже 700°C недостаточно для синтеза шпинелей, а при ее повышении более 1200°С будет происходить образование α-фазы оксида Al2O3 с уменьшением удельной поверхности, и, как следствие, снижается степень конверсии и селективность.
Новое химическое соединение с общей химической формулой (Ni1-x(M2O3)x)y·γ-Al2O3, где М - Cr, Mn или Fe, 0,01≤x≤0,99, 0,01≤y≤1, может быть получено следующим образом. Оксид алюминия γ-Al2O3 в виде гранул помещают в водный раствор нитрата никеля и нитрата марганца или железа или бихромата аммония, взятых в атомном соотношении в шпинелях Ni:Mn:Al=(y-xy):(2xy):2, пропитывают гранулы солями соответствующих металлов путем выдержки в течение 10-15 минут, затем оставшийся раствор сливают и сушат полученный продукт при температуре 250-260°C в течение 30-40 минут. После этого прокаливают в печи при температуре 700-1200°C в атмосфере воздуха в течение 5-6 часов. Все операции последовательно выполняют, по крайней мере, три раза. Контроль фазового состава осуществляют рентгено-фазовым анализом. Конечный продукт получают в виде гранул.
Полученное соединение с общей химической формулой (Ni1-x(M2O3)x)y·γ-Al2O3, где М - Cr, Mn или Fe, 0,01≤x≤0,99, 0,01≤y≤1, может быть использовано в качестве катализатора парциального окисления метана следующим образом. Метан (1) и воздух (5) поступают в реактор (2) раздельно при комнатной температуре (см. фиг. 1). В высокотемпературной зоне реактора (2) метан и воздух разделены мембраной (4), изготовленной из материала со смешанной кислород-ионной проводимостью, например, состава La0,5Sr0,5FeO3. Ту часть высокотемпературной зоны реактора (2), в которую вводят метан, загружают катализатором (Ni1-x(M2O3)x)y·γ-Al2O3, где М - Cr, Mn или Fe, 0,01≤x≤0,99, 0,01≤y≤1 (6). Кислород поступает в эту зону реактора со стороны мембраны (3), противоположной стороне, которую омывает воздух. Температура мембраны лежит в интервале 850-950°C. Благодаря равномерному распределению температуры по мембране кислород поступает в реактор по всей ее поверхности.
Использование в процессе парциального окисления метана катализатора предлагаемого состава позволяет практически полностью избежать образования углерода при соотношении Н2/СО менее 2-х в получаемом синтез-газе и возникновения резких изменений концентраций СО и Н2 при выходе реактора на рабочий режим, приводящих к разрушению мембран. Это обусловлено механизмом протекания окисления метана в присутствии предлагаемого катализатора, который предполагает: окружение никелевых центров оксидами с переменной степенью окисления, предотвращающих образование углерода. Модифицированный катализатор продемонстрировал стабильность параметров парциального окисления метана и целостность гранул пористого носителя после 1000 часов эксперимента.
Получение нового соединения общей химической формулы (Ni1-x(M2O3)x)y·γ-Al2O3, где М - Cr, Mn или Fe, 0,01≤x≤0,99, 0,01≤y≤1, иллюстрируется следующими примерами.
Пример 1. 20 г оксида алюминия γ-Al2O3 в виде пористых гранул помещают в водный раствор 35 мл нитрата никеля и 35 мл нитрата марганца, что соответствует атомному соотношению в шпинели Ni:Mn:Al=0,07:0,06:1, выдерживают в течение 15 минут, затем оставшийся раствор сливают и сушат полученный продукт при температуре 250°С в течение 40 минут промышленным феном. После чего прокаливают в печи при температуре 700°С в атмосфере воздуха в течение 5-6 часов. Все операции последовательно выполняют три раза. Конечный продукт состава (Ni0,7(Mn2O3)0,3)0,1·γ-Al2O3 получают в виде гранул.
Пример 2. 20 г оксида алюминия γ-Al2O3 в виде пористых гранул помещают в водный раствор 35 мл нитрата никеля и 35 мл нитрата железа, что соответствует атомному соотношению Ni:Fe:Al=0,07:0,06:1, выдерживают в течение 10 минут, затем оставшийся раствор сливают и сушат полученный продукт при температуре 260°C в течение 30 минут промышленным феном. После чего прокаливают в печи при температуре 900°C в атмосфере воздуха в течение 6 часов. Все операции последовательно выполняют три раза. Конечный продукт состава (Ni0,7(Fe2O3)0,3)0,1·γ-Al2O3 получают в виде гранул.
Пример 3. 20 г оксида алюминия γ-Al2O3 в виде пористых гранул помещают в водный раствор 35 мл нитрата никеля и 35 мл бихромата аммония, что соответствует атомному соотношению Ni:Cr:Al=0,07:0,06:1, выдерживают в течение 15 минут, затем оставшийся раствор сливают и сушат полученный продукт при температуре 250°C в течение 40 минут промышленным феном. После чего прокаливают в печи при температуре 850°C в атмосфере воздуха в течение 5 часов. Все операции последовательно выполняют три раза. Конечный продукт состава (Ni0,7(Cr2O3)0,3)0,1·γ-Al2O3 получают в виде гранул.
Ниже приведены примеры использования предлагаемого соединения в качестве катализатора парциального окисления метана для получения синтез-газа с кислородпроводящей мембраной. Тест на работоспособность катализатора был проведен в течение 1000 часов.
Пример 4. В реактор, оснащенный кислородпроводящей мембраной состава La0,5Sr0,5FeO3, загружают катализатор состава (Ni0,7(Mn2O3)0,3)0,1·γ-Al2O3 в виде гранул до уровня верхнего среза мембраны так, что высота слоя катализатора равна длине мембраны. В реактор подают метан и воздух. Температура в средней части мембраны равна 900°C. Получаемый синтез-газ направляют далее в конденсатор для удаления паров воды из газовой смеси. На выходе из конденсатора синтез-газ имеет следующий состав, об.%: Н2 - 64,4; СО - 33,8; CO2 - 1,8; CH4 - 0.2. Отношение Н2/СО равно 1,9.
Конверсия CH4 составляет 99%. Селективность СО - 94%. Селективность Н2 - 99%. Сажеобразование не обнаружено.
Пример 5. В реактор, оснащенный кислородпроводящей мембраной состава La0,5Sr0,5FeO3, загружают катализатор состава (Ni0,7(Fr2O3)0,3)0,1·γ-Al2O3 в виде гранул до уровня верхнего среза мембраны так, что высота слоя катализатора равна длине мембраны. В реактор подают метан и воздух. Температура в средней части мембраны равна 900°C. Получаемый синтез-газ направляют далее в конденсатор для удаления паров воды из газовой смеси. На выходе из конденсатора синтез-газ имеет следующий состав, об.%: H2 - 64,2; CO - 33,9; CO2 - 1,9; CH4 - 0,2. Отношение H2/CO равно 1,9. Конверсия CH4 составляет 99%. Селективность CO - 94%. Селективность H2 - 99%. Сажеобразование не обнаружено.
Пример 6. В реактор, оснащенный кислородпроводящей мембраной состава La0,5Sr0,5FeO3, загружают катализатор состава (Ni0,7(Cr2O3)0,3)0,1·γ-Al2O3 в виде гранул до уровня верхнего среза мембраны так, что высота слоя катализатора равна длине мембраны. В реактор подают метан и воздух. Температура в средней части мембраны равна 900°C. Получаемый синтез-газ направляют далее в конденсатор. На выходе из конденсатора синтез-газ имеет следующий состав, об.%: H2 - 64; CO - 33,7; CO2 - 2,3; CH2 - 0,2. Отношение H2/CO равно 1,9. Конверсия CH4 составляет 99%. Селективность CO - 93%. Селективность H2 - 99%. Сажеобразование не обнаружено.
Таким образом, авторами предлагается химическое соединение состава (Ni1-x(M2O3)x)y·γ-Al2O3, где М - Cr, Mn или Fe, 0,01≤x≤0,99, 0,01≤y≤1, которое может быть использовано в качестве катализатора парциального окисления метана в процессе получения синтез-газа, и способ получения этого соединения. При использовании предлагаемого соединения в качестве катализатора конверсия метана составляет 99%, селективность по CO - 93-94%, наряду с высокими значениями селективности по водороду и отсутствием сажеобразования.

Claims (2)

1. Никель-алюминиевая шпинель с общей химической формулой (Ni1-x2O3)x)y·γ-Аl2O3, где М - Сr, Мn или Fe, 0,01≤x≤0,99, 0,01≤y≤1, в качестве катализатора для парциального окисления метана.
2. Способ получения никель-алюминиевой шпинели с общей химической формулой (Ni1-x2O3)x)y·γ-Аl2O3, где М - Сr, Мn или Fe, 0,01≤x≤0,99, 0,01≤y≤1, включающий помещение оксида алюминия γ-Аl2О3 в виде гранул в смесь водных растворов нитрата никеля и нитрата марганца или железа или бихромата аммония, взятых при атомном соотношении Ni : Мn : Аl=(y-xy) : (2xy) : 2, и выдержку в течение 10-15 мин, затем сушку полученного продукта при температуре 250-260°С в течение 30-40 мин с последующей прокалкой при температуре 700-1200°C в атмосфере воздуха в течение 5-6 ч, при этом всю последовательность операций повторяют по крайней мере три раза.
RU2014123850/04A 2014-06-10 2014-06-10 Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения RU2559878C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014123850/04A RU2559878C1 (ru) 2014-06-10 2014-06-10 Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014123850/04A RU2559878C1 (ru) 2014-06-10 2014-06-10 Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения

Publications (1)

Publication Number Publication Date
RU2559878C1 true RU2559878C1 (ru) 2015-08-20

Family

ID=53880425

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014123850/04A RU2559878C1 (ru) 2014-06-10 2014-06-10 Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения

Country Status (1)

Country Link
RU (1) RU2559878C1 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2446010C2 (ru) * 2006-10-19 2012-03-27 Вестел Электроник Санайи Ве Тикарет А.С. Способ получения водорода прямым разложением природного газа и снг

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2446010C2 (ru) * 2006-10-19 2012-03-27 Вестел Электроник Санайи Ве Тикарет А.С. Способ получения водорода прямым разложением природного газа и снг

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. HADJ-SADOK OUAGUENOUNI ET AL., Preparation and catalytic activity of nickel-manganese oxide catalyst in the reaction of partial oxidation of methane, COMPTES RENDUS CHIMIE, 2009, vol.12, pp.740-747 *

Similar Documents

Publication Publication Date Title
RU2185322C2 (ru) Способ окисления аммиака
Kinnunen et al. Methane combustion activity of Pd–PdOx–Pt/Al2O3 catalyst: The role of platinum promoter
AU2005238426B2 (en) Catalyst for hydrogen generation through steam reforming of hydrocarbons
Centi et al. Catalytic decomposition of N2O over noble and transition metal containing oxides and zeolites. Role of some variables on reactivity
Kim et al. Effect of Ce/Ti ratio on the catalytic activity and stability of Ni/CeO2–TiO2 catalyst for dry reforming of methane
JP6381131B2 (ja) アンモニア分解触媒及び該触媒の製造方法並びに該触媒を用いたアンモニアの分解方法
US5059575A (en) Catalyst for the oxidation of carbonaceous particulates and method of making the catalyst
CA2696028C (en) Catalyst, production method therefor and use thereof for decomposing n2o
Bermejo-López et al. Alternate cycles of CO 2 storage and in situ hydrogenation to CH 4 on Ni–Na 2 CO 3/Al 2 O 3: influence of promoter addition and calcination temperature
NO313494B1 (no) Katalysator for spalting av dinitrogenoksid og fremgangsmåte ved utförelse av prosesser hvor det dannes dinitrogenoksid
Ho et al. N2O catalytic decomposition on electrodeposited Rh-based open-cell metallic foams
Zhou et al. Structured Ni catalysts on porous anodic alumina membranes for methane dry reforming: NiAl 2 O 4 formation and characterization
Liu et al. Methane conversion to syngas over Ni/Y2O3 catalysts—effects of calcination temperatures of Y2O3 on physicochemical properties and catalytic performance
Cao et al. Development of a cordierite monolith reactor coated with CeO2-supported BaSrCo-based perovskite for chemical looping steam methane reforming
Qin et al. Catalytic oxidation of ethyl acetate over LaBO 3 (B= Co, Mn, Ni, Fe) perovskites supported silver catalysts
CN106163657A (zh) 壳浸渍催化剂及壳浸渍催化剂主体的制备方法
BRPI0905173B1 (pt) Catalysts for ammonia oxidation, and ammonia oxidation process
RU2623227C2 (ru) Катализатор окисления аммиака для производства азотной кислоты на основе легированного металлом ортокобальтата иттрия
Chen et al. Deactivation mechanism, countermeasures, and enhanced CH4 oxidation performance of nickel/cobalt oxides
Chang et al. Thermogravimetric analyses and catalytic behaviors of zirconia-supported nickel catalysts for carbon dioxide reforming of methane
WO2014025274A1 (en) Multicomponent oxide catalyst for low-temperature oxidation of methane and the method for preparation thereof
RU2559878C1 (ru) Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения
JP4525909B2 (ja) 水性ガスシフト反応用触媒及びその製造方法、並びに水性ガスの製造方法
Zhang et al. Partial oxidation of methane on Ni/CeO2-ZrO2/γ-Al2O3 prepared using different processes
JP2013017913A (ja) 水蒸気改質触媒及び該触媒を用いた水素製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180611