RU2559655C9 - Способ работы тепловой электрической станции - Google Patents

Способ работы тепловой электрической станции Download PDF

Info

Publication number
RU2559655C9
RU2559655C9 RU2013158783/06A RU2013158783A RU2559655C9 RU 2559655 C9 RU2559655 C9 RU 2559655C9 RU 2013158783/06 A RU2013158783/06 A RU 2013158783/06A RU 2013158783 A RU2013158783 A RU 2013158783A RU 2559655 C9 RU2559655 C9 RU 2559655C9
Authority
RU
Russia
Prior art keywords
steam
condenser
steam turbine
heat
low
Prior art date
Application number
RU2013158783/06A
Other languages
English (en)
Other versions
RU2559655C1 (ru
Inventor
Айрат Маратович Гафуров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2013158783/06A priority Critical patent/RU2559655C9/ru
Publication of RU2559655C1 publication Critical patent/RU2559655C1/ru
Application granted granted Critical
Publication of RU2559655C9 publication Critical patent/RU2559655C9/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к области энергетики. В способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины. Изобретение позволяет повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии, снизить тепловые выбросы в окружающую среду. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины.
Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU № 2269656, МПК F01K 17/02, 10.02.2006).
Прототипом является способ работы тепловой электрической станции, содержащей подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU № 2268372, МПК F01K 17/02, 20.01.2006).
В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода. В паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем.
Таким образом, в известном способе работы тепловой электрической станции отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем.
Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины для дополнительной выработки электроэнергии, обусловленную наличием вторичного контура (теплонасосной установки), а также отсутствие утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, для дополнительной выработки электроэнергии.
Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.
Задачей изобретения является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.
Технический результат достигается тем, что в способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, согласно настоящему изобретению, дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают и испаряют в конденсаторе паровой турбины, нагревают в маслоохладителе, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, которые осуществляют путем последовательного нагрева соответственно в конденсаторе паровой турбины и маслоохладителе низкокипящего рабочего тела (сжиженного углекислого газа СО2) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором.
На чертеже цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - теплообменник-конденсатор,
9 - конденсатный насос,
10 - система маслоснабжения подшипников паровой турбины,
11 - сливной трубопровод,
12 - маслобак,
13 - маслонасос,
14 - маслоохладитель,
15 - напорный трубопровод.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, а также систему 10 маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод 11, маслобак 12, маслонасос 13 и маслоохладитель 14, выход которого по нагреваемой среде соединен с напорным трубопроводом 15.
В тепловую электрическую станцию введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.
Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя 14, выход маслоохладителя 14 соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.
Способ работы тепловой электрической станции осуществляют следующим образом.
Отработавший пар поступает из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации, при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара при помощи охлаждающей жидкости, причем в паровой турбине 1 используют систему 10 маслоснабжения подшипников паровой турбины с маслоохладителем 14.
Отличием предлагаемого способа является то, что дополнительно осуществляют утилизацию низкопотенциальной теплоты системы 10 маслоснабжения подшипников паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара и утилизацию низкопотенциальной теплоты системы 10 маслоснабжения подшипников паровой турбины осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе 9 теплового двигателя, нагревают и испаряют в конденсаторе 2 паровой турбины, нагревают в маслоохладителе 14, расширяют в турбодетандере 6 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя. В качестве теплообменника-конденсатора 8 теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения. В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
Пример конкретного выполнения.
Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный углекислый газ CO2). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.
Преобразование сбросной низкопотенциальной тепловой энергии, отработавшего в турбине 1 пара, и низкопотенциальной тепловой энергии системы маслоснабжения подшипников паровой турбины 1 в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.
Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в турбине 1 пара и утилизацию низкопотенциальной теплоты системы 10 маслоснабжения подшипников паровой турбины осуществляют путем последовательного нагрева соответственно в конденсаторе 2 паровой турбины и маслоохладителе 14 низкокипящего рабочего тела (сжиженного углекислого газа CO2) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного углекислого газа СО2, который направляют на нагрев и испарение в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар.
Температура кипения сжиженного углекислого газа CO2 сравнительна низка (292,26 К при давлении 5,61 МПа), поэтому в конденсаторе 2 паровой турбины он быстро испаряется и переходит в газообразное состояние, далее его направляют на перегрев в маслоохладитель 14. В маслоохладителе 14 циркулирует масло, нагретое в подшипниках паровой турбины 1, с температурой в интервале от 318,15 К до 348,15 К. В процессе теплообмена масла с углекислым газом CO2 происходит перегрев углекислого газа СО2 до температуры в интервале от 308,15 К до 333,15 К. После маслоохладителя 14 перегретый углекислый газ CO2 направляют в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации углекислого газа СО2 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 углекислый газ CO2 имеет температуру около 288 К с влажностью, не превышающей 12%.
Далее, при снижении температуры углекислого газа CO2, происходит его сжижение в теплообменнике-конденсаторе 8, выполненного, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.
После теплообменника-конденсатора 8 в сжиженном состоянии углекислый газ СО2 направляют для сжатия в конденсатный насос 9 теплового двигателя.
Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.
Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты отработавшего пара, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.

Claims (3)

1. Способ работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, отличающийся тем, что в тепловой электрической станции используют систему маслоснабжения подшипников паровой турбины с маслоохладителем и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, испаряют в конденсаторе паровой турбины, нагревают в маслоохладителе, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
2. Способ работы тепловой электрической станции по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
3. Способ работы тепловой электрической станции по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
RU2013158783/06A 2013-12-27 2013-12-27 Способ работы тепловой электрической станции RU2559655C9 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013158783/06A RU2559655C9 (ru) 2013-12-27 2013-12-27 Способ работы тепловой электрической станции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013158783/06A RU2559655C9 (ru) 2013-12-27 2013-12-27 Способ работы тепловой электрической станции

Publications (2)

Publication Number Publication Date
RU2559655C1 RU2559655C1 (ru) 2015-08-10
RU2559655C9 true RU2559655C9 (ru) 2015-11-20

Family

ID=53796469

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013158783/06A RU2559655C9 (ru) 2013-12-27 2013-12-27 Способ работы тепловой электрической станции

Country Status (1)

Country Link
RU (1) RU2559655C9 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110131919B (zh) * 2019-04-02 2021-02-05 深圳市奥宇节能技术股份有限公司 冷却循环水余热的回收方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218802A (en) * 1960-11-28 1965-11-23 Aerojet General Co Binary vapor power plant
US3234734A (en) * 1962-06-25 1966-02-15 Monsanto Co Power generation
RU2273742C1 (ru) * 2004-09-03 2006-04-10 ООО "Центр КОРТЭС" Энергоаккумулирующая установка

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218802A (en) * 1960-11-28 1965-11-23 Aerojet General Co Binary vapor power plant
US3234734A (en) * 1962-06-25 1966-02-15 Monsanto Co Power generation
RU2273742C1 (ru) * 2004-09-03 2006-04-10 ООО "Центр КОРТЭС" Энергоаккумулирующая установка

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГАФУРОВ А.М. и др. Энергетическая установка на базе ГТУ НК-37 с двумя теплоутилизирующими рабочими контурами, Энергетика Татарстана, 2012, N 3, с. 35-41. ГАЛАШОВ Н.Н. и др. Анализ влияния основных параметров партурбинного цикла на эффективность тринарных парогазовых установок, Известия Томского политехнического университета, 2013, т. 323, N 4, с. 14-21, рис. 4. *

Also Published As

Publication number Publication date
RU2559655C1 (ru) 2015-08-10

Similar Documents

Publication Publication Date Title
RU2560503C1 (ru) Способ работы тепловой электрической станции
RU2559655C9 (ru) Способ работы тепловой электрической станции
RU2552481C1 (ru) Способ работы тепловой электрической станции
RU2560505C1 (ru) Способ работы тепловой электрической станции
RU2560502C1 (ru) Способ работы тепловой электрической станции
RU2562745C1 (ru) Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией
RU2570961C2 (ru) Способ работы тепловой электрической станции
RU2575252C2 (ru) Способ работы тепловой электрической станции
RU2568348C2 (ru) Способ работы тепловой электрической станции
RU2569994C2 (ru) Способ работы тепловой электрической станции
RU2569993C2 (ru) Способ работы тепловой электрической станции
RU2562506C2 (ru) Способ работы тепловой электрической станции
RU2560496C1 (ru) Способ работы тепловой электрической станции
RU2564470C2 (ru) Способ работы тепловой электрической станции
RU2560504C1 (ru) Способ работы тепловой электрической станции
RU2560500C1 (ru) Способ работы тепловой электрической станции
RU2564466C2 (ru) Способ работы тепловой электрической станции
RU2560495C1 (ru) Способ работы тепловой электрической станции
RU2560514C1 (ru) Способ работы тепловой электрической станции
RU2570943C2 (ru) Способ работы тепловой электрической станции
RU2575216C2 (ru) Способ работы тепловой электрической станции
RU2555600C1 (ru) Способ работы тепловой электрической станции
RU2560497C1 (ru) Способ работы тепловой электрической станции
RU2571272C2 (ru) Способ работы тепловой электрической станции
RU2560512C1 (ru) Способ работы тепловой электрической станции

Legal Events

Date Code Title Description
TH4A Reissue of patent specification
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151228