RU2554937C1 - СПОСОБ ПОЛУЧЕНИЯ АНТРА[2,3-b]ФУРАН-3-КАРБОНОВОЙ КИСЛОТЫ - Google Patents

СПОСОБ ПОЛУЧЕНИЯ АНТРА[2,3-b]ФУРАН-3-КАРБОНОВОЙ КИСЛОТЫ Download PDF

Info

Publication number
RU2554937C1
RU2554937C1 RU2014119764/04A RU2014119764A RU2554937C1 RU 2554937 C1 RU2554937 C1 RU 2554937C1 RU 2014119764/04 A RU2014119764/04 A RU 2014119764/04A RU 2014119764 A RU2014119764 A RU 2014119764A RU 2554937 C1 RU2554937 C1 RU 2554937C1
Authority
RU
Russia
Prior art keywords
furan
carboxylic acid
dihydroxy
dioxo
acid
Prior art date
Application number
RU2014119764/04A
Other languages
English (en)
Inventor
Андрей Егорович Щекотихин
Александр Сергеевич Тихомиров
Елена Николаевна Бычкова
Мария Николаевна ПРЕОБРАЖЕНСКАЯ
Original Assignee
Федеральное государственное бюджетное учреждение "Научно-исследовательский институт по изысканию новых антибиотиков им. Г.Ф. Гаузе" Российской академии медицинских наук (ФГБУ "НИИНА" РАМН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Научно-исследовательский институт по изысканию новых антибиотиков им. Г.Ф. Гаузе" Российской академии медицинских наук (ФГБУ "НИИНА" РАМН) filed Critical Федеральное государственное бюджетное учреждение "Научно-исследовательский институт по изысканию новых антибиотиков им. Г.Ф. Гаузе" Российской академии медицинских наук (ФГБУ "НИИНА" РАМН)
Priority to RU2014119764/04A priority Critical patent/RU2554937C1/ru
Application granted granted Critical
Publication of RU2554937C1 publication Critical patent/RU2554937C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к химии гетероциклических соединений, а именно к новому способу получения 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты формулы I, которая может быть использована в качестве полупродукта для получения биологически активных веществ и красителей. Способ заключается в последовательном проведении стадии гетероциклизации 2,3-дигалогенопроизводного 1,4-дигидроксиантрахинона с третичным эфиром ацетоуксусной кислоты в присутствии основания при нагревании в инертном растворителе и последующей стадии кислотного гидролиза образовавшегося третичного эфира 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты. Технический результат - повышение выхода целевого продукта. 8 з.п. ф-лы, 6 пр.

Description

Область техники
Изобретение относится к химии гетероциклических соединений, а именно к способу получения 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты, которая может быть использована для синтеза биологически активных веществ или красителей.
Уровень техники
Производные 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты могут найти применение в различных областях науки и техники, например для крашения тканей [патент SU 973577 (1983)], в качестве флуоресцентных красителей или меток [Щекотихин А.Е и др. ЖОрХ, 2007, 43 (11), 1687], фотохромных материалов [Щекотихин А.Е и др. ЖОрХ, 2008, 44 (6), 864] или лекарственных средств [патент РФ №2412166 (2011)]. Единственный известный способ получения 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты описан М.В. Гореликом [Горелик М.В., Мишина Е.В. ЖОрХ, 1983, 2185]. В этой схеме в качестве исходного вещества для гетероциклизации был использован 1,4-дигидрокси-2,3-дихлорантрахинон (2,3-дихлорхинизарин 1а), конденсация которого с этиловым эфиром ацетоуксусной кислоты (2а) дает этиловый эфир 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты (3а) с выходом 58% (схема А). Эфир 3а оказался достаточно устойчив к действию щелочей и кислот, поэтому его гидролиз в целевую 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновую кислоту (4) проводят в жестких условиях длительным нагреванием в серной кислоте при 100°С.
Figure 00000001
Ранее известная схема имеет ряд существенных недостатков, снижающих ее эффективность для препаративного синтеза антра[2,3-b]фуран-3-карбоновой кислоты 4. Прежде всего, нам не удалось воспроизвести описанный в литературе выход промежуточного этилового эфира 3а (58%). Максимальный выход эфира 3а, полученный нами по методике, описанной в патенте [SU 973577 (1983)], составляет 38-42%. Таким образом, карбоновая кислота 4 была получена по схеме А с суммарным выходом менее 30%. К другим недостаткам этого способа получения следует отнести трудности выделения и очистки эфира 3а, связанные с его низкой растворимостью, а также образованием на стадии гетероциклизации побочного производного ангулярного антрафурандиона [SU 973577 (1983), Горелик М.В., Мишина Е.В. ЖОрХ, 1983, 2185] и сильным осмолением реакционной массы в процессе циклизации. Кроме того, недостатками описанного метода синтеза кислоты 4 являются жесткие условия проведения стадии гидролиза этилового эфира 3а, требующего длительного нагревания в серной кислоте при 100°С и большого расхода самой серной кислоты (40 мл на 1 г кислоты 4). Такой способ требует тщательной промывки осажденного продукта большим объемом воды. Одним из критических факторов, важных для практического применения 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты (4) при получении на ее основе лекарственных веществ или флуоресцентных материалов, может быть чистота целевой кислоты 4. Полученный этим методом продукт имеет чистоту 90-95%, поэтому требует дополнительной очистки кристаллизацией из уксусной кислоты.
Перечисленные недостатки снижают эффективность описанного ранее метода для препаративного получения 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты (4). Поэтому целью данного изобретения являлось устранение недостатков, связанных с низким выходом продукта, а также трудностями проведения синтеза, выделения и очистки, присущих ранее известному способу получения 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты (4).
Раскрытие изобретения
В заявленном нами усовершенствованном двухстадийном способе получения 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты (4) на первой стадии (схема Б) для проведения гетероциклизации могут быть использованы 2,3-дихлор- или 2,3-дибромпроизводные хинизарина (1а или 1b) и эфир ацетоуксусной кислоты 2b. Важной особенностью заявленного способа синтеза является использование для циклизации антрафурандиона третичных эфиров ацетоуксусной кислоты 2b, где R означает третичный углеводородный радикал.
Figure 00000002
В качестве основания (В) для проведения гетероциклизации могут быть использованы различные органические или неорганические основания, широко применяемые в органическом синтезе, например (без ограничения перечисленным): K2CO3, Cs2CO3, Na2CO3, K3PO4, триэтиламин, этилдиизопропиламин, 1,8-диазабицикло[5.4.0]ундец-7-ен, 1,4-диазабицикло[2.2.2]октан и т.п. Взаимодействие указанных реагентов проводят в инертном растворителе при температуре приблизительно от 100°С до 140°С и мольном соотношении реагентов (1)/(2b)/(В) приблизительно от 1:1:2 до 1:10:10.
В наиболее предпочтительном варианте изобретения на первой стадии (схема Б) получают трет-бутиловый эфир 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-5,10-дион-3-карбоновой кислоты (3b). Исходными для его синтеза являются 2,3-дибром-1,4-дигидроксиантрахинон (2,3-дибромхинизарин 1b) и трет-бутиловый эфир ацетоуксусной кислоты (2b, R=t-Bu), а циклизацию проводят действием карбоната калия в инертном растворителе при температуре приблизительно от 120°С до 130°С и мольном соотношении реагентов (1)/(2b)/(В) приблизительно 1:3:3.
На второй стадии предложенного способа (схема В) проводится кислотный гидролиз третичного эфира 3b, приводящий к целевой 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоте (4).
Figure 00000003
Расщепление эфира 3b (схема В) можно проводить при температуре приблизительно от 20°С до 110°С, однако в предпочтительных вариантах изобретения гидролиз проводят при температуре приблизительно от 20°С до 40°С. Для расщепления третичного эфира 3b могут быть использованы различные органические или неорганические кислоты в инертном растворителе или без него, например трифторуксусная кислота, муравьиная кислота, метансульфокислота, n-толуолсульфокислота, хлороводородная кислота, бромоводородная кислота, серная кислота и т.п. Для упрощения выделения конечного продукта и достижения его высокой чистоты в наиболее предпочтительных вариантах изобретения на этой стадии синтеза используются легколетучие кислоты, например трифторуксусная, муравьиная или хлороводородная.
Таким образом, поставленная задача решена следующими деталями изобретения. Ключевой особенностью настоящего изобретения является применение на стадии гетероциклизации третичных эфиров ацетоуксусной кислоты, приводящее к образованию третичных эфиров 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты 3b. Замена этилового эфира ацетоуксусной кислоты 2а на третичный эфир ацетоуксусной кислоты, например трет-бутиловый 2b (R=t-Bu), приводит к повышению выхода целевого соединения 4. Кроме того, на наличие в полупродукте 3b более липофильного остатка третичного эфира облегчает его выделение и очистку за счет лучшей растворимости по сравнению с этиловым аналогом 3а.
Важным фактором, приводящим к повышению выхода продукта гетероциклизации антрафурандиона 3b, является способ добавления основания. В результате обширных экспериментальных исследований нами обнаружено, что прибавление основания в предварительно нагретую до приблизительно до 120°С реакционную смесь приводит к заметному увеличению выхода продукта 3b и повышению его качества за счет снижения осмоления реакционной массы и уменьшения образования побочного ангулярного продукта гетероциклизации. Это, по-видимому, объясняется тем, что при проведении гетероциклизации антрафурандиона 3а по ранее описанной методике [SU 973577 (1983), Горелик М.В., Мишина Е.В. ЖОрХ, 1983, 2185], заключающейся в нагревании всех реагентов в инертном растворителе до 120°С и последующем выдерживании смеси при этой температуре, в процессе разогрева реакционной массы от 20 до 120°С происходит ионизация гидроксигрупп производного хинизарина 1а под действием избытка основания, что снижает реакционную способность атомов галогенов и приводит к конкрентной ангулярной циклизации фуранового ядра. Очевидно, что при постепенном добавлении основания к нагретой до 120°С реакционной смеси гетероциклизация линейного антрафурандиона 3b происходит раньше, чем ионизация гидроксигрупп субстрата 1b, что и приводит к уменьшению доли побочного ангулярного продукта и снижению осмоления реакционной массы.
Совокупность всех перечисленных факторов позволяет снизить расход растворителей и упростить процедуру очистки полупродукта 3b. Так, полученный этим способом технический эфир 3b может быть очищен фильтрованием раствора через небольшой слой силикагеля, в то время как для очистки его этилового аналога 3а, полученного по схеме А, необходимо использовать колоночную хроматографию.
Расщепление третичных эфиров карбоновых кислот в условиях кислотного гидролиза протекает значительно быстрее, чем этиловых, благодаря чему для гидролиза эфира 3b можно использовать более мягкие условия (комнатная температура) и применять более мягкие органические и неорганические кислоты. Гидролиз третичного эфира 3b позволяет получить 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновую кислоту (4) высокой чистоты без дополнительной очистки с выходом, близким к количественному.
Кроме того, согласно с еще одним аспектом настоящего изобретения в предпочтительном варианте проведения гетероциклизации используется более реакционно-способный дибромхинизарин 1b [Kim S.H. et. al. Dyes and Pigments, 1986, 7, 93], применение которого позволяет сократить время реакции, а также повысить выход эфира 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты 3b. На стадии гетероциклизации могут быть использованы как неорганические, так и органические основания, приводящие к близким выходам целевых продуктов. С учетом наибольшего выхода антрафурандионов формулы 4, а также доступности в предпочтительном варианте заявленного изобретения в качестве основания на стадии циклизации наиболее предпочтительно использование безводного карбоната калия (схема Б).
Термин "третичный радикал" в настоящем изобретении означает метальную группу, трижды независимо замещенную алкильными или арильными заместителями, каждый из которых имеет независимо от 1 до 6 атомов углерода. Примерами третичных радикалов прежде всего являются (без ограничения перечисленным) трет-бутил, трет-пентил, 1,1,1-(триэтил)метил, 1,1,1-(триизоамил)метил, трифенилметил, предпочтительно трет-бутил.
Реакции, приведенные в описании заявки, предпочтительно проводят при атмосферном давлении при температуре приблизительно от 0°С до 180°С, более предпочтительно от 20°С до 140°С.
"Инертный органический растворитель" означает растворитель, инертный в условиях, описываемых в тексте реакций, включающий, например, диметилсульфоксид, Ν,N-диметилформамид (ДМФА), Ν,N-диметилацетамид (ДМАА), N-метилпирролидон, сульфолан, бензол, толуол, ацетонитрил, тетрагидрофуран, тетрахлорметан, хлороформ, дихлорметан, дихлорэтан, этилацетат, ацетон, метилэтилкетон, диоксан, пиридин, уксусную кислоту и т.п. Предпочтительно стадию циклизации антрафурандиона 3b следует проводить в полярных апротонных растворителях, например в диметилсульфоксиде, Ν,N-диметилформамиде, Ν,N-диметилацетамиде, N-метилпирролидоне, сульфолане, более предпочтительно в диметилсульфоксиде. Предпочтительно на стадии расщепления эфира 3b используют хлороформ, дихлорметан, дихлорэтан, тетрахлорметан, бензол, толуол, диоксан, тетрагидрофуран, уксусную кислоту или проводят гидролиз в отсутствие растворителя в избытке кислоты.
Таким образом, новый способ синтеза 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты (4), являющийся предметом настоящего изобретения, имеет ряд важных преимуществ по сравнению с ранее известным методом:
1. Больший суммарный выход (около 60-67%) целевой 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты (4) и ее высокую чистоту.
2. Упрощенную процедуру выделения и очистки промежуточного эфира 3b и конечной 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты (4).
3. Большую эффективность синтеза за счет сокращения времени реакций, температуры проведения стадии гидролиза, а также снижения расхода реагентов, растворителей и сорбентов на стадиях синтеза и очистки продуктов.
Исходные материалы и реагенты, которые использованы при получении антра[2,3-b]фуран-3-карбоновой кислоты 4, являются коммерчески доступными химическими веществами, поставляемыми такими фирмами, как Aldrich Chemical Co., Acros и др. или их можно получить методами, известными специалисту в данной области, по методикам, описанным в литературе.
Строение целевой 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты (4) и ее полупродукта (3b) подтверждено методами ЯМР спектроскопии, ЭПС, а также масс-спектрами высокого разрешения. Чистота продуктов подтверждена данными ВЭЖХ-анализа.
Следующие ниже неограничивающие примеры даны для иллюстрации деталей осуществления настоящего изобретения. Специалисты в области органического химии легко поймут, что при осуществлении настоящего изобретения могут быть использованы различные схожие варианты проведения синтеза целевой антра[2,3-b]фуран-3-карбоновой кислоты.
Figure 00000004
Пример 1
Смесь 6.4 г (16 ммоль) 2,3-дибромхинизарина (1b) и 9.0 мл (54 ммоль) трет-бутилового эфира ацетоуксусной кислоты (2b, R=t-Bu) в ДМСО (120 мл) нагревают до 120°С, после чего при этой температуре к перемешиваемой смеси осторожно прибавляют 7.0 г (50 ммоль) безводного измельченного K2CO3. После внесения основания смесь нагревают до 125°С и выдерживают при перемешивании 15 мин при этой температуре. Реакционную массу охлаждают и при перемешивании осторожно выливают в смесь воды (400 мл) и конц. соляной кислоты (9.0 мл). Выпавший осадок отфильтровывают, промывают водой (2×200 мл), этанолом (30 мл) и сушат. Осадок растворяют в кипящем хлорбензоле (200 мл) и фильтруют горячий раствор через пористый фильтр со слоем силикагеля (30 г). Фильтр с силикагелем промывают горячей смесью толуол - хлорбензол - этилацетат (3×150 мл, 3:1:1). Объединенный фильтрат упаривают в вакууме и остаток кристаллизуют из хлорбензола (60 мл). Выпавшие кристаллы отфильтровывают, промывают смесью н-гексан - диэтиловый эфир (2×50 мл, 5:1) и сушат на воздухе. Выход оранжевых кристаллов трет-бутилового эфира 3b - 4.42 г (70%). Т.пл. = 236-238°С.
ТСХ: Rf = 0.45, толуол-этилацетат (20:1). ВЭЖХ (колонка Kromasil 100-5 C18, 4.6×250 мм (Akzo Nobel); элюэнты: A - H3PO4 (0.01 м), В - MeCN; градиент В 70 → 95% (20 мин); LW = 260 нм): tR = 24.6 мин, чистота 98%. ЭСП, λмакс, нм, (lgε): 260 (4.4), 479 (4.0), 509 (3.9). Спектр ЯМР 1H (400 МГц, ДМСО-d6), δ, м.д.: 14.53 (1H, с, ОН); 13.87 (1H, с, OH); 8.37 (2Н, м, Н-6,9); 7.81 (2H, м, Н-7,8); 2.75 (3H, с, СН3); 1.65 (9Н, с, OBut). Найдено: m/z (ESI), 395.1133 [М+Н]+. C22H19O7. Вычислено: 395.1125.
Пример 2
Смесь 3.2 г (8 ммоль) 2,3-дибромхинизарина (1b) и 4.5 мл (27 ммоль) трет-бутилового эфира ацетоуксусной кислоты (2b, R=t-Bu) и 3.5 г (25 ммоль) безводного измельченного K2CO3 в ДМСО (60 мл) нагревают до 125°С и выдерживают при перемешивании 20 мин при этой температуре. Реакционную массу охлаждают и продукт выделяют по методике, описанной в примере 1. Выход оранжевых кристаллов трет-бутилового эфира 3b - 1.7 г (53%). Т.пл. и спектральные характеристики полученного продукта идентичны описанным в примере 1.
Пример 3
Смесь 3.2 г (8 ммоль) 2,3-дибромхинизарина (1b) и 4.5 мл (27 ммоль) трет-бутилового эфира ацетоуксусной кислоты (2b, R=t-Bu) в ДМСО (120 мл) нагревают до 60°С, после чего при этой температуре к перемешиваемой смеси осторожно прибавляют 8,3 г (25 ммоль) безводного измельченного Cs2CO3. После внесения основания смесь нагревают до 125°С и выдерживают при перемешивании 15 мин при этой температуре. Реакционную массу охлаждают, и выделяют продукт по методике, описанной в примере 1. Выход оранжевых кристаллов трет-бутилового эфира 3b - 1.9 г (60%). Т.пл. и спектральные характеристики полученного продукта идентичны описанным в примере 1.
Пример 4
Смесь 2.5 г (8 ммоль) 2,3-дихлорхинизарина (1а) и 4.5 мл (27 ммоль) трет-бутилового эфира ацетоуксусной кислоты (2b, R=t-Bu) в ДМСО (120 мл) нагревают до 60°С, после чего при этой температуре к перемешиваемой смеси осторожно прибавляют 3.5 г (25 ммоль) безводного измельченного K2CO3. После внесения основания смесь нагревают до 125°С и выдерживают при перемешивании 20 мин при этой температуре. Реакционную массу охлаждают и выделяют продукт по методике, описанной в примере 1. Выход оранжевых кристаллов трет-бутилового эфира 3b - 1.8 г (57%). Т.пл. и спектральные характеристики полученного продукта идентичны описанным в примере 1.
Figure 00000004
Пример 5
К перемешиваемой суспензии 4.0 г (10 ммоль) трет-бутилового эфира 3b в хлороформе (50 мл) прибавляют трифторуксусную кислоту (15 мл). Смесь перемешивают 1.5-2 ч при комнатной температуре до завершения реакции и отгоняют летучие компоненты смеси в вакууме. К полученному остатку прибавляют дихлорметан (30 мл), кипятят смесь при перемешивании 5 мин, охлаждают и отфильтровывают полученный осадок. Продукт промывают н-гексаном и сушат на воздухе. Выход целевой антрафуран-3-карбоновой кислоты 4 составляет 3.3 г (96%), в виде блестящих красных кристаллов с Т.пл.>280°С (Т.пл. 299-301°С [Горелик М.В., Мишина Е.В. ЖОрХ, 1983, 2185]).
ТСХ: Rf = 0, хлороформ-метанол (3:1). ВЭЖХ (колонка Kromasil 100-5 C18, 4.6×250 мм (Akzo Nobel); элюэнты: А - H3PO4 (0.01 м), В - MeCN; градиент В 70 → 95% (20 мин); LW = 260 нм): tR = 8.2 мин, чистота 99%. ЭСП, λмакс, нм, (lgε): 259 (4.4), 481 (4.0). Спектр ЯМР 1H (400 МГц, ДМСО-d6), δ, м.д.: 8.19 (2Н, м, Н-6,9); 7.91 (2Н, м, Н-7,8); 2.69 (3Н, с, СН3). Найдено: m/z (ESI), 339.0504 [М+Н]+. C18H11O7. Вычислено: 339.0499.
Пример 6
Смесь 2.0 г (10 ммоль) трет-бутилового эфира 3b и муравьиной кислоты (15 мл) перемешивают при комнатной температуре до завершения реакции и упаривают в вакууме. К полученному остатку прибавляют дихлорметан (15 мл), кипятят смесь при перемешивании 5 мин, охлаждают и отфильтровывают полученный осадок. Продукт промывают н-гексаном и сушат на воздухе. Выход целевой антрафуран-3-карбоновой кислоты 4 составляет 1.6 г (94%), в виде блестящих красных кристаллов. Т.пл. и спектральные характеристики полученного продукта идентичны описанным в примере 5.

Claims (9)

1. Способ получения 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты формулы I,
Figure 00000005

заключающийся в последовательном проведении стадии гетероциклизации 2,3-дигалогенопроизводного 1,4-дигидроксиантрахинона с третичным эфиром ацетоуксусной кислоты в присутствии основания при нагревании в инертном растворителе и последующей стадии кислотного гидролиза образовавшегося третичного эфира 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты.
2. Способ получения соединения I по п. 1, в котором на стадии гетероциклизации в качестве третичного эфира ацетоуксусной кислоты используется трет-бутиловый эфир ацетоуксусной кислоты, а промежуточным соединением является трет-бутиловый эфир 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты.
3. Способ получения соединения I по п. 1 или 2, в котором для гетероциклизации используется 2,3-дибром-1,4-дигидроксиантрахинон.
4. Способ получения соединения I по п. 1 или 2, в котором основание на стадии гетероциклизации прибавляется к остальным компонентам реакционной смеси при температуре от 110 до 130°C.
5. Способ получения соединения I по п. 1 или 2, в котором стадия гетероциклизации проводится выдерживанием реакционной смеси при температуре от 110°C до 130°C.
6. Способ получения соединения I по п. 1 или 2, в котором на стадии конденсации в качестве основания используется карбонат калия.
7. Способ получения соединения I по п. 1 или 2 при мольном соотношении реагентов на стадии гетероциклизации приблизительно 1:3:3 (2,3-дигалогено-1,4-дигидроксиантрахинон/ацетоацетат/основание).
8. Способ получения соединения I по п. 1 или 2, в котором в качестве инертного растворителя для проведения стадии конденсации используется диметилсульфоксид.
9. Способ получения соединения I по п. 1 или 2, при котором стадию гидролиза промежуточного третичного эфира 4,11-дигидрокси-5,10-диоксо-2-метилантра[2,3-b]фуран-3-карбоновой кислоты проводят при действии трифторуксусной, муравьиной или хлороводородной кислот.
RU2014119764/04A 2014-05-16 2014-05-16 СПОСОБ ПОЛУЧЕНИЯ АНТРА[2,3-b]ФУРАН-3-КАРБОНОВОЙ КИСЛОТЫ RU2554937C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014119764/04A RU2554937C1 (ru) 2014-05-16 2014-05-16 СПОСОБ ПОЛУЧЕНИЯ АНТРА[2,3-b]ФУРАН-3-КАРБОНОВОЙ КИСЛОТЫ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014119764/04A RU2554937C1 (ru) 2014-05-16 2014-05-16 СПОСОБ ПОЛУЧЕНИЯ АНТРА[2,3-b]ФУРАН-3-КАРБОНОВОЙ КИСЛОТЫ

Publications (1)

Publication Number Publication Date
RU2554937C1 true RU2554937C1 (ru) 2015-07-10

Family

ID=53538209

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014119764/04A RU2554937C1 (ru) 2014-05-16 2014-05-16 СПОСОБ ПОЛУЧЕНИЯ АНТРА[2,3-b]ФУРАН-3-КАРБОНОВОЙ КИСЛОТЫ

Country Status (1)

Country Link
RU (1) RU2554937C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639479C1 (ru) * 2016-11-16 2017-12-21 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе" Пероральные противоопухолевые средства и способ лечения онкологических заболеваний

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU973577A1 (ru) * 1981-05-08 1982-11-15 Предприятие П/Я А-7850 Производные 4,11-диоксиантра [2,3-в] фуран-5,10-диона в качестве дисперсных красителей дл полиэфирного волокна и способ их получени
WO2006007503A1 (en) * 2004-07-01 2006-01-19 Wyeth Tetracyclic compounds as estrogen ligands

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU973577A1 (ru) * 1981-05-08 1982-11-15 Предприятие П/Я А-7850 Производные 4,11-диоксиантра [2,3-в] фуран-5,10-диона в качестве дисперсных красителей дл полиэфирного волокна и способ их получени
WO2006007503A1 (en) * 2004-07-01 2006-01-19 Wyeth Tetracyclic compounds as estrogen ligands

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Горелик М.В.,Мишина Е.В.,Взаимодействие 2,3-хлор- и 2-хлор-1,4-диоксанантрахиронов с карбанионами,ЖОрХ, 1983,v.19,no.10стр.2185. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639479C1 (ru) * 2016-11-16 2017-12-21 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе" Пероральные противоопухолевые средства и способ лечения онкологических заболеваний

Similar Documents

Publication Publication Date Title
JP2791046B2 (ja) アンドロスタ−1,4−ジエン−3,17−ジオンのメチレン誘導体の製造方法
JP5717752B2 (ja) ピリピロペン誘導体の製造法
Borah et al. An efficient one-pot three-component reaction for the synthesis of novel functionalized pyrano [3, 2-c] coumarins catalyzed by Na 2 CO 3 in aqueous medium
RU2554937C1 (ru) СПОСОБ ПОЛУЧЕНИЯ АНТРА[2,3-b]ФУРАН-3-КАРБОНОВОЙ КИСЛОТЫ
CN107814757B (zh) 一种合成多取代吡咯衍生物的方法
Bakavoli et al. Synthesis of Novel [1, 2, 4] triazolo [3, 2-b][2, 4, 6] benzothiadiazocin-11 (5H, 10H)-One Derivatives
Pan et al. Synthesis of sulfur-containing benzo [b] pyrrolo [2, 1-c][1, 4] oxazine-3, 9-diones: blue light promoted radical cyclization process
RU2709493C1 (ru) Способ получения роксадустата
JP6341939B2 (ja) 置換された(r)−3−(4−メチルカルバモイル−3−フルオロフェニルアミノ)テトラヒドロフラン−3−エンカルボン酸(変種)及びそのエステル、調製のための方法並びに使用
Singh et al. Pericyclic Transformations at the Periphery of Chromen‐4‐one (= 4H‐1‐Benzopyran‐4‐one): An Unusual Preference for a 1, 5‐Shift of Allylic Moieties over the Ene Reaction
US5274092A (en) Derivatives of tricycloquinazoline and methods for their preparation
CN111393437B (zh) 三取代吲嗪类化合物及其制备方法
JP2567638B2 (ja) テトラヒドロプテリジン誘導体
CN110105361B (zh) 一种Evodiakine及其衍生物的制备方法
RU2632668C2 (ru) Способ получения 2,3,5,6,8-пентагидрокси-1,4-нафтохинона (спинохрома D) и промежуточные соединения, используемые в этом способе
JP2567639B2 (ja) プテリジン誘導体
EA019416B1 (ru) СПОСОБ ПОЛУЧЕНИЯ 1,6:2,3-ДИАНГИДРО-β-D-МАННОПИРАНОЗЫ
CN108129479B (zh) 一种5,6-二氢苯并[f]吲哚并[2,3-b]喹啉类化合物及其合成方法
Liu et al. Synthesis of New Substituted 2-amino-4H-benzo [h] chromene-3-carbonitrile Derivatives
CN108863899B (zh) 一种吲哚啉-2-酮类化合物的合成方法及其应用
KR20100054627A (ko) 바이나프톨 알데히드 유도체 및 그의 제조방법
RU2648039C1 (ru) Способ синтеза индоло[1',7':1,2,3]пирроло[3',4':6,7]азепино[4,5-b]индол-1,3(2Н,10Н)-диона
RU2417995C1 (ru) Способ получения 3-(2-замещенных-1,3-оксазол-4-ил)пиридин-2(1н)-онов
RU2243225C1 (ru) Способ получения 5,6-бензтиохроманона-4
CN118307547A (zh) 一种螺环氧乙烷氧化吲哚类化合物的制备方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180517