RU2554126C1 - Объединенная двигательная установка ракетного блока - Google Patents

Объединенная двигательная установка ракетного блока Download PDF

Info

Publication number
RU2554126C1
RU2554126C1 RU2013156358/06A RU2013156358A RU2554126C1 RU 2554126 C1 RU2554126 C1 RU 2554126C1 RU 2013156358/06 A RU2013156358/06 A RU 2013156358/06A RU 2013156358 A RU2013156358 A RU 2013156358A RU 2554126 C1 RU2554126 C1 RU 2554126C1
Authority
RU
Russia
Prior art keywords
tanks
fuel components
components
fuel
gaseous
Prior art date
Application number
RU2013156358/06A
Other languages
English (en)
Inventor
Владимир Иванович Морозов
Михаил Владимирович Мальцев
Original Assignee
Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" filed Critical Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева"
Priority to RU2013156358/06A priority Critical patent/RU2554126C1/ru
Application granted granted Critical
Publication of RU2554126C1 publication Critical patent/RU2554126C1/ru

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Изобретение относится к ракетной технике и может быть использовано в конструкции двигательных установок ракетных блоков, использующих криогенные компоненты топлива для питания жидкостного ракетного двигателя и импульсных двигателей систем стабилизации ориентации и обеспечения запуска. В объединенной двигательной установке ракетного блока, включающей баки для криогенных компонентов топлива 1, маршевый ЖРД с турбонасосной системой подачи криогенных компонентов топлива в регенеративно-охлаждаемую камеру 2, импульсные двигатели системы стабилизации, ориентации и обеспечения запуска 3, использующие газообразные компоненты топлива, емкости 4 для газообразных компонентов топлива импульсных двигателей 3, емкости расположены вблизи баков под общей с ними теплоизоляцией 5, при этом стенки емкости соединены со стенками баков термомостами 6 с заданной длиной и площадью поперечного сечения, полости емкостей каждого из компонентов топлива сообщены через смесители 7 и трубопроводы 11, 12 с отсечными клапанами 9, 10, с выходами соответствующих компонентов топлива из насосов ТНА 8 и трактов охлаждения камеры 2, а в емкостях установлены датчики давления 13 и температур 14 газообразных компонентов топлива, выполняющих функцию чувствительных элементов системы управления ракетного блока. Изобретение обеспечивает повышение надежности двигательных установок ракетных блоков, использующих жидкие криогенные компоненты топлива. 1 ил.

Description

Изобретение относится к ракетной технике и может быть использовано в конструкции двигательных установок (ДУ) ракетных блоков (РБ), использующих криогенные компоненты топлива для питания маршевого жидкостного ракетного двигателя (МЖРД) и импульсных двигателей (ИД) систем стабилизации ориентации и обеспечения запуска (СООЗ).
В связи со значительными затратами энергии на испарение и высоким положительным порогом энергии активации реакции криогенных компонентов топлива использование их в качестве компонентов топлива ИД СООЗ возможно только в газообразном виде.
Известна двигательная установка, использующая газообразные компоненты топлива с подачей их в двигатели из баллонов высокого давления (заявка на изобретение №2011143826/06 от 28.10.2011, по которой принято решение о выдаче патента на изобретение от 7.02.2013).
Особенностью такой ДУ является ее относительно большая масса вследствие больших объемов баллонов высокого давления, предназначенных для хранения газообразных компонентов топлива, что практически исключает целесообразность ее использования при относительно больших запасах топлива, характерных, например, для СООЗ тяжелых ракетных блоков.
Известна принятая за прототип предлагаемого изобретения -объединенная двигательная установка (ОДУ) многоразового орбитального корабля (МОК) «Буран» (см. книгу Многоразовый орбитальный корабль «Буран». М.: Машиностроение, 1995, раздел 5, стр.195…214).
В ОДУ МОК «Буран», использующей криогенный компонент топлива - жидкий кислород - в качестве окислителя и керосин - в качестве горючего, предусмотрена система преобразования жидкого кислорода в газообразный посредством процессов сжигания части расхода кислорода с керосином в газогенераторе с испарением остального расхода кислорода за счет образовавшегося в процессе горения тепла при общем соотношении расходов кислорода к керосину 70…100, что обеспечивает образование газообразных окислительных продуктов газогенерации с температурой, приемлемой для элементов конструкции, и накопление этих продуктов в емкостях - ресиверах, откуда осуществляется их отбор для питания ИД.
Горючее ОДУ МОК «Буран» - керосин содержит достаточный запас тепла, обеспечивающий в начальной стадии воспламенения высокую температуру смеси в камерах импульсных двигателей, которая инициирует высокую скорость предпламенных реакций в процессе воспламенения (кинетическая стадия реакции) и, следовательно, малую задержку воспламенения смеси, что допускает использование этого горючего в качестве компонента топлива импульсного двигателя.
В случае применения 2-х жидких криогенных компонентов топлива СООЗ для уменьшения задержки воспламенения в камерах импульсных двигателей необходимо преобразование в газообразный компонент топлива импульсных двигателей не только жидкого криогенного окислителя, как в прототипе, но и жидкого криогенного горючего в газообразное; только так возможно обеспечить приемлемые динамические характеристики импульсных двигателей такой СООЗ.
Однако преобразование жидких криогенных компонентов топлива в газообразные по способу прототипа (посредством газогенератора) сопряжено с образованием примесей в газообразных компонентах топлива, например воды (H2O) в случае использования в качестве горючего жидкого водорода, воды и углерода в виде сажи, - при преобразовании жидкого метана. Наличие указанных примесей является неприемлемым из-за возможности замерзания воды в трактах питания ИД в паузах между включениями СООЗ (при остывании газообразных компонентов топлива) и засорения трактов твердыми примесями, что может привести к потере работоспособности СООЗ; также при этом ухудшаются процессы горения и динамические характеристики ИД. В связи с вышеуказанным требуется организация сепарации жидкой и твердой фаз из газообразных компонентов топлива ИД, что приводит к увеличению массы СООЗ за счет введения сепараторов; при этом полное очищение газообразных компонентов от примесей не гарантировано.
Предлагаемое изобретение направлено на повышение надежности объединенной ДУ МЖРД с СООЗ, использующей криогенные компоненты топлива. Этот технический результат обеспечивается тем, что в ДУ ракетного блока, включающей баки с жидкими криогенными компонентами топлива, МЖРД с турбонасосной системой подачи компонентов топлива, в состав которого входит камера сгорания с регенеративным охлаждением компонентами топлива, импульсные двигатели системы стабилизации, ориентации, обеспечения запуска и емкости для накопления газообразных компонентов топлива, емкости расположены вблизи баков под общей с ними теплоизоляцией, при этом стенки емкости соединены со стенками баков термомостами с заданной длиной и площадью поперечного сечения, а полости емкостей каждого из компонентов топлива сообщены через смесители и трубопроводы, включающие отсечные клапаны, с выходами соответствующих компонентов топлива из насосов ТНА и трактов охлаждения камеры; при этом в емкостях установлены датчики давлений и температур газообразных компонентов топлива - чувствительные элементы системы управления (СУ) РБ.
Такое исполнение ДУ обеспечивает преобразование жидких криогенных компонентов топлива, использующихся для маршевого двигателя, в газообразные компоненты с заданными температурами и заполнение ими емкостей до заданных давлений при работе МЖРД.
Криогенные компоненты топлива газифицируются в трактах охлаждения камеры сгорания, часть каждого из газообразных компонентов отбирается с выхода соответствующего тракта охлаждения и подается в смеситель, где смешивается с отбираемым за насосом ТНА криогенным компонентом, после чего данная смесь достигает необходимой температуры и подается в соответствующую емкость до достижения заданной величины давления. Параметры тепловых мостов и теплоизоляции обеспечивают при заданных тепловых потоках на РБ, в паузе между работой МЖРД и включениями СООЗ, заданные минимальные превышения температур газообразных компонентов топлива над температурами их конденсации в емкостях и трактах питания ИД СООЗ при давлениях в емкостях, а относительно низкая температура компонентов топлива, которая обеспечивается наличием теплового моста между емкостью и баком, обуславливает минимальные размеры емкости и, следовательно, ее минимальную массу. Газификация компонентов топлива согласно предлагаемому изобретению повышает надежность ДУ, так как исключается возможность образования примесей в газообразных компонентах топлива.
Сущность изобретения поясняется представленной на чертеже схемой двигательной установки ракетного блока. В ее состав входят баки для криогенных компонентов топлива 1, маршевый ЖРД с турбонасосной системой подачи криогенных компонентов топлива в регенеративно-охлаждаемую камеру 2, импульсные двигатели системы стабилизации, ориентации и обеспечения запуска 3, использующие газообразные компоненты топлива, емкости 4 для газообразных компонентов топлива импульсных двигателей, теплоизоляционные покрытия баков и емкостей 5, термомосты 6 с заданной длиной и площадью поперечного сечения, смесители 7 и отсечные клапаны 9, 10, установленные в трубопроводах 11, 12, сообщающих выходы соответствующих компонентов топлива из насосов ТНА 8 и трактов охлаждения камеры 2 со смесителями 7, датчики давления 13 и датчики температуры 14, установленные в емкостях 4.
При работе ДУ жидкие криогенные компоненты топлива поступают из баков 1 через открытые клапаны на соответствующие входы насосов ТНА 8, где повышается их давление, далее жидкие компоненты топлива поступают в рубашки охлаждения камеры сгорания 2, где за счет теплопритока от высокотемпературных продуктов сгорания камеры нагреваются и испаряются. После рубашки часть газообразного окислителя через трубопровод 11(1) с открытым клапаном 10(1) подается в смеситель 7(1), где смешивается с жидким окислителем, поступающим с выхода насоса ТНА 8 через трубопровод 12(1) с открытым клапаном 9(1). Аналогично, после рубашки охлаждения камеры 2 часть газообразного горючего через трубопровод 11(2) с открытым клапаном 10(2) подается в смеситель 7(2), где смешивается с жидким горючим, поступающим с выхода насоса ТНА 8 через трубопровод 12(2) с открытым клапаном 9(2). За счет теплосодержания газообразных окислителя и горючего жидкие компоненты топлива в смесителях 7 испаряются и нагреваются до заданной средней температуры смеси. Образовавшиеся газообразные компоненты топлива поступают в емкости 4, расположенные вблизи баков 1, накапливаясь в них в количестве, достаточном для проведения сеансов включений СООЗ. Накопление каждого из газообразных компонентов топлива происходит до момента достижения заданных давлений в емкостях 4, после чего по сигналам датчиков давления 13 СУ выдает команды на закрытие клапанов 9 и 10. Во время дозаправки емкостей 4 газообразными компонентами температуры смесей газов в емкостях контролируются по показаниям датчиков температуры 14: при выходе значений температур в емкостях за нижние пределы допустимых диапазонов по сигналам датчиков температуры 14 СУ формирует команду на закрытие отсечных клапанов 9, подающих в смесители 7 криогенный компонент с выходов насосов ТНА 8, а в случае превышения верхних пределов диапазонов температуры - на закрытие отсечных клапанов 10, подающих газообразный компонент с выходов трактов охлаждения камеры сгорания, чем обеспечивается поддержание температур газообразных компонентов топлива в емкостях в заданных диапазонах значений. В паузах между работой МЖРД и включениями СООЗ температуры накопленных газообразных компонентов топлива в емкостях 4 поддерживаются в заданном диапазоне значений за счет обеспечения балансов теплопритоков в емкости через теплоизоляционное покрытие 5 и теплооттоков через термомосты 6 в баки 1.
Использование предлагаемого изобретения позволит реализовать в виде работоспособных конструкций с достаточно высоким уровнем надежности объединенные ДУ ракетных блоков, включающие МЖРД и СООЗ и использующие жидкие криогенные компоненты топлива, в частности жидкий водород, который в сочетании с жидким кислородом представляет собой эффективное топливо, обеспечивающее существенное повышение энергомассовых характеристик СООЗ с импульсными двигателями. Кроме того, топлива на основе криогенных компонентов «жидкий кислород + жидкий водород», «жидкий кислород + жидкий метан» являются экологически чистыми в отличие от экологически грязных компонентов высококипящего топлива (гидразин, диметилгидразин, азотный тетраксид и т.д.), использующихся в настоящее время в СООЗ, а также в отличие от условно экологически чистого топлива «жидкий кислород + керосин», применяемого в прототипе.

Claims (1)

  1. Объединенная двигательная установка ракетного блока, включающая баки для криогенных компонентов топлива, маршевый ЖРД с турбонасосной системой подачи криогенных компонентов топлива в регенеративно-охлаждаемую камеру, импульсные двигатели системы стабилизации, ориентации и обеспечения запуска, использующие газообразные компоненты топлива, емкости для газообразных компонентов топлива импульсных двигателей, отличающаяся тем, что емкости для газообразных компонентов топлива расположены вблизи баков под общей с ними теплоизоляцией, при этом стенки емкостей соединены со стенками баков термомостами с заданной длиной и площадью поперечного сечения, полости емкостей каждого из компонентов топлива сообщены через смесители и трубопроводы с отсечными клапанами с выходами соответствующих компонентов топлива из насосов ТНА и трактов охлаждения камеры, а в емкостях установлены датчики давления и температур - чувствительные элементы системы управления ракетного блока.
RU2013156358/06A 2013-12-18 2013-12-18 Объединенная двигательная установка ракетного блока RU2554126C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013156358/06A RU2554126C1 (ru) 2013-12-18 2013-12-18 Объединенная двигательная установка ракетного блока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013156358/06A RU2554126C1 (ru) 2013-12-18 2013-12-18 Объединенная двигательная установка ракетного блока

Publications (1)

Publication Number Publication Date
RU2554126C1 true RU2554126C1 (ru) 2015-06-27

Family

ID=53498333

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013156358/06A RU2554126C1 (ru) 2013-12-18 2013-12-18 Объединенная двигательная установка ракетного блока

Country Status (1)

Country Link
RU (1) RU2554126C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2531141A1 (fr) * 1982-07-28 1984-02-03 Messerschmitt Boelkow Blohm Moteur-fusee a propergol liquide du type a courant derive pour le fonctionnement dans l'espace vide d'air
WO2000071880A2 (en) * 1999-05-14 2000-11-30 Bowery James A Simplified high-efficiency propulsion system
RU2282744C2 (ru) * 2001-03-16 2006-08-27 Снекма Моторс Криогенный модуль двигателя с низкой тягой
WO2013048271A1 (en) * 2011-09-29 2013-04-04 Omnidea Lda. Propulsion system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2531141A1 (fr) * 1982-07-28 1984-02-03 Messerschmitt Boelkow Blohm Moteur-fusee a propergol liquide du type a courant derive pour le fonctionnement dans l'espace vide d'air
WO2000071880A2 (en) * 1999-05-14 2000-11-30 Bowery James A Simplified high-efficiency propulsion system
RU2282744C2 (ru) * 2001-03-16 2006-08-27 Снекма Моторс Криогенный модуль двигателя с низкой тягой
WO2013048271A1 (en) * 2011-09-29 2013-04-04 Omnidea Lda. Propulsion system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Многоразовый орбитальный корабль "Буран" под ред Семенова Ю. и др. , Москва, Машиностроение, 1995, раздел 5, с.195-214. *

Similar Documents

Publication Publication Date Title
US11181076B2 (en) Rocket engine bipropellant supply system including an electrolyzer
KR101277844B1 (ko) Lng 연료 공급 시스템과 이를 구동하는 방법
US10533523B2 (en) Device for pressurizing propellant tanks of a rocket engine
Haeseler et al. Green propellant propulsion concepts for space transportation and technology development needs
US20100257839A1 (en) Hydrocarbon-fueled rocket engine with endothermic fuel cooling
KR20160011656A (ko) 듀얼 모드 화학 로켓 엔진, 및 상기 로켓 엔진을 포함하는 듀얼 모드 추진 시스템
CN109162831A (zh) 固液动力发动机及应用其的火箭
KR101807986B1 (ko) 선박의 연료 탱크 배열체 및 선박의 탱크 컨테이너를 작동하는 방법
KR101571295B1 (ko) 결빙방지 기화장치
JP2018508695A (ja) ロケットエンジンの液体酸素タンク用加圧装置
RU2554126C1 (ru) Объединенная двигательная установка ракетного блока
US9151246B2 (en) Thrust chamber and rocket engine system
RU172588U1 (ru) Трехкомпонентная жидкостная ракетная установка на криогенных экологически чистых компонентах
RU2542623C1 (ru) Способ работы кислородно-керосиновых жидкостных ракетных двигателей (жрд) и ракетная двигательная установка
RU2538190C1 (ru) Двигательная установка реактивной системы управления летательного аппарата
RU2607427C2 (ru) Устройство для нагрева текучей среды
EP2761159B1 (en) Propulsion system
RU2654235C1 (ru) Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации
KR101596659B1 (ko) 액체메탄과 액체산소를 추진제로 사용하는 전추진제 다단연소사이클 액체로켓엔진 시스템
RU2773694C1 (ru) Жидкостный ракетный двигатель на криогенном топливе
RU2701821C1 (ru) Теплогазогенераторная установка получения и использования водородсодержащего газообразного топлива
US20180283321A1 (en) System for feeding liquid propellants to combustion chamber of an engine
RU2442010C2 (ru) Способ повышения энергетики жидких компонентов топлива ракет-носителей с жидкостными ракетными двигателями и устройство для его реализации
US20130019586A1 (en) Propulsion method and device comprising a liquid oxidant and a solid compound
US7533530B2 (en) Engine for the efficient production of an energized fluid