RU2550581C2 - Способ улучшения временного разрешения цифровых кремниевых фотоумножителей - Google Patents

Способ улучшения временного разрешения цифровых кремниевых фотоумножителей Download PDF

Info

Publication number
RU2550581C2
RU2550581C2 RU2011153728/28A RU2011153728A RU2550581C2 RU 2550581 C2 RU2550581 C2 RU 2550581C2 RU 2011153728/28 A RU2011153728/28 A RU 2011153728/28A RU 2011153728 A RU2011153728 A RU 2011153728A RU 2550581 C2 RU2550581 C2 RU 2550581C2
Authority
RU
Russia
Prior art keywords
reference clock
clock signal
tdc
time
detected
Prior art date
Application number
RU2011153728/28A
Other languages
English (en)
Other versions
RU2011153728A (ru
Inventor
Томас ФРАХ
Гордиан ПРЕШЕР
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2011153728A publication Critical patent/RU2011153728A/ru
Application granted granted Critical
Publication of RU2550581C2 publication Critical patent/RU2550581C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/248Silicon photomultipliers [SiPM], e.g. an avalanche photodiode [APD] array on a common Si substrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/249Measuring radiation intensity with semiconductor detectors specially adapted for use in SPECT or PET
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/005Time-to-digital converters [TDC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • H03M1/0827Continuously compensating for, or preventing, undesired influence of physical parameters of noise of electromagnetic or electrostatic field noise, e.g. preventing crosstalk by shielding or optical isolation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • H03M1/0836Continuously compensating for, or preventing, undesired influence of physical parameters of noise of phase error, e.g. jitter

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nonlinear Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к области детекторов. Модуль (10) детектора излучения для использования во времяпролетном позитронно-эмиссионном (TOF-PET) томографическом сканере (8) формирует триггер-сигнал, указывающий обнаруженное событие излучения. Схема синхронизации (22), включающая в себя первый аналого-цифровой преобразователь (30) времени (TDC) и второй TDC (31), конфигурируется для вывода скорректированной временной метки для обнаруженного события излучения на основе первой временной метки, определенной первым TDC (30), и второй временной метки, определенной вторым TDC (31). Первый TDC синхронизируется по первому опорному тактовому сигналу (40, 53), а второй TDC синхронизируется по второму опорному тактовому сигналу (42, 54), причем первый и второй опорные тактовые сигналы являются асинхронными. Технический результат - улучшение временного разрешения схем синхронизации. 5 н. и 10 з.п. ф-лы, 4 ил.

Description

Нижеследующее относится к области детекторов. Оно находит конкретное применение в сочетании с детекторами излучений для времяпролетной позитронно-эмиссионной томографии (TOF-PET), но также может найти применение в других ядерных медицинских устройствах для формирования изображений, применяющих пропускание излучения, или радиофармацевтических препаратах, например, в устройствах для однофотонной эмиссионной компьютерной томографии (SPECT) и устройствах для позитронно-эмиссионной томографии (PET), а также планарных рентгеновских устройствах для формирования изображений, в радиоастрономии, детекторах для частиц с высокой энергией (например, излучение Черенкова, синхротронное излучение, колориметрические детекторы и т.д.) и т.п., и будет описываться с конкретной ссылкой на них. Нужно будет принять во внимание, что изобретение также может применяться к другим типам детекторов излучения и к системам и способам, применяющим детекторы излучений.
В позитронно-эмиссионной томографии (PET) радиофармацевтический препарат вводится в объект, изображение которого формируется, в котором события радиоактивного распада радиофармацевтического препарата создают позитроны. Каждый позитрон взаимодействует с электроном для порождения события аннигиляции позитронно-электронной пары, которое излучает два противоположно направленных гамма-луча (γ). Используя схему обнаружения совпадения, кольцевая антенная решетка детекторов излучения, окружающих изображаемый объект, обнаруживает события совпадающих противоположно направленных гамма-лучей, соответствующие позитронно-электронной аннигиляции(ям). Линия ответа (LOR), соединяющая два совпадающих обнаружения, пересекает положение события аннигиляции позитронно-электронной пары. Такие линии ответа аналогичны проекционным данным и могут восстанавливаться для создания двух- или трехмерного изображения. Во времяпролетной PET (TOF-PET) небольшая разница во времени между обнаружением событий двух совпадающих γ-лучей используется для локализации события аннигиляции вдоль LOR.
На производительность систем PET влияет чувствительность, временное разрешение и характеристика, а также шум. Модули детекторов излучения PET традиционно включают в себя массив фотоумножительных трубок (PMT), оптически соединенный со сцинтиллирующим кристаллом, используя промежуточный световодный слой. Также были предложены твердотельные фотоэлектрические детекторы, такие как цифровые кремниевые фотоумножители (SiPM), оптически соединенные с пикселизированным (мозаичным) сцинтиллятором. SiPM основываются на лавинных фотодиодах (APD), работающих в режиме Гейгера. Они характеризуются повышенной чувствительностью к γ-лучам и менее чувствительны к эффектам рассеяния; однако они склонны к подсчетам темновых отсчетов, которые не создают фотонного поглощения.
Аналого-цифровой преобразователь времени (TDC) выводит временную метку, ассоциированную с каждым обнаруженным событием излучения. Временная метка используется схемой обнаружения совпадений для определения совпадающих пар и соответствующих LOR и схемой измерения времени пролета. Традиционно TDC состоят из грубого счетчика и точного счетчика. Грубый счетчик является цифровым счетчиком, сконфигурированным для подсчета передних фронтов опорного тактового импульса. Когда обнаруживается событие, переключатель на входе грубого счетчика фиксируется в регистре, в качестве части временной метки. Точный счетчик измеряет разницу во времени между обнаруженным событием и последующим передним фронтом опорного тактового импульса в качестве оставшейся части временной метки. Результатом является временная метка с временным разрешением обычно меньше 100 пикосекунд.
Однако событие может обнаруживаться или не обнаруживаться из-за явления, известного как метастабильность. Метастабильность является неустойчивым состоянием, которое сохраняется в течение неопределенного периода времени, обычно возникающим в синхронных схемах с одним или несколькими асинхронными входами. Переключатель является одним из устройств, которое восприимчиво к метастабильности при определенных условиях. Переключатель имеет два логических состояния, причем изменение во входном сигнале побуждает переключатель чередовать состояния. Однако, если входной сигнал изменяется в моменты времени настройки или занятости, он может войти в метастабильное состояние между двумя логическими состояниями. Метастабильное состояние в конечном счете спадает до одного из двух логических состояний, но время спада может быть значительным, делая сложными точные измерения времени.
В примере TDC входной сигнал подключается к переключателю, который фиксируется в ответ на сигнал обнаружения, сформированный фотоэлектрическим детектором. Если сигнал обнаружения возникает во время переднего фронта опорного тактового импульса и в результате переключатель входит в метастабильное состояние, то событие не обнаруживается до следующего переднего фронта опорного тактового импульса. Метастабильность на входе TDC может серьезно влиять на точность временной метки, соответственно уменьшая точность обнаружения совпадений, что может внести значительный шум в изображения.
Твердотельная природа SiPM позволяет интеграцию цифровых TDC рядом с APD, соответственно улучшая временное разрешение системы PET. Предложены переключатели с более короткими периодами времени установки и удержания; однако традиционные реализации TDC по-прежнему страдают от метастабильности из-за конструкции схемы.
Данная заявка предоставляет новую и улучшенную схему синхронизации, подходящую для детекторов PET или другой электроники, которая решает вышеуказанные проблемы и другие.
В соответствии с одним аспектом представлена схема синхронизации с первым и вторым TDC. Первый TDC конфигурируется для вывода первой временной метки на основе первого опорного тактового сигнала, а второй TDC конфигурируется для вывода второй временной метки на основе второго опорного тактового сигнала. Схема выводит скорректированную временную метку на основе первой и второй временной метки.
В соответствии с другим аспектом представлен способ назначения временной метки. Формируются первый и второй опорные тактовые сигналы, причем опорные тактовые сигналы являются несинхронными. Триггер-сигнал принимается в ответ на обнаруженное событие. Первая временная метка определяется на основе временного отношения между триггер-сигналом и первым тактовым опорным сигналом, и вторая временная метка определяется на основе временного отношения между триггер-сигналом и вторым тактовым опорным сигналом. Скорректированная временная метка выводится на основе первой и второй временных меток.
Одно из преимуществ состоит в том, что улучшается временное разрешение схем синхронизации.
Другое преимущество состоит в избыточности.
Другие преимущества настоящего изобретения будут оценены обычными специалистами в данной области техники после прочтения и понимания нижеследующего подробного описания.
Изобретение может принимать форму различных компонентов и схем компонентов и различных этапов и схем этапов. Чертежи предназначаются только для целей иллюстрации предпочтительных вариантов осуществления и не должны быть истолкованы как ограничивающие изобретение.
Фиг.1 схематично показывает медицинскую систему формирования изображений, применяющую модули детектора излучения с мозаичным сцинтиллятором;
фиг.2 схематично показывает схему синхронизации из фиг.1;
фиг.3 - временная диаграмма одного варианта осуществления схемы синхронизации;
фиг.4 - временная диаграмма другого варианта осуществления схемы синхронизации.
Со ссылкой на фиг.1 в качестве пояснительного примера описывается радиационный томографический сканер 8. Как правило, раскрытая в этом документе схема синхронизации может применяться на практике почти в любом приложении обработки сигналов, которое формирует цифровое представление указателей времени для множества стохастических импульсов сигнала. Например, схема синхронизации может использоваться совместно с масс-спектрометрией, физикой частиц с высокой энергией, радиоастрономией, формированием медицинских изображений или т.п., где импульсы сигнала представляют обнаруженное событие.
Радиационный томографический сканер 8 включает в себя множество модулей 10 детектора излучения, ориентированных на прием излучения из поля 12 сканирования. Модули 10 детектора излучения размещаются в нескольких соседних кольцах в осевом направлении; однако могут использоваться другие размещения модулей детектора излучения. Как правило, модули 10 детектора излучения помещаются в корпус 14 томографического сканера 8 и таким образом невидимы снаружи. Каждое кольцо состоит из сотен или тысяч модулей 10 детектора излучения. В некоторых сканерах предоставляется только одно кольцо модулей 10 детектора излучения, в других предоставляется вплоть до пяти колец модулей 10 детектора излучения или больше. Следует принять во внимание, что вместо кольцевой структуры детектора, показанной на фиг.1, могут использоваться детекторные головки. Томографический сканер 8 включает в себя опору 16 объекта для размещения объекта или пациента в поле 12 сканирования. При желании опора 16 линейно перемещается в осевом направлении, обычно поперечном кольцам модулей 10 детектора излучения, чтобы облегчить получение данных трехмерного изображения на увеличенном осевом расстоянии.
Каждый модуль 10 детектора излучения обычно включает в себя сцинтиллирующий кристалл, расположенный рядом с областью исследования. Сцинтиллирующий кристалл поглощает γ-луч (например, 511 килоэлектронвольт в сканерах PET), чтобы создать сцинтилляцию оптических фотонов. Фотоны обнаруживаются на противоположном конце сцинтиллирующего кристалла посредством решетки фотоэлектрических детекторов, например фотоэлектронных умножителей, фотодиодов, SiPM или т.п. В другом варианте осуществления сцинтиллирующий кристалл является мозаичным сцинтиллятором, созданным из множества оптически изолированных сцинтиллирующих кристаллов, причем каждый соединен с одним фотоэлектрический детектором. При обнаружении фотонов фотоэлектрический детектор выводит сигнал или множество сигналов, если несколько фотоэлектрических детекторов наблюдают событие сцинтилляции, которое указывает на обнаруженное событие излучения. Каждый фотоэлектрический детектор функционально подключен к блоку 20 триггера, который отслеживает сигнал на выходе фотоэлектрическиого детектора. Если обнаруживается сигнал, то блок триггера формирует триггер-сигнал для схемы 22 синхронизации, чтобы присвоить временную метку обнаруженному событию излучения.
Со ссылкой на фиг.2, схема 22 синхронизации включает в себя, по меньшей мере, два аналого-цифровых преобразователя времени (TDC) 30, 31, каждый из которых принимает один и тот же входной сигнал от блока 20 триггера. Каждый TDC состоит из грубого счетчика 32, 33 и точного счетчика 34, 35. Грубый счетчик является цифровым счетчиком, сконфигурированным для подсчета передних фронтов опорного тактового импульса, а точный счетчик измеряет разницу во времени между обнаруженным событием и последующим передним фронтом опорного тактового импульса, в качестве оставшейся части временной метки. Измерение разницы во времени, выполненное точным счетчиком, основывается на измерении времени с пересчетом в расстояние в соответствии с одним из: линии с отводами, верньера, сжатия импульсов и разряда конденсатора постоянного тока или т.п.
На входе каждого TDC запоминающий элемент 36, 37, например, переключатель, фиксатор или т.п. фиксируются, когда присутствует триггер-сигнал. Если вход устойчивый, переключатель зафиксируется на последующем переднем фронте опорного тактового импульса. Однако если триггер-сигнал принимается на входе во время метастабильной области, то есть в периоды настройки или занятости, то переключатель может стать метастабильным и триггер-сигнал не зафиксируется до следующего переднего фронта опорного тактового импульса, приводя к значительному увеличению ошибки временной метки.
Чтобы уменьшить ошибки синхронизации, происходящие из-за метастабильности на входе, каждый TDC синхронизируется по уникальному опорному тактовому импульсу. Первый TDC 30 синхронизируется по первому опорному сигналу, а второй TDC 32 синхронизируется по второму опорному сигналу. В одном варианте осуществления (фиг.3) передний фронт первого опорного сигнала соответствует заднему фронту второго опорного сигнала, и наоборот, чтобы опорные сигналы являлись взаимно обратными версиями друг друга. В другом варианте осуществления (фиг.4) наряду с поддержанием одинаковой частоты колебания два опорных сигнала смещаются относительно друг друга. Таким образом, обнаруженное событие излучения измеряется каждым TDC отдельно, таким образом, предоставляя две независимые временные метки, имеющие отношение к взаимодополняющим тактовым импульсам. Так как оба счетчика работают на одинаковой (взаимно обратной или сдвинутой) тактовой частоте, их значения должны соответствовать друг другу перед передним фронтом первого опорного тактового сигнала. Компаратор 38 может использоваться для обнаружения любых отличий, например, из-за электромагнитных помех, события излучения или т.п. и инициирования синхронизации или сброса системы.
Фиг.3 изображает временную диаграмму, которая соотносит первый опорный сигнал 40 с взаимно обратным вторым опорным сигналом 42. Если обнаруженное событие излучения возникает во время метастабильной области 44 первого TDC 30 в момент 46 времени, то пройдет весь цикл TDC1, пока можно будет зарегистрировать временную метку на следующем переднем фронте в момент 48 времени, который может составлять порядка нескольких наносекунд. Поскольку вход будет устойчивым до последующего переднего фронта второго опорного сигнала 42, второй TDC 32 зарегистрирует обнаруженное событие излучения в момент 50, таким образом, уменьшая ошибку временной метки. И наоборот, если обнаруженное событие излучения возникает во время метастабильной области 51 второго TDC, то первый TDC зарегистрирует временную метку в момент 48 времени вместо момента 52 времени позже всего цикла TDC2. Так как оба счетчика запускаются одинаковым (положительным или взаимно обратным) тактовым импульсом, их значения должны быть идентичны перед передним фронтом положительного тактового импульса. Компаратор может использоваться для обнаружения любых отличий, например, из-за электромагнитных помех, события излучения или т.п. и инициирования синхронизации или сброса системы.
Фиг.4 изображает временную диаграмму, которая соотносит первый опорный сигнал 53 со сдвинутым вторым опорным сигналом 54. Если обнаруженное событие излучения возникает во время метастабильной области 55 первого TDC 30 в момент 56 времени, то пройдет весь цикл TDC1, пока можно будет зарегистрировать временную метку на следующем переднем фронте в момент 57 времени, который может составлять порядка нескольких наносекунд. Поскольку вход будет устойчивым до последующего переднего фронта второго опорного сигнала, второй TDC 32 зарегистрирует обнаруженное событие излучения в момент 58 времени, соответственно уменьшая ошибку временной метки. Наоборот, если обнаруженное событие излучения возникает во время метастабильной области 59 в момент 58 времени второго TDC, то первый TDC зарегистрирует временную метку в момент 57 времени, вместо ожидания всего цикла TDC2.
Снова со ссылкой на фиг.2, в случае когда действительны обе временные метки для одного обнаруженного события излучения, схема, такая как справочная таблица 60, 62 вместе с блоком 64 обработки данных, определяет, какой TDC следует использовать для заданной временной метки. В качестве альтернативы временные метки могут подлежать корреляции с использованием статистического среднего или другого математического/статистического отношения. При желании блок обработки может блокировать ненадежные события/элементы выборки для улучшения производительности и учета последовательной деградации сигнала со временем. Вопросы касательно деградации сигнала преобладают в радиоастрономии, в которой обнаруживается значительная доза излучения.
Снова со ссылкой на фиг.1 в пациента на опоре 16 вводится радиофармацевтический препарат. События излучения обнаруживаются модулями 10 детектора излучения. Скорректированная временная метка ассоциируется схемой 22 синхронизации с каждым измеренным событием сцинтилляции. Детектор 70 совпадений определяет совпадающие пары из временных меток, нанесенных схемой 22 синхронизации, и LOR, заданной каждой совпадающей парой. Преобразующий процессор 72 преобразует LOR в представление изображения, которое сохранятся в памяти 76 изображений. В системе TOF-PET преобразующий процессор также локализует каждое событие путем получения информации времени пролета из временных меток для каждой LOR. Чем точнее временная метка, тем точнее можно локализовать каждое событие на его LOR. Графический интерфейс пользователя или устройство 58 отображения включает в себя пользовательское устройство ввода, которое клинический врач может использовать для выбора последовательностей и протоколов сканирования, отображения данных изображения и т.п. Также следует принять во внимание, что дополнительные TDC, кроме двух описанных, могут быть реализованы в схеме 22 синхронизации, чтобы повысить избыточность и улучшить временное разрешение.
Изобретение описано со ссылкой на предпочтительные варианты осуществления. На основе изучения предшествующего подробного описания могут быть созданы модификации и изменения. Подразумевается, что изобретение должно рассматриваться как включающее в себя все такие модификации и изменения в той мере, в какой они входят в объем прилагаемой формулы изобретения либо ее эквивалентов.

Claims (15)

1. Схема синхронизации (22), содержащая:
первый аналого-цифровой преобразователь (30) времени (TDC), сконфигурированный для вывода первой временной метки в ответ на обнаруженное событие на основе первого опорного тактового сигнала (40, 53);
по меньшей мере, второй TDC (31), сконфигурированный для вывода второй временной метки в ответ на упомянутое обнаруженное событие на основе второго опорного тактового сигнала (42, 54), причем, по меньшей мере, первый и второй опорные тактовые сигналы смещены во времени; и
схему (60, 62), функционально подключенную к каждому TDC, сконфигурированную для вывода скорректированной временной метки на основе, по меньшей мере, первой и второй временных меток.
2. Схема синхронизации по п. 1, в которой
первый опорный тактовый сигнал (40, 53) и второй опорный тактовый сигнал (42, 54) осциллируют на одинаковой частоте; и
передний фронт (46, 48, 56, 57) первого опорного тактового сигнала не совпадает с передним фронтом (50, 52, 58) или задним фронтом второго опорного тактового сигнала.
3. Схема синхронизации по п. 1, в которой
первый опорный тактовый сигнал (40, 53) и второй опорный тактовый сигнал (42, 54) осциллируют на одинаковой частоте; и
передний фронт (46, 48, 56, 57) первого опорного тактового сигнала совпадает с задним фронтом второго опорного тактового сигнала (50, 52, 58).
4. Схема синхронизации по любому из пп. 1-3, причем каждый TDC дополнительно включает в себя:
грубый счетчик (32, 33), сконфигурированный для подсчета количества передних фронтов у соответствующего опорного тактового сигнала; и
точный счетчик (34, 35), работающий с более высоким разрешением, чем соответствующий опорный тактовый сигнал, и сконфигурированный для измерения разницы во времени между обнаруженным событием и следующим передним фронтом соответствующего опорного тактового импульса.
5. Схема синхронизации по п. 4, в которой измерение разницы во времени, выполненное точным счетчиком (34, 35), основывается на измерении времени с пересчетом в расстояние в соответствии с одним из линии с отводами или верньера, или другими способами, подобно сжатию импульсов или разряду конденсатора постоянного тока.
6. Схема синхронизации по п. 4, в которой каждый грубый счетчик (32, 33) дополнительно включает в себя:
запоминающий элемент (36, 37), сконфигурированный для фиксации обнаруженного события и переднего фронта опорного тактового импульса.
7. Схема синхронизации по любому из пп. 1-3, в которой
когда событие не обнаруживается первым TDC и обнаруживается вторым TDC, то скорректированная временная метка эквивалентна второй временной метке;
когда событие обнаруживается первым TDC и не обнаруживается вторым TDC, то временная метка эквивалентна первой временной метке; и
когда событие обнаруживается и первым, и вторым TDC, то скорректированная временная метка основывается на первой и второй временной метке.
8. Схема синхронизации по п. 4, дополнительно включающая в себя компаратор (38), сконфигурированный для обнаружения отличий между первым счетчиком в первом и втором TDC.
9. Модуль (10) детектора излучения, содержащий:
сцинтиллятор, который формирует оптические фотоны в ответ на принятое излучение;
множество фотоэлектрических детекторов, таких как кремниевые фотоумножители, оптически соединенных со сцинтиллятором, сконфигурированных для формирования триггер-сигнала в ответ на обнаруженные фотоны; и
схему синхронизации (22) по любому из пп. 1-8.
10. Ядерный медицинский сканер изображений, содержащий:
множество модулей обнаружения излучения по п. 9, геометрически размещенных вокруг поля (12) сканирования;
детектор (70) совпадений, который обнаруживает пары обнаруженных событий излучения и определяет линии ответа, соответствующие совпадающим парам; и
преобразующий процессор (72), который преобразует линии ответа в представление изображения.
11. Способ назначения временной метки обнаруженному событию, включающий в себя этапы, на которых:
формируют первый опорный тактовый сигнал (40, 53);
формируют, по меньшей мере, второй опорный тактовый сигнал (42, 54), причем, по меньшей мере, первый опорный тактовый сигнал и второй опорный тактовый сигнал являются несинхронными;
принимают триггер-сигнал в ответ на обнаруженное событие;
определяют первую временную метку на основе временного отношения между триггер-сигналом и первым опорным тактовым импульсом;
определяют, по меньшей мере, вторую временную метку на основе временного отношения между триггер-сигналом и, по меньшей мере, вторым опорным тактовым импульсом; и
выводят скорректированную временную метку на основе, по меньшей мере, первой временной метки и второй временной метки.
12. Способ по п. 11, в котором
первый опорный сигнал и второй опорный сигнал осциллируют на одинаковой частоте; и
передний фронт первого опорного тактового сигнала не совпадает с передним фронтом или задним фронтом второго опорного тактового сигнала.
13. Способ по п. 11, в котором
первый опорный сигнал и второй опорный сигнал осциллируют на одинаковой частоте; и
передний фронт первого опорного тактового сигнала совпадает с задним фронтом второго опорного тактового сигнала.
14. Способ по любому из пп. 12 и 13, дополнительно включающий в себя этапы, на которых:
определяют первую временную метку;
подсчитывают количество передних фронтов первого опорного тактового сигнала;
измеряют разницу во времени между обнаруженным событием и следующим передним фронтом соответствующего опорного тактового импульса с более высоким разрешением, чем у первого опорного тактового сигнала; и
определяют вторую временную метку;
подсчитывают количество передних фронтов второго опорного тактового сигнала;
измеряют разницу во времени между обнаруженным событием и следующим передним фронтом второго опорного тактового импульса с более высоким разрешением, чем у второго опорного тактового сигнала.
15. Способ формирования изображений, включающий в себя этапы, на которых:
обнаруживают события излучения;
назначают каждому событию излучения временную метку в соответствии со способом по любому из пп.11-13;
выравнивают пары совпадающих событий излучения исходя из временных меток;
определяют LOR для каждой пары совпадающих событий излучения;
преобразуют LOR в представление изображения.
RU2011153728/28A 2009-05-28 2010-04-15 Способ улучшения временного разрешения цифровых кремниевых фотоумножителей RU2550581C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18170509P 2009-05-28 2009-05-28
US61/181,705 2009-05-28
PCT/IB2010/051647 WO2010136910A2 (en) 2009-05-28 2010-04-15 A method to improve the time resolution of digital silicon photomultipliers

Publications (2)

Publication Number Publication Date
RU2011153728A RU2011153728A (ru) 2013-07-10
RU2550581C2 true RU2550581C2 (ru) 2015-05-10

Family

ID=43223164

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011153728/28A RU2550581C2 (ru) 2009-05-28 2010-04-15 Способ улучшения временного разрешения цифровых кремниевых фотоумножителей

Country Status (8)

Country Link
US (2) US8822935B2 (ru)
EP (1) EP2438469B1 (ru)
JP (1) JP5771195B2 (ru)
KR (1) KR101690318B1 (ru)
CN (1) CN102449503B (ru)
BR (1) BRPI1008279A2 (ru)
RU (1) RU2550581C2 (ru)
WO (1) WO2010136910A2 (ru)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034364B2 (ja) * 2011-04-05 2016-11-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 向上された時間精度を有する時間−デジタル変換を用いる検出器アレイ
US9176241B2 (en) 2011-08-03 2015-11-03 Koninklijke Philips N.V. Position-sensitive readout modes for digital silicon photomultiplier arrays
US8822933B2 (en) * 2012-06-21 2014-09-02 General Electric Company Time-to-digital converter for a medical imaging system
CN102783964B (zh) * 2012-07-02 2014-03-05 苏州瑞派宁科技有限公司 Pet成像中单事件列表式数据的同步方法及***
WO2015173530A2 (fr) * 2014-05-16 2015-11-19 Alain Iltis Procédé pour améliorer la résolution en énergie de détecteurs de rayons gamma a scintillation; système, composant et application associes
KR101639064B1 (ko) 2014-11-07 2016-07-12 서울대학교산학협력단 이종 샘플링 지연선 기반 시간-디지털 변환기
US9854231B2 (en) * 2014-12-18 2017-12-26 General Electric Company Silicon photomultipliers with internal calibration circuitry
US9606245B1 (en) 2015-03-24 2017-03-28 The Research Foundation For The State University Of New York Autonomous gamma, X-ray, and particle detector
CN104977601B (zh) * 2015-06-20 2017-12-15 明峰医疗***股份有限公司 一种基于SiPM的PET***的延时测算方法
CN106405607A (zh) * 2015-11-19 2017-02-15 南京瑞派宁信息科技有限公司 一种切伦科夫单事件的探测方法与装置
CN106388768A (zh) * 2015-11-19 2017-02-15 南京瑞派宁信息科技有限公司 一种切伦科夫辐射成像方法与***
EP3179225B1 (en) 2015-12-09 2021-04-28 ID Quantique S.A. Apparatus and method for low latency, reconfigurable and picosecond resolution time controller
US10261201B2 (en) 2016-04-04 2019-04-16 General Electric Company Method for improving timing resolution using depth of interaction correction in PET detector
US9817134B1 (en) * 2016-09-12 2017-11-14 General Electric Company Universal readout for light-sharing detector
JP6881074B2 (ja) 2017-06-22 2021-06-02 株式会社デンソー 光検出器
JP7043218B2 (ja) * 2017-10-26 2022-03-29 シャープ株式会社 光センサ、距離測定装置、および電子機器
US10681295B2 (en) * 2017-10-30 2020-06-09 Omnivision Technologies, Inc. Time of flight camera with photon correlation successive approximation
DE102018203533A1 (de) * 2018-03-08 2019-09-12 Ibeo Automotive Systems GmbH Empfangsanordnung zum Empfang von Lichtsignalen und Verfahren zum Empfangen von Lichtsignalen
CN109374139B (zh) * 2018-08-22 2020-06-16 南京邮电大学 一种单光子飞行时间检测电路及测量方法
DE102019205731A1 (de) * 2019-04-18 2020-10-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zeit-zu-Digital-Wandler-Anordnung
EP4000177A1 (en) 2019-07-19 2022-05-25 Koninklijke Philips N.V. Time-domain filtering of gamma events
CN111123343B (zh) * 2019-12-30 2023-06-27 南昌大学 一种双时步pet***成像装置与方法
CN113274043A (zh) * 2020-01-31 2021-08-20 佳能医疗***株式会社 放射线诊断装置及放射线诊断方法
DE102020210096A1 (de) * 2020-08-10 2022-02-10 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Ermitteln von Informationen eines Bussystems
US11736110B2 (en) 2021-09-30 2023-08-22 Shaoxing Yuanfang Semiconductor Co., Ltd. Time-to-digital converter (TDC) to operate with input clock signals with jitter
US11592786B1 (en) 2022-05-10 2023-02-28 Shaoxing Yuanfang Semiconductor Co., Ltd. Time-to-digital converter (TDC) measuring phase difference between periodic inputs
US20230384738A1 (en) * 2022-05-31 2023-11-30 Microsoft Technology Licensing, Llc Time to digital converter (tdc) circuit with self-adaptive time granularity and related methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007138975A (ru) * 2005-04-22 2009-04-27 Конинклейке Филипс Электроникс Н.В. (Nl) Цифровой кремниевый фотоумножитель для врп-пэт

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6754613B2 (en) 2000-03-17 2004-06-22 Vector 12 Corporation High resolution time-to-digital converter
JP2004012279A (ja) * 2002-06-06 2004-01-15 Mitsubishi Electric Corp パルス間隔測定回路
US6909672B2 (en) * 2002-09-24 2005-06-21 General Electric Company Time-to-voltage converter
US6852978B2 (en) 2002-10-31 2005-02-08 General Electric Company Crystal-based coincidence timing calibration method
WO2004099865A2 (en) 2003-05-02 2004-11-18 Massachusetts Institute Of Technology Digital photon-counting geiger-mode avalanche photodiode solid-state monolithic intensity imaging focal-plane with scalable readout circuitry
US7091489B2 (en) 2003-10-16 2006-08-15 Brookhaven Science Associates, Llc Positron emission tomography wrist detector
US7205924B2 (en) * 2004-11-18 2007-04-17 Texas Instruments Incorporated Circuit for high-resolution phase detection in a digital RF processor
EP1835307A1 (en) * 2006-03-14 2007-09-19 Paul Scherrer Institut Segmented electrical or optical delay line with interleaved tap for 3D image device readout
US7705314B2 (en) * 2006-06-06 2010-04-27 General Electric Company Method and apparatus for PET time of flight generation of compression sinogram and image reconstruction
EP2033017B1 (en) * 2006-06-15 2015-08-26 Koninklijke Philips N.V. Integrated multi-channel time-to-digital converter for time-of-flight pet
WO2008018264A1 (fr) * 2006-08-08 2008-02-14 Shimadzu Corporation appareil de tomographie informatisée par positrons
US7403589B1 (en) * 2007-03-27 2008-07-22 General Electric Company Photon counting CT detector using solid-state photomultiplier and scintillator
US8319186B2 (en) 2007-08-08 2012-11-27 Koninklijke Philips Electronics N.V. Silicon photomultiplier trigger network
US7737404B2 (en) 2007-09-17 2010-06-15 Siemens Medical Solutions Usa, Inc. Signal acquisition in PET scanners
US8193866B2 (en) * 2007-10-16 2012-06-05 Mediatek Inc. All-digital phase-locked loop
CN102112931B (zh) * 2008-08-01 2012-07-25 株式会社爱德万测试 时间测量电路、时间测量方法、以及使用其的时间数字转换器和测试装置
US7999707B2 (en) * 2008-12-02 2011-08-16 Electronics And Telecommunications Research Institute Apparatus for compensating for error of time-to-digital converter
JP5397471B2 (ja) * 2009-06-24 2014-01-22 富士通株式会社 Tdc回路及びadpll回路
JP6034364B2 (ja) * 2011-04-05 2016-11-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 向上された時間精度を有する時間−デジタル変換を用いる検出器アレイ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007138975A (ru) * 2005-04-22 2009-04-27 Конинклейке Филипс Электроникс Н.В. (Nl) Цифровой кремниевый фотоумножитель для врп-пэт

Also Published As

Publication number Publication date
EP2438469A2 (en) 2012-04-11
US20120068077A1 (en) 2012-03-22
JP5771195B2 (ja) 2015-08-26
WO2010136910A3 (en) 2011-11-24
WO2010136910A2 (en) 2010-12-02
US9405024B2 (en) 2016-08-02
US20140336987A1 (en) 2014-11-13
CN102449503B (zh) 2016-08-17
KR20120028337A (ko) 2012-03-22
BRPI1008279A2 (pt) 2019-09-24
CN102449503A (zh) 2012-05-09
JP2012528321A (ja) 2012-11-12
EP2438469B1 (en) 2018-07-11
RU2011153728A (ru) 2013-07-10
KR101690318B1 (ko) 2016-12-27
US8822935B2 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
RU2550581C2 (ru) Способ улучшения временного разрешения цифровых кремниевых фотоумножителей
RU2518589C2 (ru) Усовершенствованная температурная компенсация и схема управления для однофотонных счетчиков
US8269177B2 (en) Multiplexing readout scheme for a gamma ray detector
RU2581724C2 (ru) Времяпролетные измерения в позитронной эмиссионной томографии
US11644586B2 (en) Method and system for evaluating the working condition of a detector
US8294110B2 (en) Method for improved correction of SiPM non-linearity in multiplexed radiation detectors
EP2876464A1 (en) Data acquisition device, pair annihilation gamma ray detector, and pair annihilation gamma ray detection method
US8969814B2 (en) System and method of determining timing triggers for detecting gamma events for nuclear imaging
US8822933B2 (en) Time-to-digital converter for a medical imaging system
US9091771B2 (en) System and method for improving detection of gamma interactions in a positron emission tomography system
KR101352771B1 (ko) 시프트 레지스터를 이용한 동시계수회로 및 이를 포함하는 pet 데이터 획득 시스템, 방사선 계수시스템 및 의료진단기기
WO2021238929A1 (zh) 一种成像设备的状态检测方法和***
Gros-Daillon et al. First characterization of the SPADnet sensor: a digital silicon photomultiplier for PET applications
Aguilar et al. Time of flight measurements based on FPGA using a breast dedicated PET
WO2017084530A1 (en) Detector in an imaging system
CN117075175A (zh) 基于SiPM的PET探测器的晶体间散射事件的时间修正方法及***
Gasparini et al. Characterizing single-and multiple-timestamp time of arrival estimators with digital SiPM PET detectors

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200416