RU2550223C1 - ГЕТЕРОМЕРНЫЕ ПЕПТИДЫ НА ОСНОВЕ ИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАНА, ИНГИБИРУЮЩИЕ АГРЕГАЦИЮ ТРОМБОЦИТОВ - Google Patents

ГЕТЕРОМЕРНЫЕ ПЕПТИДЫ НА ОСНОВЕ ИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАНА, ИНГИБИРУЮЩИЕ АГРЕГАЦИЮ ТРОМБОЦИТОВ Download PDF

Info

Publication number
RU2550223C1
RU2550223C1 RU2014116844/04A RU2014116844A RU2550223C1 RU 2550223 C1 RU2550223 C1 RU 2550223C1 RU 2014116844/04 A RU2014116844/04 A RU 2014116844/04A RU 2014116844 A RU2014116844 A RU 2014116844A RU 2550223 C1 RU2550223 C1 RU 2550223C1
Authority
RU
Russia
Prior art keywords
asp
benzo
dimethylformamide
mol
solution
Prior art date
Application number
RU2014116844/04A
Other languages
English (en)
Inventor
Алексей Анатольевич Алексеев
Максим Игоревич Брылев
Вячеслав Леонидович Королев
Дмитрий Сергеевич Лоторев
Антон Юрьевич Лизунов
Людмила Анатольевна Павлова
Наталья Николаевна Белушкина
Original Assignee
Государственное бюджетное образовательное учреждение высшего профессионального образования Первый Московский государственный медицинский университет им. И.М. Сеченова Министерства здравоохранения Российской Федерации (ГБОУ ВПО Первый МГМУ им. И.М. Сеченова Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное бюджетное образовательное учреждение высшего профессионального образования Первый Московский государственный медицинский университет им. И.М. Сеченова Министерства здравоохранения Российской Федерации (ГБОУ ВПО Первый МГМУ им. И.М. Сеченова Минздрава России) filed Critical Государственное бюджетное образовательное учреждение высшего профессионального образования Первый Московский государственный медицинский университет им. И.М. Сеченова Министерства здравоохранения Российской Федерации (ГБОУ ВПО Первый МГМУ им. И.М. Сеченова Минздрава России)
Priority to RU2014116844/04A priority Critical patent/RU2550223C1/ru
Application granted granted Critical
Publication of RU2550223C1 publication Critical patent/RU2550223C1/ru

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Предложены гетеромерные пептиды на основе имидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксана, ингибирующие агрегацию тромбоцитов:
Figure 00000008
,
где R=Phe-Ile-Ala-Asp-Thr; Arg-Tyr-Gly-Asp-Arg; Lys-Ile-Ala-Asp-Asp; His-Ile-Gly-Asp-Asp. 1 ил., 2 табл., 4 пр.

Description

Изобретение относится к фармации, в частности к синтезу фармакологически активных соединений.
Сердечно-сосудистые заболевания являются основной причиной смертности населения в России. Наиболее часто в основе сердечно-сосудистых заболеваний лежит атеротромбоз - процесс патологического тромбообразования, ведущий к инфаркту миокарда и инсульту.
В образовании тромба значимую роль играют гликопротеиновые рецепторы тромбоцитов. Именно связывание фибриногена с активированными GP IIb/IIIa-рецепторами тромбоцитов является конечным звеном в агрегации последних. Ингибиторы GP IIb/IIIa-рецепторов тромбоцитов являются мощными антитромбоцитарными препаратами, так как механизм их действия заключается в блокировании конечного этапа агрегации тромбоцитов - процесса образования мостиков из молекул фибриногена между соседними активированными тромбоцитами. Антагонисты GP IIb/IIIa рецепторов тромбоцитов представлены разными классами химических соединений, однако существенный интерес среди антиагрегантов представляют антагонисты GP IIb/IIIa рецепторов, имеющие пептидную природу.
Известно также, что в результате взаимодействия оксида азота (NO) с тромбоцитами и лейкоцитами снижается их агрегация и адгезия на стенках кровеносных сосудов, что приводит к ингибированию процессов тромбообразования. Нарушения, связанные с нормальным протеканием вышеуказанных реакций, лежат в основе патофизиологических процессов, характерных для развития различных заболеваний сердечно-сосудистой системы. При таких заболеваниях наблюдаются множественные нарушения синтеза эндогенного NO, его рецепции растворимой формой гуанилатциклазы (рГЦ), а также регуляции уровня циклических нуклеотидов и ионов кальция [Dessy С, Ferron О. Pathophysiological Roles of Nitric Oxide: In the Heart and the Coronary Vasculature. Current Medical Chemistry - Anti-mflammatory & Anti-Allergy Agents in Medicinal Chemistry. 2004. Vol. 3. P. 207-216].
К настоящему времени доказано образование оксида азота в результате биотрансформации нитроглицерина и других нитратов, которые используются для лечения сердечно-сосудистых заболеваний в качестве антиишемических и антиангинальных препаратов. Однако, их существенным недостатком является возникновение толерантности и других побочных эффектов при длительном применении [Граник В.Г., Григорьев Н.Б. Оксид азота (NO). Новый путь к поиску лекарственных средств: монография. - М.: Вузовская книга. 2004, 360 с.].
В связи с этим проводится поиск новых соединений, способных образовывать NO в живом организме неэнзиматическим путем. Данный подход рассматривается как актуальное и перспективное направление создания новых, более эффективных в сравнении с известными ранее антигипертензивными и антиагрегантными фармпрепаратами, обладающими антиангинальной и антиишемической активностью.
Один из классов химических соединений, производные которого являются донорами оксида азота - фуроксаны. Фуроксаны рассматриваются как пролекарства, реализующие свою биологическую активность через рГЦ-цГМФ-путь [Граник В.Г., Григорьев Н.Б. Оксид азота (NO). Новый путь к поиску лекарственных средств: монография. - М.: Вузовская книга. 2004, 360 с; Граник В.Г., Каминка М.Э., Григорьев М.Б., Северина И.С., Калинкина М.А., Макаров В.А., Левина В.И. Фуроксанопиримидины как экзогенные доноры оксида азота // Хим. Фарм. Журнал. 2002, Том 36, №10, стр. 7-11].
В патенте RU 2119354 1998 описан направленный транспорт лекарств, заключающийся в связывании in vivo молекул-носителей фармакоактивных соединений с форменными элементами крови. Для связывания синтезированы производные фармакологических агентов и пептида, содержащего RGD последовательность. Однако, в вышеописанном патенте не рассматривается антиагрегационное действие пептида и он используется лишь как носитель фармакоактивных соединений.
В патенте US №2012/021007 2012 г. был проведен скрининг фуроксанов, однако их антиагрегационная активность не исследовалась.
В патентах RU 2123046 1998 г. и RU 2139932 1998 г. описаны фуроксаны как доноры оксида азота и активаторы рГЦ, но данные по их антиагрегационной активности не представлены.
В патенте US №7838023 2010 г. упоминается, что биологически активные производные фуроксана обладают антиагрегационной активностью, однако никаких данных по исследованиям не приведено.
Задачей настоящего изобретения является создание новых эффективных ингибиторов агрегации тромбоцитов с двумя различными механизмами воздействия на агрегацию тромбоцитов, состоящих из двух фармакофор: пептидной - ингибиторы GP IIb/IIIa-рецепторов тромбоцитов и фуроксановой - доноры оксида азота.
Поставленная задача решается гетеромерными пептидами на основе имидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксана общей формулы:
Figure 00000001
где R=Phe-Ile-Ala-Asp-Thr; Arg-Tyr-Gly-Asp-Arg; Lys-Ile-Ala-Asp-Asp; His-Ile-Giy-Asp-Asp.
Предварительный выбор именно этих соединений в качестве вероятных ингибиторов агрегации тромбоцитов сделан на основании результатов математического моделирования.
С помощью программы «Алгокомб» [Ramensky V., Sobol A., Zaitseva N. et al. A novel approach to local similarity of protein binding sites substantially improves computational drug design results // Proteins. - 2007; 69 (2): 349-357] нами выполнено компьютерное моделирование связывания гетеромерных пептидов с имидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксановым фрагментом на N-конце с белком интегрин αIIb/β3. Расчет оценки связывания [Хельтье Х.-Д., Зиппель В., Роньян Д. и др. Молекулярное моделирование: теория и практика. - М.: БИНОМ. Лаборатория знаний, 2009. - 318] с белком интегрин αIIb/β3 проводился для соединений вида Fur-A-B-C-Asp-D, где «Fur» - метиленимидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксан; «А», «В», «С», «D» - L-аминокислотные остатки, структура которых варьировалась в процессе моделирования; в качестве аминокислоты «С» рассматривались глицин или аланин. Всего сгенерировано 48000 молекул.
Для докинга из базы данных PDB (открытая база данных PDB (Protein Data Bank) является общепринятым источником используемой при расчетах информации о пространственной структуре белков) был выбран комплекс белка интегрин αIIb/β3 с идентификатором 2vdp. Докинг начинали с правильного расположения кислотного фрагмента гетеромерного пептида для учета наличия ионной связи лиганда с ионом магния в активном сайте. Так же в процессе докинга учитывали наличие двух молекул воды в активном сайте белка. Молекулы воды образуют водородные связи с С-концевым остатком и с кислородом третьего с С-конца остатка нативного лиганда.
Выбор вышеуказанных четырех соединений из общего количества сгенерированных (48000 молекул) определялся хорошими результатами их оценки связывания с белком интегрин αIIb/β3 (таблица 1).
Figure 00000002
Figure 00000003
Синтез целевых соединений.
Синтез гетеромерных пептидов был выполнен на твердой фазе в условиях автоматического пептидного синтезатора ABI 433А PeptideSynthesizer (AppliedBiosystems, США), используя FastMoc 0.25-стратегию. Стратегия FastMoc 0.25 подразумевает последовательное присоединение остатков аминокислот к нерастворимой полимерной подложке. Базовая лабильная группа Fmoc - 9-флуоренилметоксикарбонил- используется для защиты N-групп каждого аминокислотного остатка. Остатки, которые имеют потенциально реактивные боковые цепи, защищены кислотонеустойчивыми группами.
После удаления группы Fmoc пиперидином следующая защищенная аминокислота добавляется, используя или реактив сцепления, или предварительно активированное производное аминокислоты.
В качестве активатора первой аминокислоты в Fmoc-стратегии в реакции присоединения ее к смоле выступает дициклогексилкарбодиимид (DCC). Реакция протекает в присутствии 4-диметиламинопиридина (DCC/DMAP), который играет роль катализатора процесса.
В качестве активатора второй и последующих аминокислот в Fmoc-стратегии выступает 1-гидроксибензотриазол / дициклогексилкарбодиимид (HOBt/DCC) в диметилформамиде. Реакция протекает с образованием активированной аминокислоты и N,N′-дициклогексилмочевины (DCU).
Все вышеперечисленные операции протекают в пептидном синтезаторе.
Для снятия гетеромерных пептидов со смолы в вытяжном шкафу в полипропиленовой пробирке готовили смесь со следующим соотношением компонентов: 2.5% тианизола (TAN), 2.5% триизопропилсилана (TIPS), 5.0% этандитиола (EDT), 90.0% трифторуксусной кислоты (TFA). Приготовленную смесь помещали на лед до остывания на 20-30 мин. Затем в холодную смесь для снятия гетеромерных пептидов помещали пептид-смолу и перемешивали. Помещали пробирку с пептид-смолой в полипропиленовую пробирку, закрывали и выдерживали на качалке в течение 4 часов.
Экстракция гетеромерных пептидов со смолы проводилась на стеклянном фильтре-воронке в вытяжном шкафу. Воронка предварительно ополаскивалась дважды МТВЕ (метилтретбутиловый эфир). По окончанию снятия сливали смесь со смолой и пептидом на фильтр Шотта. Промывали пробирку, в которой шла реакция TFA, смыв сливали на фильтр. Фильтровали при небольшом вакууме до осушения смолы. Добавляли холодный МТВЕ, тщательно промывали смолу и фильтровали до осушения. Промывали пробирку, в которой находилась пептид-смола, трижды холодным МТВЕ и добавляли смыв к основному сливу. Тщательно перемешивали взвесь, оставляли не менее, чем на 1 час при -20°C. Осадок отфильтровывали, сушили. Схема синтеза гетеромерных пептидов представлена на рисунке 1, где Z = радикалы аминокислот, Pr. Group (Protected Group) = защитные группы аминокислот.
Figure 00000004
Очистку гетеромерных пептидов осуществляли с помощью высокоэффективного препаративного жидкостного хроматографа PtiriFlash 450 (InterChim). Содержание основных веществ после очистки составляло не менее 95%.
Условия ВЭЖХ: картридж InterChim PF-C18 (20g), 15 мкм. Могут использоваться другие обращенные картриджи С18 или С8.
a. Детекторная ячейка: препаративная
b. Скорость потока - 20.0 мл/мин
c. Длина волны: диапазон 200-400 нм
d. Диапазон детектирования: 2 AUFS
e. Величина петли: 2 мл (объем инжекции 1.5-1.8 мл образца)
f. Элюент А: 5.0% ацетонитрила, 0.1% трифторуксусной кислоты в воде
g. Элюент В: 0.1% трифторуксусной кислоты в ацетонитриле
h. Градиент: 10-90% В в течение 12 мин.
Строение синтезированных соединений подтверждено методом хромато-масс-спектроскопии.
Хромато-масс-спектрометрический анализ проводили на приборе Waters MSD SQD - ESI с УФ- и масс-спектрометрическими детекторами: длина волны 220 нм, температура пробоотборника 15°C, температура термостата колонок 40°C. MSD - параметры: температура источника 130°C, температура газа 400°C, напряжение на капилляре 3kV; колонка Waters Acquity 1.7 µm 2.1·50 mm. Градиент от 5 до 100% В за 4 мин (А: 0.1% муравьиной кислоты в воде; В: 0.1% муравьиной кислоты в ацетонитриле).
Исходные производные аминокислот, содержащие защитные группы, полимерная подложка и растворители для пептидного синтеза произведены фирмой «Applied Biosystems», США, N-карбоксиметилимидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксан получен по методике [В.В. Топоров, В.Л. Королев, В.П. Ившин, В.М. Даниленко. Исследование поведения имидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксанов в реакциях нитрования, алкилирования и кислотного гидролиза. // Тез. докл. XVIII Менделеевского съезда по общей и прикладной химии, Москва, 23-28 сентября, 2007, 462].
Пример 1. К 423.73 мг полимерной подложки Wang Resin (количество активных центров 0.59 ммоль/г, масштаб синтеза 0.25 моль) добавляли 10 мл раствора 1 моль Fmoc-Thr(tBu)-OH в диметилформамиде, 10 мл раствора дициклогексилкарбодиимида (1 моль) / 4-диметиламинопиридина (0.1 моль) в диметилформамиде, выдерживали 1 час, промывали 3×5 мл диметилформамида. Добавляли 10 мл 20%-ного раствора пиперидина в диметилформамиде, выдерживали 20 минут, промывали 3×5 мл диметилформамида. Добавляли 10 мл раствора 1 моль Fmoc-Asp(otBu)-OH в диметилфорамиде, 10 мл раствора 1-гидроксибензотриазола (0.1 моль) / дициклогексилкарбодиимида (1 моль) в диметилфорамиде, выдерживали 30 мин, промывали 3×5 мл диметилформамида. Добавляли 10 мл 20%-ного раствора пиперидина в диметилформамиде, выдерживали 20 минут, промывали 3×5 мл диметилформамида. Аналогично Fmoc-Asp(otBu)-OH последовательно пришивали Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH с последующей депротекцией 10 мл 20%-ного раствора пиперидина в диметилформамиде после каждого цикла присоединения аминокислоты. Добавляли 10 мл раствора 0,1 ммоль N-карбоксиметилимидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксана в диметилфорамиде, 10 мл раствора 1-гидроксибензотриазола (0.1 моль) / дициклогексилкарбодиимида (1 моль) в диметилфорамиде, выдерживали 30 мин, промывали 3×5 мл диметилформамида, 3×5 мл дихлорметана. Все вышеперечисленные операции проходили в пептидном синтезаторе. К полимерной подложке с присоединенным гетеромерным пептидом добавляли 10 мл охлажденного раствора, содержащего: 250 мкл TAN, 250 мкл TIPS, 500 мкл EDT, 9 мл TFA, перемешивали 4 часа, отфильтровали на фильтре Шотта (поры 40) при вакууме. К маточному раствору кислоты, содержащей гетеромерный пептид, добавляли 50 мл холодного метилтретбутилового эфира (МТВЕ), перемешивали, охлаждали при -20°C на 1 час, осадок отфильтровывали на фильтре Шотта (поры 14). Получали 151,3 мг (выход 72%) продукта. Масс-спектр [MS (ES)] m/z 840.6 [М+Н]+, время удерживания 2.78 мин.
Пример 2. В условиях, описанных в примере 1, из 2 х 10 мл раствора 1 моль Fmoc-Arg(Pbf)-OH в диметилфорамиде, 10 мл раствора 1 моль Fmoc-Asp(otBu)-OH в диметилфорамиде, 10 мл раствора 1 моль Fmoc-Gly-OH в диметилфорамиде, 10 мл раствора 1 моль Fmoc-Tyr-OH в диметилфорамиде, 10 мл раствора 1 моль №карбоксиметилимидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксана в диметилфорамиде получали 152.9 мг (выход 65%) продукта. Масс-спектр [MS (ES)] m/z 940.7 [М+Н]+, время удерживания 1.81 мин.
Пример 3. В условиях, описанных в примере 1, из 2×10 мл раствора 1 моль Fmoc-Asp(otBu)-OH в диметилфорамиде, 10 мл раствора 1 моль Fmoc-Gly-OH в диметилфорамиде, 10 мл раствора 1 моль Fmoc-Ile-OH в диметилфорамиде, 10 мл раствора 1 моль Fmoc-His(trt)-OH в диметилфорамиде, 10 мл раствора 1 моль N-карбоксиметилимидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксана в диметилфорамиде получали 141.2 мг (выход 68%) продукта. Масс-спектр [MS (ES)] m/z 830.6 [М+Н]+, время удерживания 2.16 мин.
Пример 4. В условиях, описанных в примере 1, из 2×10 мл раствора 1 моль Fmoc-Asp(otBu)-OH в диметилфорамиде, 10 мл раствора 1 моль Fmoc-Ala-ОН в диметилфорамиде, 10 мл раствора 1 моль Fmoc-Ile-OH в диметилфорамиде, 10 мл раствора 1 моль Fmoc-Lys(Boc)-OH в диметилфорамиде, 10 мл раствора 1 моль N-карбоксиметилимидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксана в диметилфорамиде получали 154.5 мг (выход 74%) продукта. Масс-спектр [MS (ES)] m/z 835.6 [М+Н]+, время удерживания 2.11 мин.
Фармакологическое действие.
Оценку специфической активности антиагрегационного действия гетеромерных пептидов проводили in vitro с использованием крови здоровых доноров. Взятие крови проводили непосредственно перед исследованием, используя в качестве антикоагулянта цитрат натрия (3.8%). Соотношение антикоагулянт: кровь соответствовало 1:9.
Антиагрегационная активность полученных соединений изучалась на богатой тромбоцитами плазме с использованием аденозиндифосфата (АДФ) в качестве индуктора агрегации тромбоцитов.
Для приготовления богатой тромбоцитами плазмы кровь сразу после получения центрифугировали в течение 10 минут при 1000 об/мин, после чего верхний слой плазмы переносили в другую пробирку, а остаток центрифугировали в течение 20 мин при 3000 об/мин для получения бестромбоцитарной плазмы. Все процедуры проводили в полистирольной посуде, обладающей тромборезистентными свойствами. В течение всего периода исследования богатая и бестромбоцитарная плазма находились при комнатной температуре, а запись агрегации тромбоцитов осуществляли при 37°C.
Для исследования специфической антиагрегационной активности руководствовались требованиями к доклиническим исследованиям фармакологических веществ данного класса, утвержденными Фармакологической службой по надзору в сфере здравоохранения и социального развития.
Агрегацию тромбоцитов изучали с использованием турбидиметрического метода Борна (Born, 1962), основанного на изменении пропускания света (540 нм) через исследуемую плазму при ее постоянном перемешивании (1000 об/мин). В качестве образца сравнения использовали бестромбоцитарную плазму. Светопропускание через бестромбоцитарную плазму принимали за 100%, а светопропускание через богатую тромбоцитами плазму принимали за 0%. Концентрацию тромбоцитов доводили в богатой тромбоцитами плазме до 2.5·10-8 клеток/мл с помощью разведения бедной тромбоцитами плазмой.
Для проведения исследования применяли двухканальный лазерный анализатор агрегации тромбоцитов/счетчик 230LA-2 (НПФ «Биола»). Объем пробы составлял 300 мкл. Время проведения измерения - 8 мин. В качестве индуктора использовали АДФ в концентрации 50 мкМ. Получаемые агрегограммы представляют собой зависимость степени агрегации от времени, прошедшего после добавления индуктора агрегации. Изучаемые соединения (в виде водного раствора, при необходимости, содержащего ДМСО до 0.2%) в разных концентрациях добавляли в пробу до внесения индуктора агрегации (АДФ). Полумаксимальное ингибирование (IC50) гетеромерных пептидов представлено в таблице 2.
Figure 00000005
Figure 00000006

Claims (1)

  1. Гетеромерные пептиды на основе имидазо[4,5-е]бензо[1,2-с;3,4-с′]дифуроксана, ингибирующие агрегацию тромбоцитов:
    Figure 00000007

    где R=Phe-Ile-Ala-Asp-Thr; Arg-Tyr-Gly-Asp-Arg; Lys-Ile-Ala-Asp-Asp; His-Ile-Gly-Asp-Asp.
RU2014116844/04A 2014-04-28 2014-04-28 ГЕТЕРОМЕРНЫЕ ПЕПТИДЫ НА ОСНОВЕ ИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАНА, ИНГИБИРУЮЩИЕ АГРЕГАЦИЮ ТРОМБОЦИТОВ RU2550223C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014116844/04A RU2550223C1 (ru) 2014-04-28 2014-04-28 ГЕТЕРОМЕРНЫЕ ПЕПТИДЫ НА ОСНОВЕ ИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАНА, ИНГИБИРУЮЩИЕ АГРЕГАЦИЮ ТРОМБОЦИТОВ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014116844/04A RU2550223C1 (ru) 2014-04-28 2014-04-28 ГЕТЕРОМЕРНЫЕ ПЕПТИДЫ НА ОСНОВЕ ИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАНА, ИНГИБИРУЮЩИЕ АГРЕГАЦИЮ ТРОМБОЦИТОВ

Publications (1)

Publication Number Publication Date
RU2550223C1 true RU2550223C1 (ru) 2015-05-10

Family

ID=53293886

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014116844/04A RU2550223C1 (ru) 2014-04-28 2014-04-28 ГЕТЕРОМЕРНЫЕ ПЕПТИДЫ НА ОСНОВЕ ИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАНА, ИНГИБИРУЮЩИЕ АГРЕГАЦИЮ ТРОМБОЦИТОВ

Country Status (1)

Country Link
RU (1) RU2550223C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709017C1 (ru) * 2019-08-27 2019-12-13 федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет) (ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Се Фармацевтическая композиция, обладающая антиагрегантной активностью

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2139932C1 (ru) * 1998-08-21 1999-10-20 Биологический факультет Московского государственного университета им.М.В.Ломоносова Донор оксида азота и активатор растворимой формы гуанилатциклазы
RU2002134671A (ru) * 2002-12-23 2004-06-27 Биологический факультет Московского государственного университета им. М.В. Ломоносова Тиол-зависимый донор оксида азота, активирующий растворимую гуанилатциклазу, проявляющий сосудорасширяющую, спазмолитическую, гипотензивную активности и ингибирующий агрегацию тромбоцитов
US7145016B1 (en) * 2003-08-28 2006-12-05 The United States Of America As Represented By The Secretary Of The Navy Nitrobenzodifuroxan compounds, including their salts, and methods thereof
RU2502739C1 (ru) * 2012-10-31 2013-12-27 Государственное бюджетное образовательное учреждение высшего профессионального образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения и социального развития Российской Федерации (ГБОУ ВПО Первый МГМУ им. И.М. Сеченова Минздравсоцразвити N-КАРБ(ГЛУТАМИНИЛ)ОКСИМЕТИЛИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАН, ИНГИБИРУЮЩИЙ АГРЕГАЦИЮ ТРОМБОЦИТОВ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2139932C1 (ru) * 1998-08-21 1999-10-20 Биологический факультет Московского государственного университета им.М.В.Ломоносова Донор оксида азота и активатор растворимой формы гуанилатциклазы
RU2002134671A (ru) * 2002-12-23 2004-06-27 Биологический факультет Московского государственного университета им. М.В. Ломоносова Тиол-зависимый донор оксида азота, активирующий растворимую гуанилатциклазу, проявляющий сосудорасширяющую, спазмолитическую, гипотензивную активности и ингибирующий агрегацию тромбоцитов
US7145016B1 (en) * 2003-08-28 2006-12-05 The United States Of America As Represented By The Secretary Of The Navy Nitrobenzodifuroxan compounds, including their salts, and methods thereof
RU2502739C1 (ru) * 2012-10-31 2013-12-27 Государственное бюджетное образовательное учреждение высшего профессионального образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения и социального развития Российской Федерации (ГБОУ ВПО Первый МГМУ им. И.М. Сеченова Минздравсоцразвити N-КАРБ(ГЛУТАМИНИЛ)ОКСИМЕТИЛИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАН, ИНГИБИРУЮЩИЙ АГРЕГАЦИЮ ТРОМБОЦИТОВ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709017C1 (ru) * 2019-08-27 2019-12-13 федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет) (ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Се Фармацевтическая композиция, обладающая антиагрегантной активностью

Similar Documents

Publication Publication Date Title
Schmidt et al. Design, synthesis, and biological activities of four angiotensin II receptor ligands with γ-turn mimetics replacing amino acid residues 3− 5
JP2018516844A (ja) ペプチド模倣大環状分子およびその使用
US20090163405A1 (en) Angiogenic peptides and uses thereof
Di Maro et al. Exploring the N-terminal region of CXC motif chemokine 12 (CXCL12): identification of plasma-stable cyclic peptides as novel, potent CXC chemokine receptor type 4 (CXCR4) antagonists
Platt et al. Stapling mimics noncovalent interactions of γ-carboxyglutamates in conantokins, peptidic antagonists of N-methyl-D-aspartic acid receptors
Day et al. Photoinduced reconfiguration to control the protein-binding affinity of azobenzene-cyclized peptides
CA2723170A1 (en) Peptides, peptidomimetics and derivatives thereof, the manufacturing thereof as well as their use for preparing a therapeutically and/or preventively active pharmaceutical composition
García-Aranda et al. Disulfide and amide-bridged cyclic peptide analogues of the VEGF81–91 fragment: Synthesis, conformational analysis and biological evaluation
Unarta et al. Entropy of stapled peptide inhibitors in free state is the major contributor to the improvement of binding affinity with the GK domain
CA3132993A1 (en) Peptidomimetic macrocycles and uses thereof
WO2014161370A1 (zh) 鱼精蛋白模拟肽及其药用盐与应用
CN114222578B (zh) 钙敏感受体激动剂化合物及其应用
RU2550223C1 (ru) ГЕТЕРОМЕРНЫЕ ПЕПТИДЫ НА ОСНОВЕ ИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАНА, ИНГИБИРУЮЩИЕ АГРЕГАЦИЮ ТРОМБОЦИТОВ
Zanella et al. Rational design of antiangiogenic helical oligopeptides targeting the vascular endothelial growth factor receptors
CN103012596B (zh) 具有血脑屏障通透性的内***肽衍生肽及其合成和应用
EP2328925A1 (en) Peptides and peptidomimetic compounds, the manufacturing thereof as well as their use for preparing a therapeutically and/or preventively active pharmaceutical composition
CN103965297A (zh) 一种多肽、其制备方法和应用
CN108203457B (zh) 一种靶向抑制血小板聚集的抗栓小肽ωKWR
RU2502739C1 (ru) N-КАРБ(ГЛУТАМИНИЛ)ОКСИМЕТИЛИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАН, ИНГИБИРУЮЩИЙ АГРЕГАЦИЮ ТРОМБОЦИТОВ
CN110437310B (zh) 脂肪酸修饰神经肽s类似物及其合成与应用
WO2009137851A1 (en) Peptides and derivatives thereof, the manufacturing thereof as well as their use for preparing a therapeutically and/or preventively active pharmaceutical composition
Sidorova et al. Peptide fragments and structural analogues of chemokine MCP-1: synthesis and effect on the MCP-1-induced migration of mononuclear cells
RU2549355C1 (ru) N-КАРБ(АРГИНИЛ)ОКСИМЕТИЛИМИДАЗО[4,5-е]БЕНЗО[1,2-с;3,4-с']ДИФУРОКСАН, ИНГИБИРУЮЩИЙ АГРЕГАЦИЮ ТРОМБОЦИТОВ
CN110229233B (zh) 一种具有增敏作用的slfn11截断肽及其应用和药物组合物
WO2009137852A1 (en) Peptides and derivatives thereof, the manufacturing thereof as well as their use for preparing a therapeutically and/or preventively active pharmaceutical composition

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160429