RU2547381C2 - Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава - Google Patents

Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава Download PDF

Info

Publication number
RU2547381C2
RU2547381C2 RU2013138693/02A RU2013138693A RU2547381C2 RU 2547381 C2 RU2547381 C2 RU 2547381C2 RU 2013138693/02 A RU2013138693/02 A RU 2013138693/02A RU 2013138693 A RU2013138693 A RU 2013138693A RU 2547381 C2 RU2547381 C2 RU 2547381C2
Authority
RU
Russia
Prior art keywords
microlayer
item
nichrome
product
silicon
Prior art date
Application number
RU2013138693/02A
Other languages
English (en)
Other versions
RU2013138693A (ru
Inventor
Вячеслав Алексеевич Рыженков
Геннадий Викторович Качалин
Александр Феликсович Медников
Алексей Феликсович Медников
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ")
Priority to RU2013138693/02A priority Critical patent/RU2547381C2/ru
Publication of RU2013138693A publication Critical patent/RU2013138693A/ru
Application granted granted Critical
Publication of RU2547381C2 publication Critical patent/RU2547381C2/ru

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к области машиностроения, в частности к методу образования защитного нанокомпозитного покрытия на поверхности изделия из жаропрочного никелевого сплава, подверженного высоким температурам и механическим нагрузкам. Проводят очистку изделия и вакуумной камеры в среде инертного газа, осуществляют ионное травление, после которого осуществляют ионно-плазменную цементацию, дополнительно проводят ионное травление поверхности изделия и нанесение покрытия методом физического осаждения из паровой фазы. Ионно-плазменную цементацию с последующим ионным травлением проводят поэтапно с числом этапов N, причем N≥1, до насыщения углеродом приповерхностного слоя упомянутого изделия на глубину до 50 мкм. На поверхность изделия наносят не менее одного микрослоя из нихрома и сплава алюминия с кремнием, который состоит из нанослоев указанных материалов толщиной 1-100 нм, а затем наносят микрослой из нанослоев оксидов нихрома и сплава алюминия с кремнием толщиной 1-100 нм. В частных случаях осуществления изобретения общая толщина микрослоя из нихрома и сплава алюминия с кремнием составляет 2,3-3,0 мкм, при этом указанный микрослой наносят путем последовательного прохождения изделия перед мишенями магнетронов из указанных материалов. Толщина микрослоя из оксидов нихрома и сплава алюминия с кремнием составляет 0,5-1,5 мкм, при этом указанный микрослой наносят путем последовательного прохождения изделия перед мишенями магнетронов из указанных материалов при подаче в камеру кислорода. Обеспечивается повышение долговечности и жаростойкости никелевого сплава в условиях высокотемпературного окисления и эрозионного воздействия. 2 з.п. ф-лы, 1 табл., 1 пр.

Description

Изобретение относится к области машиностроения, в частности к методам образования защитных покрытий на деталях, подверженных высоким температурам и механическим нагрузкам.
В настоящее время широкое распространение получили методы нанесения защитных покрытий в вакууме путем физического осаждения на защищаемую поверхность с образованием соединений, устойчивых к разрушающему воздействию - химическому, механическому, тепловому. Такие покрытия наносятся в несколько слоев с использованием электродугового или магнетронного источников распыляемого материала (см. пат. RU №2373302, МПК8 С23С 14/06; С23С 14/24, опубл. 20.11.2009).
Однако покрытие, получаемое известным способом, имеет низкий срок службы в условиях высокотемпературного окисления, в том числе из-за диффузионного обмена между покрытием и основным материалом.
Наиболее близким по технической сущности к изобретению является способ нанесения нанокомпозитного покрытия на поверхность стального изделия (пат. RU №2437963 С1, МПК С23С 14/06, опубл. 27.12.2011), включающий очистку изделия и вакуумной камеры в среде инертного газа, ионное травление и нанесение нанокомпозитного покрытия методом физического осаждения из паровой фазы.
Однако формирование нанокомпозитного покрытия из никелевого сплава не обеспечивает повышение долговечности и жаростойкости сплава в условиях не только высокотемпературного окисления, но и эрозионного воздействия.
Техническим результатом изобретения является повышение долговечности и жаростойкости сплава в условиях высокотемпературного окисления и эрозионного воздействия.
Технический результат достигается тем, что в известном способе нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава, включающем очистку изделия и вакуумной камеры в среде инертного газа, ионное травление и нанесение покрытия методом физического осаждения из паровой фазы, после ионного травления осуществляют ионно-плазменную цементацию, после которой дополнительно проводят ионное травление поверхности изделия, при этом ионно-плазменную цементацию с последующим травлением проводят поэтапно с числом этапов N, причем N≥1, до насыщения углеродом приповерхностного слоя упомянутого изделия на глубину до 50 мкм, при этом на поверхность изделия наносят не менее одного микрослоя из нихрома и сплава алюминия с кремнием, который состоит из нанослоев указанных материалов толщиной 1-100 нм, а затем наносят микрослой из нанослоев оксидов нихрома и сплава алюминия с кремнием толщиной 1-100 нм.
Кроме того, общая толщина микрослоя из нихрома и сплава алюминия с кремнием составляет 2,3-3,0 мкм, при этом указанный микрослой наносят путем последовательного прохождения изделия перед мишенями магнетронов.
Дополнительно толщина микрослоя из оксидов нихрома и сплава алюминия с кремнием составляет 0,5-1,5 мкм, при этом указанный микрослой наносят путем последовательного прохождения изделия перед мишенями магнетронов при подаче в камеру кислорода.
Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава осуществляется следующим образом.
Изделия полируют, обезжиривают в ультразвуковой ванне, обрабатывают бензино-спиртовой смесью, подвергают термообработке в сушильном шкафу. Подготовленные таким образом изделия размещают на карусели в вакуумной камере. Нагрев вакуумной камеры и откачку воздуха из нее производят одновременно. Помимо ускорения процесса одновременное проведение нагрева камеры и создание в ней вакуума целесообразно для десорбции ранее адсорбированных поверхностью изделий паров воды и рабочих жидкостей вакуумных насосов, а также растворителей, которыми обрабатывали изделия.
Проводят очистку поверхности изделий и вакуумной камеры в тлеющем разряде от адсорбированных паров воды, растворителей и т.п., для чего на карусель подают напряжение от 1000 до 1200 В, а в вакуумную камеру впускают инертный газ, например аргон. Далее осуществляют ионное травление поверхности. Для травления очищенной поверхности увеличивают плотность потока ионов на изделии. Для этого включают магнетроны, которые в данном случае играют роль генераторов плазмы, однако выбирают такой режим их работы, чтобы скорость осаждения распыленного металла была меньше скорости его стравливания. При этом для удаления стравленного материала с поверхности изделия давление аргона должно быть низким, таким, чтобы длина свободного пробега частицы была сравнима с расстоянием от изделия до стенки камеры. Наиболее интенсивное травление происходит, когда изделия проходят между магнетронами. Применение магнетронов в процессе травления позволяет избежать нанесения капель металла на поверхность изделия, что характерно при использовании электродуговых распылителей. Травление производят до появления на поверхности изделия характерного рисунка зерен металла, и в результате получают ненарушенную механической и химической обработкой поверхность изделия.
Протравленную таким образом поверхность изделия подвергают ионно-плазменной цементации. Цементация поверхности заключается в насыщении углеродом приповерхностного слоя металла глубиной до 50 мкм, наличие которого замедляет диффузионные процессы между покрытием и подложкой и увеличивает твердость поверхности. Твердость поверхности может возрасти в два и более раз от исходной величины, уменьшаясь с глубиной до твердости исходного материала. Цементация необходима для снижения скорости диффузионных процессов между покрытием и защищаемым сплавом, а также для исключения резкого изменения твердости на границе «нанокомпозитное покрытие - основной материал», что дает снижение максимальных напряжений в пограничной зоне материалов покрытия и основы. Травление поверхности перед цементацией позволяет обеспечить диффузию углерода на большую глубину. Цементацию осуществляют путем подачи в камеру углеродсодержащего газа и нагрева изделия при поддержке магнетронным разрядом, который повышает интенсивность диффузии углерода. По окончании ионно-плазменной цементации проводят дополнительное ионное травление для удаления образованных на поверхности изделий карбидов, которые в дальнейшем могут препятствовать высокой адгезии материала нанокомпозитного покрытия. Проведение цементации осуществляется в N этапов, где N - целое число и выбрано из условия N≥1, чередующихся с ионным травлением, поскольку образующиеся на поверхности изделия соединения углерода уменьшают скорость проникновения углерода в материал. В результате формируется чистая поверхность металла с твердым приповерхностным слоем, готовая к нанесению нанокомпозитного покрытия.
Нанокомпозитное покрытие наносят методом физического осаждения из паровой фазы посредством магнетронов, последовательно чередуя слои различных материалов. Первым наносят микрослой из нихрома, сплава алюминия с кремнием общей толщиной 2,3-3,0 мкм, который, в свою очередь, состоит из нанослоев этих материалов толщиной от 1 до 100 нм. Эти нанослои образуются при последовательном прохождении изделия перед магнетронами с мишенями из различных распыляемых материалов - нихрома, сплава алюминия с кремнием. Затем наносят второй микрослой из оксидов нихрома, алюминия и кремния общей толщиной 0,5-1,5 мкм. Этот микрослой также состоит из нанослоев толщиной от 1 до 100 нм и образуется при последовательном прохождении изделия перед магнетронами с мишенями из нихрома, сплава алюминия с кремнием при подаче в камеру кислорода. Далее операции повторяют, и в результате получают нанокомпозитное защитное покрытие общей толщиной 14-22,5 мкм или более. Толщина нанослоев регулируется изменением скорости вращения карусели и мощности магнетронного разряда. Толщина микрослоев регулируется временем формирования покрытия.
Экспериментально обнаружено, что наилучшие характеристики покрытия достигаются в указанных диапазонах толщин микро- и нанослоев.
Для исследования свойств нанокомпозитного покрытия, нанесенного описанным выше способом, были изготовлены образцы из жаропрочного никелевого сплава ХН70Ю. Первая группа (I) образцов обработке не подвергалась. На поверхность образцов второй группы (II) было нанесено нанокомпозитное покрытие, состоящее из слоев Ni+Cr+Al+Si-(Ni+Cr+Al+Si)+O2, при этом цементация проводилось после очистки аргоном, а нанесение покрытия осуществлялось сразу после цементации. Обработка образцов третьей группы (III) отличалась от обработки образцов второй группы проведением ионного травления после цементации. Первая группа являлась контрольной, жаростойкость и эрозионная стойкость образцов второй и третьей групп определялась по отношению к жаростойкости и эрозионной стойкости образцов первой группы.
Исследования на жаростойкость проводились в атмосфере печи на воздух при температуре 1050°C. После 100 часов экспозиции проводили визуальный осмотр состояния поверхности и взвешивание образцов вместе с осыпавшейся окалиной для сравнительной оценки композиции по удельному привесу массы на единицу поверхности.
Эрозионные исследования проводилось на экспериментальном оборудовании МЭИ, их результаты приведены в таблице.
Группа образцов Относительная жаростойкость Относительная эрозионная стойкость
I 1 1,0
II 7 2,7
III 7 3,7
Таким образом, именно включение в способ формирования нанокомпозитного покрытия этапа ионного травления поверхности до и после цементации позволяет снизить скорость диффузионных процессов между покрытием и защищаемым сплавом, увеличить эрозионную стойкость изделий, а значит и срок их службы. Однако предлагаемый способ формирования нанокомпозитных покрытий не ограничивается описанными выше комбинациями материалов для нанесения слоев. В частном случае реализации способ может включать применение мишени, представляющей собой набор пластин. В отдельных случаях обработка поверхности согласно предлагаемому способу может проводиться с использованием в качестве напыляемого материала различных элементов, например Ti, Ni, Co, Cr, Al, Y, Zr, Hf, V, Ta, Mo, W, B, Si, C или любого сплава на основе указанных элементов. В качестве реакционного газа возможно применение азота, кислорода, углеводородов, паров кремнеорганических жидкостей, а также любой смеси указанных газов.
При реализации способа возможно расположение магнетронов на периферии вакуумной камеры и/или в центре нее, что уменьшает время обработки изделия.
Пример конкретной реализации способа:
- полировка изделия, обезжиривание ультразвуком и протирка бензино-спиртовой смесью, сушка в шкафу при T=55°C;
- размещение изделий на карусели в вакуумной камере, одновременный нагрев и откачка вакуумной камеры T=130°C, Pост=10-4 Па;
- ионная очистка аргоном, P=0,5 Па, t=5 мин, Uсмещения=1100 В;
- ионное травление, P=0,5 Па, t=10 мин, Uсмещения=1100 В, напряжение на магнетронах - по 200 В;
- цементация, P=2 Па, t=60 мин, Uсмещения=1100 В, расход пропана - 10,1 л/ч, напряжение на магнетронах - по 200 В;
- ионное травление, P=0,5 Па, t=10 мин, Uсмещения=1100 В, напряжение на магнетронах - по 200 В;
- нанесение нанокомпозитного покрытия, состоящего из слоев (Ni+Cr)+(Al+Si) по режиму P=0,6 Па, t=20 мин, Uсмещения=70 В, напряжение на магнетронах - по 440-510 В;
- нанесение нанокомпозитного покрытия, состоящего из слоев (Ni+Cr)+(Al+Si)+O2 по режиму P=0,6 Па, t=5 мин, Uсмещения=70 В, напряжение на магнетронах - по 440-510, расход O2 - 5,4 л/ч;
- нанесение нанокомпозитного покрытия, состоящего из слоев (Ni+Cr)+(Al+Si) по режиму P=0,6 Па, t=20 мин, Uсмещения=70 В, напряжение на магнетронах - по 440-510 В;
- нанесение нанокомпозитного покрытия, состоящего из слоев (Ni+Cr)+(Al+Si)+O2 по режиму P=0,6 Па, t=5 мин, Uсмещения=70 В, напряжение на магнетронах - по 440-510, расход O2 - 5,4 л/ч;
- нанесение нанокомпозитного покрытия, состоящего из слоев (Ni+Cr)+(Al+Si) по режиму P=0,6 Па, t=20 мин, Uсмещения=70 В, напряжение на магнетронах - по 440-510 В;
- нанесение нанокомпозитного покрытия, состоящего из слоев (Ni+Cr)+(Al+Si)+O2 по режиму P=0,6 Па, t=5 мин, Uсмещения=70 В, напряжение на магнетронах - по 440-510, расход O2 - 5,4 л/ч;
- нанесение нанокомпозитного покрытия, состоящего из слоев (Ni+Cr)+(Al+Si) по режиму P=0,6 Па, t=20 мин, Uсмещения=70 В, напряжение на магнетронах - по 440-510 В;
- нанесение нанокомпозитного покрытия, состоящего из слоев (Ni+Cr)+(Al+Si)+O2 по режиму P=0,6 Па, t=5 мин, Uсмещения=70 В, напряжение на магнетронах - по 440-510, расход O2 - 5,4 л/ч;
- нанесение нанокомпозитного покрытия, состоящего из слоев (Ni+Cr)+(Al+Si) по режиму P=0,6 Па, t=20 мин, Uсмешения=70 В, напряжение на магнетронах - по 440-510 В;
- нанесение нанокомпозитного покрытия, состоящего из слоев (Ni+Cr)+(Al+Si)+O2 по режиму P=0,6 Па, t=5 мин, Uсмещения=70 В, напряжение на магнетронах - по 440-510, расход O2 - 10,1 л/ч.
Использование изобретения обеспечивает увеличение срока службы рабочих лопаток турбин с нанокомпозитным покрытием.

Claims (3)

1. Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава, включающий очистку изделия и вакуумной камеры в среде инертного газа, ионное травление и нанесение покрытия методом физического осаждения из паровой фазы, отличающийся тем, что после ионного травления осуществляют ионно-плазменную цементацию, после которой дополнительно проводят ионное травление поверхности изделия, при этом ионно-плазменную цементацию с последующим ионным травлением проводят поэтапно с числом этапов N, причем N≥1, до насыщения углеродом приповерхностного слоя упомянутого изделия на глубину до 50 мкм, при этом на поверхность изделия наносят не менее одного микрослоя из нихрома и сплава алюминия с кремнием, который состоит из нанослоев указанных материалов толщиной 1-100 нм, а затем наносят микрослой из нанослоев оксидов нихрома и сплава алюминия с кремнием толщиной 1-100 нм.
2. Способ по п.1, отличающийся тем, что общая толщина микрослоя из нихрома и сплава алюминия с кремнием составляет 2,3-3,0 мкм, при этом указанный микрослой наносят путем последовательного прохождения изделия перед мишенями магнетронов.
3. Способ по п.1, отличающийся тем, что толщина микрослоя из оксидов нихрома и сплава алюминия с кремнием составляет 0,5-1,5 мкм, при этом указанный микрослой наносят путем последовательного прохождения изделия перед мишенями магнетронов из указанных материалов при подаче в камеру кислорода.
RU2013138693/02A 2013-08-21 2013-08-21 Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава RU2547381C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013138693/02A RU2547381C2 (ru) 2013-08-21 2013-08-21 Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013138693/02A RU2547381C2 (ru) 2013-08-21 2013-08-21 Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава

Publications (2)

Publication Number Publication Date
RU2013138693A RU2013138693A (ru) 2015-02-27
RU2547381C2 true RU2547381C2 (ru) 2015-04-10

Family

ID=53279268

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013138693/02A RU2547381C2 (ru) 2013-08-21 2013-08-21 Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава

Country Status (1)

Country Link
RU (1) RU2547381C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864377A (ja) * 1981-10-12 1983-04-16 Nachi Fujikoshi Corp 表面被覆工具およびその製造方法
EP0703303A1 (de) * 1994-07-27 1996-03-27 Balzers Sa Korrosions- und verschleissfester Körper sowie Verfahren zu dessen Herstellung
SU1832751A1 (ru) * 1990-06-18 1998-01-20 Научно-производственное объединение "НИИТавтопром" Способ получения износостойких покрытий из соединений металлов
RU2340704C2 (ru) * 2007-02-01 2008-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ обработки поверхности металлического изделия
RU2437963C1 (ru) * 2010-04-12 2011-12-27 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)") Способ нанесения нанокомпозитного покрытия на поверхность стального изделия

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864377A (ja) * 1981-10-12 1983-04-16 Nachi Fujikoshi Corp 表面被覆工具およびその製造方法
SU1832751A1 (ru) * 1990-06-18 1998-01-20 Научно-производственное объединение "НИИТавтопром" Способ получения износостойких покрытий из соединений металлов
EP0703303A1 (de) * 1994-07-27 1996-03-27 Balzers Sa Korrosions- und verschleissfester Körper sowie Verfahren zu dessen Herstellung
RU2340704C2 (ru) * 2007-02-01 2008-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ обработки поверхности металлического изделия
RU2437963C1 (ru) * 2010-04-12 2011-12-27 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)") Способ нанесения нанокомпозитного покрытия на поверхность стального изделия

Also Published As

Publication number Publication date
RU2013138693A (ru) 2015-02-27

Similar Documents

Publication Publication Date Title
Heim et al. Hard coatings produced by PACVD applied to aluminium die casting
US7214409B1 (en) High strength Ni-Pt-Al-Hf bondcoat
RU2437963C1 (ru) Способ нанесения нанокомпозитного покрытия на поверхность стального изделия
EP1013795A1 (en) Method for applying improved durability thermal barrier coatings
Leyens et al. Oxide scale formation on an MCrAlY coating in various H2-H2O atmospheres
Ichiki et al. Nitriding of steel surface by spraying pulsed-arc plasma jet under atmospheric pressure
RU2554828C2 (ru) Способ нанесения защитного покрытия на поверхность стального изделия
EP2202328A1 (en) Process for obtaining protective coatings for high temperature with high roughness and coating obtained
RU2549813C1 (ru) Способ формирования жаростойкого нанокомпозитного покрытия на поверхности изделий из жаропрочных никелевых сплавов.
RU2660502C1 (ru) Способ нанесения покрытия на поверхность стального изделия
EA002682B1 (ru) Способ нанесения износостойких покрытий и повышения долговечности деталей
JP6243796B2 (ja) ダイヤモンドライクカーボン膜の成膜方法
CN101294284A (zh) 一种耐冲蚀抗疲劳等离子表面复合强化方法
JP2017040373A5 (ru)
RU2541261C2 (ru) Способ формирования нанокомпозитного покрытия на поверхности изделия
CN101310969A (zh) 一种用于Ti-Al合金的Al/Al2O3/MCrAlY复合涂层及制备方法
RU2515714C1 (ru) Способ нанесения нанокомпозитного покрытия на поверхность стального изделия
RU2547381C2 (ru) Способ нанесения нанокомпозитного покрытия на поверхность изделия из жаропрочного никелевого сплава
RU2308537C1 (ru) Способ обработки поверхности металлического изделия
Sagalovich et al. Vacuum-plasma protective coating for turbines blades
RU2409701C2 (ru) Способ нанесения керамического покрытия
Borisov et al. Plasma-assisted deposition of a three-layer structure by vacuum and gas arcs
Melo et al. Production, characterization and evaluation of protective Cr oxide coatings against metal dusting
JP2012233257A (ja) 非晶質炭素膜およびその成膜方法
RU2671026C1 (ru) Способ комбинированного плазменного упрочнения поверхности изделий из титановых сплавов

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180822