RU2542655C2 - Байпас турбины - Google Patents

Байпас турбины Download PDF

Info

Publication number
RU2542655C2
RU2542655C2 RU2013129204/06A RU2013129204A RU2542655C2 RU 2542655 C2 RU2542655 C2 RU 2542655C2 RU 2013129204/06 A RU2013129204/06 A RU 2013129204/06A RU 2013129204 A RU2013129204 A RU 2013129204A RU 2542655 C2 RU2542655 C2 RU 2542655C2
Authority
RU
Russia
Prior art keywords
heat
bypass
absorbing elements
turbine
backfill
Prior art date
Application number
RU2013129204/06A
Other languages
English (en)
Other versions
RU2013129204A (ru
Inventor
Марк Харви ТОТХИЛЛ
Original Assignee
Альстом Текнолоджи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альстом Текнолоджи Лтд filed Critical Альстом Текнолоджи Лтд
Publication of RU2013129204A publication Critical patent/RU2013129204A/ru
Application granted granted Critical
Publication of RU2542655C2 publication Critical patent/RU2542655C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/08Use of accumulators and the plant being specially adapted for a specific use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/005Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using granular particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

Изобретение относится к энергетике. Байпас турбины содержит обходной путь, избирательно применяемый для подачи горячих газов в газоохладитель, и засыпку из теплопоглощающих элементов, помещенную на обходном пути перед газоохладителем, при этом засыпка содержит теплопоглощающие элементы, расположенные между перфорированными опорными слоями для равномерного рассеивания обходящего пара по боковым частям теплопоглощающих элементов в засыпке. Изобретение позволяет уменьшить температуру обходящих газов перед подачей обходящих газов в газоохладитель. 3 н. и 13 з.п. ф-лы, 2 ил.

Description

Область техники, к которой относится изобретение
Варианты реализации настоящего изобретения относятся к байпасу турбины и к способу эксплуатации байпаса турбины.
Предпосылки к созданию изобретения
На некоторых тепловых электростанциях, на которых вырабатывают газ или пар под высоким давлением и с высокой температурой, который пропускается через турбину для выработки электроэнергии, поток горячих газов в турбине не может быть мгновенно уменьшен или предотвращен путем простого управления газогенератором. Например, на электростанции с паровой турбиной парогенератор (котел) не может быть мгновенно выключен и вновь запущен. Поэтому в случае отключения турбины на тепловой электростанции, например во время сброса нагрузки, требуется байпас турбины для предотвращения проникновения горячих газов (таких как пар) в турбину.
Известные байпасы турбины включают в себя газоохладитель, который охлаждает обходные газы. Детали газоохладителя подвергаются сильным термическим напряжениям во время начала работы байпаса из-за большой разницы температур между горячими обходными газами и относительно холодными деталями газоохладителя. Поэтому обычным явлением является механическая поломка деталей.
Делались попытки уменьшить температуру обходных газов перед их попаданием в газовый охладитель, однако поломки деталей все же имеют место. Поэтому существует необходимость в улучшенном байпасе турбины.
Сущность изобретения
Применяемое в этом описании и в прилагаемой формуле изобретения в случае, если специально не упоминается «пар», слово «газ» должно пониматься как включающее пар как в виде пара низкого давления, так и в газообразной форме.
Согласно первому аспекту настоящего изобретения предлагается байпас турбины, который содержит:
обходной путь, избирательно применяемый для подачи горячих газов в газоохладитель; и
засыпку из теплопоглощающих элементов, помещенную на обходном пути перед газоохладителем, которая применяется для поглощения тепла из обходящих газов и для уменьшения таким образом температуры обходящих газов перед подачей обходящих газов в газоохладитель.
Согласно второму аспекту настоящего изобретения предлагается способ эксплуатации байпаса турбины, который содержит:
подачу горячих газов по обходному пути к газоохладителю; и
пропуск обходящих газов через засыпку из теплопоглощающих элементов, помещенную на обходном пути перед газоохладителем, для поглощения тепла из обходящих газов и для уменьшения таким образом температуры обходящих газов перед подачей обходящих газов в газоохладитель.
Газоохладитель подвергается воздействию гораздо более низких температур и, следовательно, пониженным термическим напряжениям при начале работы байпаса системы благодаря тому факту, что температура обходящих газов понижается в засыпке из теплопоглощающих элементов.
Температура засыпки из теплопоглощающих элементов постепенно повышается, когда обходящие газы проходят через засыпку из теплопоглощающих элементов, и количество тепла, отобранного из обходящих газов засыпкой из теплопоглощающих элементов, таким образом постепенно понижается. В результате температура обходящих газов, которые подаются вдоль обходного пути от засыпки из теплопоглощающих элементов до газоохладителя, постепенно повышается. Это постепенное повышение температуры вызывает постепенное повышение температуры компонентов газоохладителя, уменьшая таким образом мгновенные термические напряжения и вероятность в связи с этим механического отказа деталей газоохладителя во время начала работы байпаса турбины.
Засыпка из теплопоглощающих элементов может содержать корпус из низколегированной стали, футерованный обычным огнеупорным материалом, таким как огнеупорный кирпич, с внутренней футеровкой из суперогнеупорного материала, такого как карбид кремния, муллит или глинозем. Элементы, имеющие, например, диаметр от 12 мм до 30 мм, формируются также из твердого суперогнеупорного материала.
Элементы могут опираться на предварительно сформированный слой, содержащий платформу из высоколегированной стали, которая сама может опираться на опоры из высоколегированной стали. С другой стороны или дополнительно, платформа может быть выпуклой (куполообразной) для того, чтобы лучше поддерживать вес элементов. В качестве дальнейшей альтернативы для уменьшения стоимости и затрат на техническое обслуживание засыпка из теплопоглощающих элементов может поддерживаться перфорированным куполом из суперогнеупорного материала, выполненного в форме конусных кирпичей и размещенного по кругу. В этом случае пазы по сторонам собранных кирпичей образуют отверстия для прохождения через них горячих обходящих газов.
Перфорированный опорный слой служит также экраном для того, чтобы более равномерно рассеивать обходящие газы по боковым частям засыпки из теплопоглощающих элементов. Например, отверстия в опорном слое могут быть меньше в середине, чем рядом с краями засыпки из теплопоглощающих элементов.
Байпас турбины может включать в себя охлаждающее приспособление, которое может избирательно применяться для охлаждения засыпки из теплопоглощающих элементов. Охлаждающее приспособление обычно применяется для охлаждения засыпки из теплопоглощающих элементов тогда, когда обходной путь не работает. Засыпка из теплопоглощающих элементов, таким образом, охлаждается после завершения работы байпаса, когда обходящие газы не протекают по обходному пути через засыпку из теплопоглощающих элементов.
Охлаждающее приспособление может избирательно применяться для подачи в засыпку текучего хладагента для охлаждения засыпки. Текучим хладагентом может быть жидкий хладагент, такой как вода или сжиженный азот, и/или газовый хладагент, такой как пар или газообразный азот.
В случае если турбиной является паровая турбина, охлаждающее приспособление может применяться для подачи газового хладагента, предпочтительно пара с относительно низкой температурой, в засыпку из теплопоглощающих элементов, и может после этого применяться для подачи в засыпку из теплопоглощающих элементов жидкого хладагента, такого как вода. Засыпка из теплопоглощающих элементов может включать в себя сток для конденсата, предназначенный для удаления любого конденсата, образованного во время цикла нагрева и охлаждения засыпки из теплопоглощающих элементов. Кроме того, газоохладитель может включать в себя конденсатор, обычно конденсатор сбросного пара.
В случае если турбиной является газовая турбина, охлаждающее приспособление может содержать замкнутый контур охлаждения для рециркуляции текучего охладителя в засыпку из теплопоглощающих элементов и может включать в себя теплообменник, предназначенный для охлаждения рециркулирующего текучего хладагента. Текучим хладагентом, применяемым в замкнутом контуре охлаждения, может быть газ, причем типичным примером является газообразный азот. Кроме того, газоохладитель может содержать теплообменник, например устройство для утилизации сбросного тепла.
Упомянутый способ использования байпаса турбины может также содержать охлаждение засыпки из теплопоглощающих элементов. Операция охлаждения засыпки из теплопоглощающих элементов может осуществляться тогда, когда газы не подаются по обходному пути к газоохладителю. Как указано выше, это позволяет охлаждать засыпку из теплопоглощающих элементов после завершения обходной операции, в то время как обходящие газы не проходят по обходному пути через засыпку из теплопоглощающих элементов.
Операция охлаждения засыпки из теплопоглощающих элементов может содержать подачу в засыпку текучего хладагента.
В одном варианте реализации способа операция охлаждения засыпки из теплопоглощающих элементов содержит первоначальную подачу в засыпку газообразного хладагента, такого как пар, и последующую подачу в нее жидкого хладагента, такого как вода. Это обеспечивает двухступенчатый процесс охлаждения, при котором при первоначальной операции охлаждения газом засыпка из теплопоглощающих элементов охлаждается до промежуточной температуры и последующая операция охлаждения жидкостью обеспечивает дальнейшее охлаждение засыпки из теплопоглощающих элементов.
В другом варианте реализации способа операция охлаждения засыпки из теплопоглощающих элементов содержит рециркуляцию текучего хладагента в засыпку газообразного хладагента и может содержать отбор тепла от текучего хладагента с использованием теплообменника. Как указано выше, рециркулирующий текучий хладагент обычно используется в виде газообразного хладагента, такого как газообразный азот.
Краткое описание чертежей
Варианты реализации настоящего изобретения будут теперь описаны только в качестве примера со ссылкой на прилагаемые чертежи, на которых:
на фиг.1 показан схематический вид одного варианта реализации байпаса турбины; и
на фиг.2 показан другой вариант реализации байпаса турбины.
Подробное описание вариантов реализации изобретения
На фиг.1 проиллюстрирован байпас, образующий часть тепловой электростанции с применением парогенератора 2, который выдает пар под высоким давлением и с высокой температурой для паровой турбины 4 для выработки электроэнергии посредством электрического генератора 5, привод которого осуществляется турбиной 4 через вал 6. Байпас паровой турбины используется для отвода перегретого пара, выработанного в парогенераторе 2, от входа в паровую турбину 4, например, в случае аварийного отключения турбины (известного также как аварийный останов турбины). Турбина 4 может содержать многоступенчатые блоки высокого давления и низкого давления, но они не показаны для удобства иллюстрации.
Байпас паровой турбины включает в себя отводной клапан 8, обходной путь 10 для отвода пара от входа паровой турбины и газоохладитель 12 в форме конденсатора сбросного пара. Пар подается по обходному пути 10 к конденсатору сбросного пара 12, который, как известно, включает в себя вход 14 для охлаждающей воды.
Для уменьшения термического удара в конденсаторе 12 байпас паровой турбины включает в себя засыпку из теплопоглощающих элементов 16, которая должна быть выполнена как цилиндрический сосуд высокого давления с куполообразными верхним и нижним концами, хотя она проиллюстрирована на фиг.1 только схематически. Засыпка из теплопоглощающих элементов 16 помещается на обходном пути 10 перед конденсатором сбросного пара 12 и включает в себя вход для пара 18, предназначенный для приема перегретого обходящего пара из парогенератора, и выпуск для пара 20, через который пар выдается из засыпки из теплопоглощающих элементов 16 в конденсатор сбросного пара 12.
Во время применения байпаса перегретый обходящий пар подается вдоль обходного пути 10 и в засыпку из теплопоглощающих элементов 16 через вход для пара 18. Когда перегретый обходящий пар проходит через засыпку из теплопоглощающих элементов 16, тепло из пара поглощается засыпкой из теплопоглощающих элементов 16, и, таким образом, происходит понижение температуры обходящего пара. Охлажденный обходящий пар подается через выпуск для пара 20 в конденсатор сбросного пара 12, где обходящий пар дополнительно охлаждается обычным образом.
В начале применения байпаса засыпка из теплопоглощающих элементов 18 имеет самую низкую температуру и поглощает значительное количество тепла из обходящего пара. Таким образом, температура обходящего пара значительно снижается до того, как обходящий пар подается по обходному пути 10 через выпуск для пара 20 в конденсатор сбросного пара 12. Детали конденсатора для сбросного пара 12, которые имеют самую низкую температуру в начале применения байпаса, подвергаются таким образом воздействию значительно более низких температур и поэтому уменьшают термические напряжения в начале применения байпаса за счет того факта, что температура обходящего пара понижается засыпкой из теплопоглощающих элементов 16.
Когда обходящий пар продолжает проходить по обходному пути 10 через засыпку из теплопоглощающих элементов 16, температура засыпки 16 повышается, поскольку она поглощает тепло из обходящего пара. Разность температур между засыпкой из теплопоглощающих элементов 18 и обходящим паром постепенно уменьшается. Это уменьшает способность засыпки из теплопоглощающих элементов к поглощению тепла и ведет к постепенному повышению температуры обходящего пара, который выдается по обходному пути 10 через выпуск для пара 20 в конденсатор сбросного пара 12. Это постепенное повышение температуры обходящего пара ведет к постепенному повышению температуры деталей конденсатора сбросного пара 12, уменьшая таким образом термические напряжения и, следовательно, вероятность механического повреждения деталей конденсатора сбросного пара 12.
Засыпка из теплопоглощающих элементов 16 в конечном счете приобретает такую же температуру, как и обходящий пар, и в этой точке тепло больше не поглощается засыпкой из теплопоглощающих элементов 16, так что температура байпаса будет по существу равна температуре на входе для пара 18 и выпуске для пара 20. Температура обходящего пара, выпущенного по обходному пути 10 в конденсатор сбросного пара 12, будет поэтому по существу равна температуре пара, выработанного парогенератором. В этот момент, однако, детали конденсатора сбросного пара 12 постепенно повышаются, обеспечивая сведение к минимуму термической усталости деталей.
Засыпка из теплопоглощающих элементов 16 содержит корпус из низколегированной стали 21, футерованный обычным огнеупорным материалом 22, таким как огнеупорный кирпич, с внутренней футеровкой 23 из суперогнеупорного материала, такого как карбид кремния, муллит или глинозем. Элементы 24, имеющие, например, диаметр от 12 мм до 30 мм, формируются также из твердого суперогнеупорного материала.
Элементы 24 опираются на перфорированный опорный слой 26, содержащий платформу из высоколегированной стали, которая сама может опираться на опоры из высоколегированной стали (не показаны). Перфорированный опорный слой 26 служит также экраном для того, чтобы более равномерно рассеивать обходящий пар по боковым частям теплопоглощающих элементов 24 засыпки из теплопоглощающих элементов 16, и для этого отверстия в опорном слое 26 могут быть меньше в середине, чем рядом с краями, что показано схематически. Перфорированный верхний слой 28, сходный с перфорированным опорным слоем 26, также помещается над теплопоглощающими элементами 24.
Альтернативным способом поддержки массы теплопоглощающих элементов в засыпке является использование перфорированного купола, выпуклого кверху (не показан), который может быть выполнен из высоколегированной стали. С другой стороны, как уже известно в технике, купол для поддержки теплопоглощающих элементов может содержать суперогнеупорный материал, выполненный в форме конусных кирпичей и размещенный по кругу. В этом случае пазы по сторонам собранных кирпичей образуют отверстия для прохождения горячего обходящего пара через купол и в теплопоглощающие элементы.
После завершения применения байпаса, когда обходящий пар больше не подается по обходному пути 10 через засыпку из теплопоглощающих элементов 16 в конденсатор сбросного пара, необходимо охладить засыпку из теплопоглощающих элементов 16 так, чтобы она могла охлаждать обходящий пар во время первоначальных стадий последующего применения байпаса. Байпас паровой турбины включает в себя охлаждающее приспособление для этой цели.
Охлаждающее приспособление включает в себя первый вход 30 для текучего охладителя в основании засыпки из теплопоглощающих элементов 16, который выдает охлаждающий пар (обычно пар низкого давления) в засыпку из теплопоглощающих элементов 16, и второй вход 32 для текучего охладителя поверх засыпки из теплопоглощающих элементов 16, который выдает охлаждающую воду в засыпку из теплопоглощающих элементов 16. Во время работы охлаждающего приспособления охлаждающий пар первоначально подается в засыпку из теплопоглощающих элементов 16 для ее охлаждения до первой температуры перед тем, как в засыпку из теплопоглощающих элементов 16 будет подана охлаждающая вода для ее дальнейшего охлаждения до нужной температуры. Специалист в области проектирования теплоэлектростанций поймет, что такой охлаждающий пар может быть получен из источника пара низкого давления в любом месте на теплоэлектростанции. Засыпка из теплопоглощающих элементов 16 включает в себя сток 34 для удаления охлаждающей воды, а также конденсата, образуемого во время цикла нагрева и охлаждения теплопоглощающих элементов 24.
На фиг.2 проиллюстрирован байпас, образующий часть теплоэлектростанции с применением источника 40, который вырабатывает газ под высоким давлением и с высокой температурой, такой как азот. Газ подается непосредственно в газовую турбину 42 для выработки электроэнергии в электрическом генераторе 43, привод которого осуществляется турбиной 42 с помощью вала 44. Турбина 42 может содержать многоступенчатые блоки высокого давления и низкого давления, но они не показаны для удобства иллюстрации. Байпас газовой турбины используется для отклонения газа под высоким давлением и с высокой температурой, например воздуха или азота, от входа газовой турбины 42, например, во время аварийного отключения турбины (известного также как аварийный останов турбины).
Байпас турбины включает в себя отводной клапан 46, обходной путь 50 для отвода обходящих газов от входа в газовую турбину и газоохладитель 52 в форме теплообменника, который может быть частью устройства утилизации сбросного тепла. Обходящие газы подаются по обходному пути 50 к теплообменнику 52, который, как известно, сам по себе включает охлаждающий контур 54, питаемый таким хладагентом, как вода.
Байпас газовой турбины включает в себя засыпку из теплопоглощающих элементов 56, которая сходна по конструкции и применению с засыпкой из теплопоглощающих элементов 1. Засыпка из теплопоглощающих элементов 56 помещается на обходном пути 50 перед теплообменником 52 и включает в себя газовый вход 58, предназначенный для приема горячих обходящих газов и газовый выпуск 60, через который газы выдаются из засыпки из теплопоглощающих элементов 56 в теплообменник 52.
Во время применения байпаса горячие обходящие газы подаются по обходному пути 50 и в засыпку из теплопоглощающих элементов 56 через газовый вход 58. Когда горячие обходящие газы проходят сквозь засыпку из теплопоглощающих элементов 56, тепло отбирается от газов засыпкой из теплопоглощающих элементов 56, и это ведет к снижению температуры обходящих газов. Охлажденные обходящие газы передаются через газовый выпуск 60 к теплообменнику 52, где может быть утилизировано сбросное тепло.
Засыпка из теплопоглощающих элементов 56 действует точно так же, как засыпка из теплопоглощающих элементов 16, для отбора тепла от обходящих газов и снижения таким образом температуры обходящих газов при начале применения байпаса. Когда засыпка из теплопоглощающих элементов 56 нагревается во время применения байпаса, величина охлаждения, которое обеспечивается засыпкой из теплопоглощающих элементов 56, снижается. Это было уже полностью описано со ссылкой на фиг.1 и для этого не требуется дальнейших объяснений.
После завершения применения байпаса, когда обходящие газы больше не подаются по обходному пути 50 через засыпку из теплопоглощающих элементов 56 в теплообменник 52, необходимо охладить засыпку по причинам, уже описанным выше. Байпас газовой турбины включает в себя для этой цели охлаждающее приспособление.
Охлаждающее приспособление содержит замкнутый охлаждающий контур 62, который подает в засыпку из теплопоглощающих элементов рециркулирующий газовый хладагент, такой как газообразный азот. Охлаждающее приспособление включает в себя теплообменник 64, который охлаждает рециркулирующий газовый хладагент с помощью охлаждающего контура 65, через который проходит такой хладагент, как вода, как это само по себе известно. Насос 66 применяется для продувки газообразного хладагента по замкнутому охлаждающему контуру 62.
Хотя в предыдущих параграфах были описаны варианты реализации настоящего изобретения, следует понимать возможность внесения различных модификаций в эти варианты реализации без отклонения от объема настоящего изобретения.

Claims (16)

1. Байпас турбины, содержащий:
обходной путь, избирательно применяемый для подачи горячих газов в газоохладитель; и
засыпку из теплопоглощающих элементов, помещенную на обходном пути перед газоохладителем, которая применяется для поглощения тепла из обходящих газов и для уменьшения таким образом температуры обходящих газов перед подачей обходящих газов в газоохладитель, при этом засыпка содержит теплопоглощающие элементы, расположенные между перфорированными опорными слоями для равномерного рассеивания обходящего пара по боковым частям теплопоглощающих элементов в засыпке.
2. Байпас турбины по п.1, в котором байпас турбины включает в себя охлаждающее приспособление, избирательно применяемое для охлаждения засыпки из теплопоглощающих элементов.
3. Байпас турбины по п.2, в котором может применяться охлаждающее приспособление для охлаждения засыпки из теплопоглощающих элементов в то время, когда обходной путь не применяется.
4. Байпас турбины по п.2, в котором охлаждающее приспособление избирательно применяется для подачи текучего хладагента в засыпку из теплопоглощающих элементов для охлаждения засыпки.
5. Байпас турбины по любому из пп.2-4, в котором турбина является паровой турбиной.
6. Байпас турбины по п.5, в котором газоохладитель содержит конденсатор.
7. Байпас турбины по любому из пп.2-4, в котором турбина является газовой турбиной.
8. Байпас турбины по п.7, в котором газоохладитель содержит теплообменник.
9. Байпас турбины по п.7, в котором охлаждающее приспособление содержит замкнутый контур охлаждения для рециркуляции текучего охладителя в засыпку из теплопоглощающих элементов и включает в себя теплообменник, предназначенный для охлаждения рециркулирующего текучего хладагента.
10. Теплоэлектростанция, включающая в себя байпас турбины по любому предшествующему пункту.
11. Способ эксплуатации байпаса турбины, содержащий:
подачу горячих газов по обходному пути к газоохладителю; и
пропуск обходящих газов равномерно через засыпку из теплопоглощающих элементов, помещенную на обходном пути перед газоохладителем, для поглощения тепла из обходящих газов и для уменьшения таким образом температуры обходящих газов перед подачей обходящих газов в газоохладитель, при этом используют засыпку, содержащую теплопоглощающие элементы, расположенные между перфорированными опорными слоями для равномерного рассеивания обходящего пара по боковым частям теплопоглощающих элементов в засыпке.
12. Способ эксплуатации по п.11, в котором способ дополнительно содержит охлаждение засыпки из теплопоглощающих элементов.
13. Способ эксплуатации по п.12, в котором операция охлаждения засыпки из теплопоглощающих элементов осуществляется в то время, когда газы не подаются по обходному пути в газоохладитель.
14. Способ эксплуатации по п.12 или 13, в котором операция охлаждения засыпки из теплопоглощающих элементов содержит подачу текучего хладагента в засыпку из теплопоглощающих элементов.
15. Способ эксплуатации по п.14, в котором операция охлаждения засыпки из теплопоглощающих элементов содержит первоначальную подачу газообразного хладагента в засыпку из теплопоглощающих элементов и последующую подачу жидкого хладагента в засыпку из теплопоглощающих элементов.
16. Способ эксплуатации по п.14, в котором операция охлаждения засыпки из теплопоглощающих элементов содержит рециркуляцию текучего хладагента в засыпку из теплопоглощающих элементов и отбор тепла от текучего хладагента в теплообменнике.
RU2013129204/06A 2010-11-27 2011-11-18 Байпас турбины RU2542655C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1020144.0 2010-11-27
GB1020144.0A GB2485836A (en) 2010-11-27 2010-11-27 Turbine bypass system
PCT/EP2011/070429 WO2012069369A1 (en) 2010-11-27 2011-11-18 Turbine bypass system

Publications (2)

Publication Number Publication Date
RU2013129204A RU2013129204A (ru) 2015-01-20
RU2542655C2 true RU2542655C2 (ru) 2015-02-20

Family

ID=43500750

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013129204/06A RU2542655C2 (ru) 2010-11-27 2011-11-18 Байпас турбины

Country Status (6)

Country Link
US (1) US9726082B2 (ru)
EP (1) EP2643558B1 (ru)
CN (1) CN103314187B (ru)
GB (1) GB2485836A (ru)
RU (1) RU2542655C2 (ru)
WO (1) WO2012069369A1 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2485836A (en) 2010-11-27 2012-05-30 Alstom Technology Ltd Turbine bypass system
GB2509894A (en) * 2012-11-09 2014-07-23 Jean Pierre Dewerpe Thermal energy storage and recovery
CN105041394B (zh) * 2015-06-20 2016-09-07 国家电网公司 一种发电***及其运行控制方法
CN104929710B (zh) * 2015-06-25 2016-04-13 国家电网公司 一种余热利用的高效节能发电***
FR3044750B1 (fr) * 2015-12-04 2017-12-15 Ifp Energies Now Systeme et procede de stockage et de restitution d'energie par gaz comprime
JP6654497B2 (ja) 2016-04-05 2020-02-26 三菱日立パワーシステムズ株式会社 蒸気タービンプラント
US20200191500A1 (en) * 2016-05-20 2020-06-18 Kansas State University Research Foundation Methods and systems for thermal energy storage and recovery
CN110573822B (zh) * 2017-03-02 2022-04-12 海利亚克有限公司 用于无管道蓄热器的、基于蒸发热的热传递
US11446329B2 (en) 2017-11-01 2022-09-20 Restem Llc Natural killer cell adoptive transfer therapy for the elimination of senescent PBMCs, reduction of inflammatory cytokines and treatment of IBS
GB201814140D0 (en) 2018-08-30 2018-10-17 Heliac Aps Method and apparatus for heat storage
US11607519B2 (en) * 2019-05-22 2023-03-21 Breathe Technologies, Inc. O2 concentrator with sieve bed bypass and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977197A (en) * 1975-08-07 1976-08-31 The United States Of America As Represented By The United States National Aeronautics And Space Administration Thermal energy storage system
US5269145A (en) * 1991-06-28 1993-12-14 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Heat storage system with combined heat storage device
RU2062887C1 (ru) * 1992-03-05 1996-06-27 Валентин Федорович Шевцов Способ аккумулирования тепловой энергии и получения из нее механической энергии
US20060059936A1 (en) * 2004-09-17 2006-03-23 Radke Robert E Systems and methods for providing cooling in compressed air storage power supply systems
RU64699U1 (ru) * 2007-03-19 2007-07-10 Олег Николаевич Фаворский Электрогенерирующее устройство с высокотемпературной паровой турбиной
WO2008091381A2 (en) * 2006-08-01 2008-07-31 Research Foundation Of The City University Of New York System and method for storing energy in a nuclear power plant
WO2009082713A1 (en) * 2007-12-21 2009-07-02 Research Foundation Of The City University Of New York Apparatus and method for storing heat energy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378244A (en) * 1966-01-12 1968-04-16 Dresser Ind Pebble heat exchanger
CH598535A5 (ru) * 1976-12-23 1978-04-28 Bbc Brown Boveri & Cie
US4192144A (en) * 1977-01-21 1980-03-11 Westinghouse Electric Corp. Direct contact heat exchanger with phase change of working fluid
JPS58175792A (ja) * 1982-04-08 1983-10-15 Toshiba Corp 蓄熱形熱交換器
DE3841708C1 (ru) * 1988-12-10 1989-12-28 Kloeckner Cra Patent Gmbh, 4100 Duisburg, De
US5896738A (en) 1997-04-07 1999-04-27 Siemens Westinghouse Power Corporation Thermal chemical recuperation method and system for use with gas turbine systems
US8544275B2 (en) * 2006-08-01 2013-10-01 Research Foundation Of The City University Of New York Apparatus and method for storing heat energy
GB2453849B (en) * 2007-10-16 2010-03-31 E On Kraftwerke Gmbh Steam power plant and method for controlling the output of a steam power plant using an additional bypass pipe
EP2213847A1 (de) 2008-09-24 2010-08-04 Siemens Aktiengesellschaft Dampfkraftanlage zur Erzeugung elektrischer Energie
US9328631B2 (en) * 2009-02-20 2016-05-03 General Electric Company Self-generated power integration for gasification
CN201496111U (zh) * 2009-09-30 2010-06-02 武汉都市环保工程技术股份有限公司 垃圾焚烧中温次高压汽水循环热能回收***
GB2485836A (en) 2010-11-27 2012-05-30 Alstom Technology Ltd Turbine bypass system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977197A (en) * 1975-08-07 1976-08-31 The United States Of America As Represented By The United States National Aeronautics And Space Administration Thermal energy storage system
US5269145A (en) * 1991-06-28 1993-12-14 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Heat storage system with combined heat storage device
RU2062887C1 (ru) * 1992-03-05 1996-06-27 Валентин Федорович Шевцов Способ аккумулирования тепловой энергии и получения из нее механической энергии
US20060059936A1 (en) * 2004-09-17 2006-03-23 Radke Robert E Systems and methods for providing cooling in compressed air storage power supply systems
WO2008091381A2 (en) * 2006-08-01 2008-07-31 Research Foundation Of The City University Of New York System and method for storing energy in a nuclear power plant
RU64699U1 (ru) * 2007-03-19 2007-07-10 Олег Николаевич Фаворский Электрогенерирующее устройство с высокотемпературной паровой турбиной
WO2009082713A1 (en) * 2007-12-21 2009-07-02 Research Foundation Of The City University Of New York Apparatus and method for storing heat energy

Also Published As

Publication number Publication date
CN103314187A (zh) 2013-09-18
EP2643558B1 (en) 2020-12-30
US20130251504A1 (en) 2013-09-26
GB201020144D0 (en) 2011-01-12
EP2643558A1 (en) 2013-10-02
CN103314187B (zh) 2016-08-10
GB2485836A (en) 2012-05-30
WO2012069369A1 (en) 2012-05-31
US9726082B2 (en) 2017-08-08
RU2013129204A (ru) 2015-01-20

Similar Documents

Publication Publication Date Title
RU2542655C2 (ru) Байпас турбины
KR100284392B1 (ko) 복합 사이클 플랜트내의 증기터빈의 시동을 효과적으로 실시하는 방법
CN100365247C (zh) 组合循环发电装置的冷却用蒸汽供给方法
CA2798681C (en) Method for operating a combined cycle power plant
CN108431535B (zh) 用于核电厂的安全壳的减压冷却***
RU2516068C2 (ru) Газотурбинная установка, утилизационный парогенератор и способ эксплуатации утилизационного парогенератора
JP2011047364A (ja) 蒸気タービン発電設備およびその運転方法
JP2005527808A (ja) 少なくとも1つの高温原子炉のコアで生成される熱から電気を生成する方法及び装置
JP5885614B2 (ja) 蒸気タービンプラント、その制御方法、およびその制御システム
CN102650235A (zh) 具有三边闪蒸循环的燃气轮机中间冷却器
JP2012531575A (ja) ガス液化システムの運転停止後の圧力制御
JP2004339965A (ja) 発電装置および発電方法
JP7166247B2 (ja) 回路を緊急停止させる装置を有する、ランキンサイクルに従って機能する閉じた回路と、このような回路を使用する方法
JP4611969B2 (ja) パワープラント用の空気冷却器及びこの空気冷却器の使用
KR101940436B1 (ko) 열 교환기, 에너지 회수 장치 및 선박
RU2392452C2 (ru) Способ прогрева паровой турбины
JP5355358B2 (ja) 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム
KR20130141490A (ko) 기초 자재 산업에서의 플랜트를 위해서 폐열을 활용하는 작동 방법
JP2006017039A (ja) ガスタービンとその潤滑油冷却方法
KR101487287B1 (ko) 발전장치
JPH09112802A (ja) 加圧流動層ボイラのベッド灰冷却装置
JPS59134307A (ja) 蒸気タ−ビンプラント
JP2019200192A (ja) 原子力発電所のコンテインメントのための減圧および冷却システム
JP2023003302A (ja) 二酸化炭素回収システムの加熱蒸気系統、二酸化炭素回収システムおよび二酸化炭素回収システムの加熱蒸気系統の運用方法
JPH04272410A (ja) 加圧流動層ボイラ発電プラント

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner