RU2541422C1 - Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка - Google Patents

Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка Download PDF

Info

Publication number
RU2541422C1
RU2541422C1 RU2013138539/28A RU2013138539A RU2541422C1 RU 2541422 C1 RU2541422 C1 RU 2541422C1 RU 2013138539/28 A RU2013138539/28 A RU 2013138539/28A RU 2013138539 A RU2013138539 A RU 2013138539A RU 2541422 C1 RU2541422 C1 RU 2541422C1
Authority
RU
Russia
Prior art keywords
shell structure
quantum dots
core
sphere
probe
Prior art date
Application number
RU2013138539/28A
Other languages
English (en)
Other versions
RU2013138539A (ru
Inventor
Владимир Анатольевич Линьков
Николай Владимирович Вишняков
Владимир Георгиевич Литвинов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет"
Priority to RU2013138539/28A priority Critical patent/RU2541422C1/ru
Application granted granted Critical
Publication of RU2541422C1 publication Critical patent/RU2541422C1/ru
Publication of RU2013138539A publication Critical patent/RU2013138539A/ru

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что кантилевер соединен с зондирующей иглой, вершина которой соединена со сферой, выполненной из стекла с нанометровыми порами, заполненными квантовыми точками структуры ядро-оболочка, покрытой защитным полимерным слоем, прозрачным для длины внешнего электромагнитного источника излучения и длины волны со стоксовым сдвигом, генерируемой квантовыми точками структуры ядро-оболочка. Техническим результатом является возможность одновременного сочетания электромагнитного воздействия с измерением механической реакции (модуля упругости) на это стимулирующее воздействие в одной общей точке поверхности объекта диагностирования без влияния на соседние участки. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур.
Известен зонд атомно-силового микроскопа для измерения модуля упругости (модуля Юнга) биологических объектов и предотвращения повреждения их поверхности, состоящий из кантилевера с прикрепленной зондовой иглой, на вершине которой закреплен шарик диаметром 5 мкм [1].
Недостатком известного технического решения является отсутствие возможности одновременного сочетания электромагнитного воздействия с измерением механической реакции (модуля упругости) на это стимулирующее воздействие в одной общей точке поверхности объекта диагностирования без влияния на соседние участки.
Наиболее близким по технической сущности является зонд атомно-силового микроскопа для механического определения упругости (модуля Юнга) клеток крови, состоящий из кантилевера с прикрепленной зондирующей иглой, на вершине которой закреплена полая полимерная микросфера диаметром 10 мкм [2].
Недостатком известного технического решения является отсутствие возможности одновременного сочетания электромагнитного воздействия с измерением механической реакции (модуля упругости) на это стимулирующее воздействие в одной общей точке поверхности объекта диагностирования без влияния на соседние участки.
Отличие предлагаемого технического решения от изложенных выше заключается в использовании нанокомпозитного излучающего элемента в виде стеклянной сферы легированной квантовыми точками структуры ядро-оболочка, закрепленной на вершине зондирующей иглы, что позволяет осуществить оптомеханические исследования наноразмерных структур материалов с оптомеханическими свойствами и биологических объектов с фотобиологическими свойствами.
Техническим результатом является возможность одновременного сочетания электромагнитного воздействия с измерением механической реакции (модуля упругости) на это стимулирующее воздействие в одной общей точке поверхности объекта диагностирования без влияния на соседние участки.
Технический результат предложенного изобретения достигается совокупностью существенных признаков, а именно: зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка, включающий кантилевер, соединенный с зондирующей иглой с нанометровым радиусом кривизны вершины, которая соединена со сферой, выполненной из стекла с нанометровыми порами, заполненными квантовыми точками структуры ядро-оболочка, количество которых больше двух, и определяется диаметром сферы и количеством пор, способных разместить квантовые точки без выхода их оболочек за периметр окружности сферы, причем сфера крепится к зонду за счет жесткой посадки вершины зондирующей иглы с нанометровым радиусом кривизны в одну из пор стеклянной сферы с нанометровыми порами, остальные поры с заполненными квантовыми точками структуры ядро-оболочка покрыты защитным полимерным слоем, прозрачным для длины волны внешнего электромагнитного источника возбуждения квантовых точек структуры ядро-оболочка и длины волны со стоксовым сдвигом генерируемой квантовыми точками структуры ядро-оболочка, внешний источник возбуждения квантовых точек закреплен у основания кантилевера и его излучение ориентированно на центр стеклянной сферы с нанометровыми порами, заполненными квантовыми точками структуры ядро-оболочка.
Сущность изобретения поясняется на фиг.1, где представлен зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом легированным квантовыми точками структуры ядро-оболочка, (выносной элемент A представлен на фиг 2). На фиг.2 представлен выносной элемент A (10:1) в увеличенном масштабе и в разрезе, поясняющий конструкцию зонда атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка.
Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка (фиг.1) состоит из: кантилевера 1, соединенного с зондирующей иглой 2, на вершине которой закреплена стеклянная сфера 3 с нанометровыми порами 4, легированными квантовыми точками 5 структуры ядро-оболочка, возбуждение которых осуществляется внешним электромагнитным источником возбуждения квантовых точек 6 (например, лазерным диодом), расположенным у основания кантилевера 1 с направлением излучения ориентированным на центр стеклянной сферы 3, также на фиг.1 представлена подложка 7 с размещенным на ней диагностируемым объектом 8 в момент соприкосновения ее со сферой 3 (элементы 4, 5, 8 приведены в увеличенном масштабе на фиг.2).
На выносном элементе A (10:1) фиг.2 представлены элементы в разрезе, где стеклянная сфера 3 с нанометровыми порами 4, заполненными квантовыми точками 5 структуры ядро-оболочка, в одной из нанометровых пор 4 стеклянной сферы 3 жестко закреплена вершина зондирующей иглы 2, под стеклянной сферой 3 расположена подложка 7 с диагностируемым объектом 8. Минимальный диаметр стеклянной сферы 3 определяется минимальным количеством легированных квантовых точек 5 структуры ядро-оболочка, образующих в совокупности нанокомпозитный излучающий элемент, параметры электромагнитного излучения которого определяются классом диагностируемого объекта 8. Стрелками указываются направления входящего λ1 и преобразованного λ2 по длине волны излучения, где λ1 - длина волны внешнего электромагнитного излучения для возбуждения квантовых точек, вызывающих их люминесценцию, λ2 - длина волны люминесценции квантовой точки, смещенной на стоксовый сдвиг относительно длины волны λ1.
В зависимости от видов объектов диагностирования, методов диагностирования (например, диагностирование светочувствительных зрительных тканей биологических объектов) используемые для легирования квантовые точки 5 структуры ядро-оболочка могут быть как со стоксовым, так и антистоксовым сдвигом длины волны электромагнитного излучения относительно внешнего источника возбуждения 6 (т.е. длина волны λ1 больше λ2 или λ1 меньше λ2). Это условие обусловлено требованием помехозащищенности с тем, чтобы λ1 находилась вне зоны длин волн, на которые реагируют все исследуемые участки диагностируемого объекта 8, а стимулирование его осуществлялось только излучением квантовых точек 5 структуры ядро-оболочка с длиной волны λ2, которая вызывает изменение модуля упругости отдельных локальных участков диагностируемого объекта 8 в непосредственной близости от точки соприкосновения сферы 3 с объектом диагностирования 8.
Длина волны поглощения λ1 квантовой точкой 5 структуры ядро-оболочка и длина волны излучения λ2 квантовой точки 5 структуры ядро-оболочка определяется ее диаметром (в основном от 2 до 20 нанометров), сочетанием материала ядра и материала оболочки, их процентным соотношением, спектром пропускания защитной прозрачной полимерной пленки и технологией изготовления самой квантовой точки структуры ядро-оболочка. Длина волны электромагнитного излучения квантовых точек, направленная на объект диагностирования, может находиться как в оптическом диапазоне, так и за его пределами, от ультрафиолетового до инфракрасного излучения.
Ядро квантовой точки 5 структуры ядро-оболочка может, например, включать по меньшей мере один материал, выбранный из группы, состоящей из CdSe, CdS, ZnS, ZnSe, CdTe, CdSeTe, CdZnS, PbSe, AgInZnS и ZnO, но не ограничивается ими. Оболочка квантовой точки 5 структуры ядро-оболочка может включать в себя по крайней мере один материал, выбранный из группы, состоящей из CdSe, ZnSe, ZnS, ZnTe, CdTe, PbS, TiO, SrSe и HgSe, но этими вариантами не ограничивается.
Для осуществления изобретения кроме классических квантовых точек структуры ядро-оболочка могут быть использованы и ядро-многооболочные квантовые точки [3].
Изготовление нанокомпозитного излучающего элемента осуществляется легированием стеклянной сферы 3, квантовыми точками 5 структуры ядро-оболочка и выполняется за счет проникновения квантовых точек в наноразмерные поры 4 стеклянной сферы 3. Например, процесс легирования может осуществляется по технологии известного метода, за счет погружения элемента из стекла с нанометровыми порами в раствор из двух или более квантовых точек с последующей сушкой на воздухе и заполнением оставшихся между квантовыми точками пустот смолой [4].
Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка, работает следующим образом: кантилевер 1 с зондирующей иглой 2 подводится к объекту диагностирования 8, расположенному на подложке 7, и надавливает на него, получая данные об упругих свойствах объекта диагностирования 8, до включения и после включения внешнего источника возбуждения 6 квантовых точек с длиной волны λ1. В результате квантовые точки 5 возбуждают поверхность диагностируемого объекта 8 длиной волны λ2, определенной в зависимости от выбранного материала квантовой точки 5 и соотношения диаметра ядра к толщине окружающей его оболочки. В зависимости от требуемых режимов диагностирование может проходить как в непрерывном режиме люминесценции, так и в импульсном режиме флуоресценции (т.е. освещение локального участка объекта диагностирования только излучением λ2 квантовых точек в интервале, равном времени их флуоресценции, после выключения внешнего оптического источника 6 с целью исключения посторонних засветок и помех).
Предложенная конструкция зонда с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка, также обеспечивает при сканировании поверхности объекта диагностики атомно-силовым микроскопом возможность осуществления съема топологического распределения корреляции изменения модуля Юнга в зависимости от стимулирующего воздействия определенной длины волны электромагнитного излучения на каждую точку с координатами X, Y, непосредственно расположенную под излучающей сферой. Это позволяет обнаружить и исследовать отдельные светочувствительные участки биологических объектов и наноструктур, изменяющие свои механические свойства и размеры под действием точечного электромагнитного излучения, что ранее невозможно было осуществить с известными зондами.
Источники информации
1. Д.В. Лебедев, А.П. Чукланов, А.А. Бухараев, О.С.Дружинина. Измерение модуля Юнга биологических объектов в жидкой среде с помощью специального зонда атомно-силового микроскопа // Письма в ЖТФ. - 2009 - Т.35. Вып.8 - С.54-61.
2. Патент RU 2466401 C1, 10.11.2012, G01N 33/49. Способ определения упругости клеток крови.
3. Patent Application Publication Pub. No.: US 20120315391 A1 Pub. Date: Dec. 13, 2012, QUANTUM DOTS HAVING COMPOSITION GRADIENT SHELL STRUCTURE AND MANUFACTURING METHOD THEREOF.
4. Patent Application Publication Pub. No.: US 20130011551 A1 Pub. Date: Jan. 10, 2013, QUANTUM DOT-GLASS COMPOSITE LUMINESCENT MATERIAL AND MANUFACTURING METHOD THEREOF.

Claims (2)

1. Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка, включающий кантилевер, соединенный с зондирующей иглой с нанометровым радиусом кривизны вершины, которая соединена со сферой, отличающийся тем, что сфера выполнена из стекла с нанометровыми порами, заполненными квантовыми точками структуры ядро-оболочка, количество которых больше двух, и определяется диаметром сферы и количеством пор, способных разместить квантовые точки без выхода их оболочек за периметр окружности сферы, причем сфера крепится к зонду за счет жесткой посадки вершины зондирующей иглы с нанометровым радиусом кривизны в одну из пор стеклянной сферы с нанометровыми порами, остальные поры с заполненными квантовыми точками структуры ядро-оболочка покрыты защитным полимерным слоем, прозрачным для длины волны внешнего электромагнитного источника возбуждения квантовых точек структуры ядро-оболочка и длины волны со стоксовым сдвигом, генерируемой квантовыми точками структуры ядро-оболочка.
2. Зонд по п.1, отличающийся тем, что внешний источник возбуждения квантовых точек закреплен у основания кантилевера и его излучение ориентированно на центр стеклянной сферы с нанометровыми порами, заполненными квантовыми точками структуры ядро-оболочка.
RU2013138539/28A 2013-08-19 2013-08-19 Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка RU2541422C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013138539/28A RU2541422C1 (ru) 2013-08-19 2013-08-19 Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013138539/28A RU2541422C1 (ru) 2013-08-19 2013-08-19 Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка

Publications (2)

Publication Number Publication Date
RU2541422C1 true RU2541422C1 (ru) 2015-02-10
RU2013138539A RU2013138539A (ru) 2015-02-27

Family

ID=53279237

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013138539/28A RU2541422C1 (ru) 2013-08-19 2013-08-19 Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка

Country Status (1)

Country Link
RU (1) RU2541422C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584179C1 (ru) * 2015-03-30 2016-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка
CN106950624A (zh) * 2017-04-24 2017-07-14 宁波东旭成新材料科技有限公司 一种量子点光扩散膜
RU2723899C1 (ru) * 2019-11-05 2020-06-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф.Уткина" Сканирующий зонд атомно-силового микроскопа с отделяемым телеуправляемым нанокомпозитным излучающим элементом, легированным квантовыми точками, апконвертирующими и магнитными наночастицами структуры ядро-оболочка
RU2724987C1 (ru) * 2019-11-06 2020-06-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Сканирующий зонд атомно-силового микроскопа с разделяемым телеуправляемым нанокомпозитным излучающим элементом, легированным квантовыми точками, апконвертирующими и магнитными наночастицами структуры ядро-оболочка

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241346A (ja) * 2007-03-26 2008-10-09 Fujitsu Ltd 探針及びそれを用いた測定装置
US7528947B2 (en) * 2003-07-10 2009-05-05 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nanoparticles functionalized probes and methods for preparing such probes
RU2466401C1 (ru) * 2011-03-15 2012-11-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет"(НИУ "БелГУ") Способ определения упругости клеток крови

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528947B2 (en) * 2003-07-10 2009-05-05 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nanoparticles functionalized probes and methods for preparing such probes
JP2008241346A (ja) * 2007-03-26 2008-10-09 Fujitsu Ltd 探針及びそれを用いた測定装置
RU2466401C1 (ru) * 2011-03-15 2012-11-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет"(НИУ "БелГУ") Способ определения упругости клеток крови

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584179C1 (ru) * 2015-03-30 2016-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка
CN106950624A (zh) * 2017-04-24 2017-07-14 宁波东旭成新材料科技有限公司 一种量子点光扩散膜
RU2723899C1 (ru) * 2019-11-05 2020-06-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф.Уткина" Сканирующий зонд атомно-силового микроскопа с отделяемым телеуправляемым нанокомпозитным излучающим элементом, легированным квантовыми точками, апконвертирующими и магнитными наночастицами структуры ядро-оболочка
RU2724987C1 (ru) * 2019-11-06 2020-06-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Сканирующий зонд атомно-силового микроскопа с разделяемым телеуправляемым нанокомпозитным излучающим элементом, легированным квантовыми точками, апконвертирующими и магнитными наночастицами структуры ядро-оболочка

Also Published As

Publication number Publication date
RU2013138539A (ru) 2015-02-27

Similar Documents

Publication Publication Date Title
Farrer et al. Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles
Baffou et al. Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy
RU2541422C1 (ru) Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка
Stranik et al. Plasmonic enhancement of fluorescence for sensor applications
Qasem et al. Recent advances in mechanoluminescence of doped zinc sulfides
Chizhik et al. Excitation isotropy of single CdSe/ZnS nanocrystals
US9179865B2 (en) Luminescent tension-indicating orthopedic strain gauges for non-invasive measurements through tissue
EP2951560B1 (en) Apparatus having surface-enhanced spectroscopy elements on an exterior surface
WO2017008699A1 (zh) 细胞牵引力的测量装置、测量方法及制备方法
US8670119B1 (en) Apparatus having surface-enhanced spectroscopy modules
JP7072160B2 (ja) 超薄膜光ルミネッセンスセンサー
Terasaki Innovative First Step toward Mechanoluminescent Ubiquitous Light Source for Trillion Sensors.
RU2541419C1 (ru) Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка
Lioi et al. Embedded optical nanosensors for monitoring the processing and performance of polymer matrix composites
RU163240U1 (ru) Сканирующий зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка
RU140229U1 (ru) Зонд атомно-силового микроскопа с излучающим элементом, на основе квантовых точек структуры ядро-оболочка
Yang et al. Nanoscale 3D temperature gradient measurement based on fluorescence spectral characteristics of the CdTe quantum dot probe
RU140007U1 (ru) Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками структуры ядро-оболочка
US20170153179A1 (en) Random laser detector
Jorge et al. Rapid fabrication of dual analyte luminescent optrodes by self-guiding photo-polymerization
WO2016085657A1 (en) Fiber-optic micro-probes for measuring acidity level, temperature, and antigens
Kumar Mishra et al. A Review for Luminescence Property of Materials, Its Detection and Probabilities for Embedding of Luminescence with MEMS Technology
RU2635345C1 (ru) Зонд атомно-силового микроскопа с программируемым спектральным портретом излучающего элемента на основе квантовых точек структуры ядро-оболочка
RU2615708C1 (ru) Сканирующий зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка
RU2629713C1 (ru) Зонд атомно-силового микроскопа с программируемым спектральным портретом излучающего элемента, легированного квантовыми точками структуры ядро-оболочка

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160820