RU2539184C2 - Тест на отсутствие гашения камеры сгорания газотурбинного двигателя - Google Patents

Тест на отсутствие гашения камеры сгорания газотурбинного двигателя Download PDF

Info

Publication number
RU2539184C2
RU2539184C2 RU2012120659/06A RU2012120659A RU2539184C2 RU 2539184 C2 RU2539184 C2 RU 2539184C2 RU 2012120659/06 A RU2012120659/06 A RU 2012120659/06A RU 2012120659 A RU2012120659 A RU 2012120659A RU 2539184 C2 RU2539184 C2 RU 2539184C2
Authority
RU
Russia
Prior art keywords
gas turbine
turbine engine
flow rate
combustion chamber
engine
Prior art date
Application number
RU2012120659/06A
Other languages
English (en)
Other versions
RU2012120659A (ru
Inventor
Филипп Роже КУРТИ
Филипп ЭТШЕПАР
Юбер Паскаль ВЕРДЬЕ
Original Assignee
Турбомека
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Турбомека filed Critical Турбомека
Publication of RU2012120659A publication Critical patent/RU2012120659A/ru
Application granted granted Critical
Publication of RU2539184C2 publication Critical patent/RU2539184C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/46Emergency fuel control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • F05D2270/092Purpose of the control system to cope with emergencies in particular blow-out and relight

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Engines (AREA)
  • Control Of Turbines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Способ наземного контроля нормальной работы установленного на самолете авиационного газотурбинного двигателя. Для этого производят испытание, которое содержит осуществление - на работающем газотурбинном двигателе и начиная от определенного режима - быстрого уменьшения расхода топлива по запрограммированному понижению с целью оценки стойкости к самогашению камеры сгорания упомянутого газотурбинного двигателя во время быстрого сброса его оборотов в полете. Технический результат - повышение надежности диагностики газотурбинного двигателя. 5 н. и 3 з.п. ф-лы, 1 ил.

Description

Настоящее изобретение относится к области термодинамики газотурбинных двигателей и, в частности, касается работы авиационных газотурбинных двигателей.
Классически газотурбинные двигатели содержат один или несколько компрессоров, которые сжимают воздух, всасываемый через воздухозаборник, камеру сгорания, в которой сгорает топливо, смешиваемое с воздухом, одну или несколько турбин, которые отбирают часть мощности, создаваемой при горении, для вращения компрессора или компрессоров, и реактивное сопло, через которое выходят отработавшие газы.
Авиационные газотурбинные двигатели применяют в широкой области полетов, когда их работа должна быть гарантированной, чтобы обеспечивать безопасность экипажа и возможных пассажиров. В частности, необходимо избегать самовыключения турбореактивного двигателя самолета или газотурбинного двигателя вертолета во время действия, совершаемого пилотом. Такое гашение пламени в камере сгорания может произойти, например, когда пилот совершает действие быстрого понижения производимой тяги или мощности. Этот тип действия может понадобиться в аварийной ситуации, когда пилот на самолете хочет резко снизить его скорость или на вертолете пытается резко сбросить газ, например, чтобы обойти внезапно возникшее на его пути препятствие (так называемой маневр “quick stop” или быстрое торможение).
При нормальной работе предусмотрено регулирование двигателя для управления расходом топлива, впрыскиваемого в камеру сгорания, и для предупреждения такого гашения. Однако в случае нарушения такого регулирования или изменения физических характеристик деталей двигателя, такое гашение не исключено. Такое нарушение может произойти при старении двигателя, в результате которого происходят изменения в зазорах или в размере впускных воздушных отверстий или в системе впрыска и регулирования топлива. Это выражается в попадании в камеру количества воздуха, превышающего требуемое, или во впрыске в камеру количества топлива, меньшего требуемого, и, следовательно, в обеднении смеси.
Во время быстрого торможения резкое уменьшение расхода топлива, впрыскиваемого в камеру сгорания, выражается моментальным изменением состава смеси. Действительно, уменьшение расхода топлива является почти мгновенным, когда золотник, управляющий расходом топлива, переводят на закрытие, тогда как снижение расхода воздуха следует снижению скорости вращения ведущего вала, изменение которой ограничено инерцией ротора и, следовательно, не является моментальным. Состав горючей смеси резко меняется от своего номинального значения к значению обеднения, которое может опять стать номинальным, только когда режим двигателя стабилизируется в своем новом значении. Однако устойчивость пламени в камере сгорания обеспечивается, только если состав смеси находится в пределах между двумя крайними значениями: так называемым значением гашения от переобогащения и так называемым значением гашения от переобеднения.
В случае маневра экстренного быстрого торможения, если двигатель неисправен по одной из вышеупомянутых причин, степень обогащения смеси может упасть ниже значения гашения от переобеднения и двигатель может выключиться. В настоящее время только стендовое испытание позволяет произвести соответствующую диагностику, чтобы проверить способность двигателя противостоять этому явлению гашения во время этих экстренных действий. Кроме того, его осуществляют только при приемке новых двигателей. В дальнейшем двигатели проверяют только при капитальном техническом обслуживании на заводе. Если характеристики двигателя изменяются, риск отказа остается абсолютно незаметным при нормальной эксплуатации, так как нормальные уменьшения режима не являются такими резкими, как при вышеупомянутых экстренных действиях, поскольку степень обогащения смеси не опускается до предела гашения от переобеднения. Вместе с тем, двигатель может отключиться, если пилоту придется осуществить такой экстренный маневр, то есть именно в тот момент, когда двигатель ему нужен как никогда.
Настоящее изобретение призвано устранить эти недостатки и предложить способ, реализуемый на летательном аппарате на земле и предназначенный для контроля нормальной работы двигателя для случая, когда может понадобиться быстрое торможение во время полета. Этот способ позволяет также оценить наличие возможной деградации камеры сгорания.
В связи с этим, объектом настоящего изобретения является способ наземного контроля функции предупреждения гашения пламени системы регулирования расхода топлива, впрыскиваемого в камеру сгорания авиационного газотурбинного двигателя, при этом упомянутой системой управляют посредством вычислителя, передающего ей заданное значение (WF) расхода впрыска, при этом упомянутое значение превышает минимальное значение (WFMIN), заранее определенное упомянутым вычислителем, чтобы избегать рисков гашения в случае быстрого понижения заданного значения расхода, отличающийся тем, что содержит осуществление - на работающем газотурбинном двигателе и начиная от определенного режима - уменьшения расхода топлива по запрограммированному понижению для достижения заданного значения расхода, меньшего минимального значения, соответствующего рассматриваемой работе на земле, с последующей проверкой отсутствия гашения камеры сгорания с целью оценки стойкости к гашению камеры сгорания упомянутого газотурбинного двигателя во время маневра быстрого сброса его оборотов в полете.
Тест состоит в том, чтобы отслеживать возможное гашение камеры сгорания во время такого действия и чтобы сделать вывод, может ли двигатель выдерживать маневр быстрого торможения в полете.
Предпочтительно понижение автоматически осуществляет вычислителем двигателя в результате приведения в действие пилотом или механиком соответствующего органа управления, связанного с упомянутым вычислителем.
Таким образом, убеждаются, чтобы осуществляемое понижение точно следовало номинальному понижению при испытании. При этом ограничивают также сложность реализации испытания для пилотов и/или механиков.
Предпочтительно режим двигателя в начале контроля модулируют в зависимости от условий температуры и давления на месте осуществления упомянутого контроля нормальной работы.
Предпочтительно также степень понижения расхода топлива во время контроля модулируют в зависимости от условий температуры и давления на месте осуществления упомянутого контроля нормальной работы.
Это позволяет учитывать особые характеристики места, где происходит тест, и, следовательно, осуществлять его в условиях, характерных для работы камеры сгорания.
Объектом изобретения является также способ определения предельного значения понижения расхода топлива, начиная от которого происходит гашение камеры сгорания авиационного газотурбинного двигателя, посредством осуществления нескольких вышеуказанных проверок, при этом применяемые степени снижения каждый раз повышают по отношению к предыдущему контролю.
Предпочтительно расход топлива, впрыскиваемого в камеру сгорания, адаптируют в зависимости от предела гашения, определенного при помощи описанного выше способа.
Наконец, объектом изобретения является вычислитель регулирования расхода топлива, впрыскиваемого в авиационный газотурбинный двигатель, в который устанавливают модуль для осуществления одного из описанных выше способов, а также газотурбинный двигатель, содержащий такой вычислитель.
Настоящее изобретение, другие его цели, детали, отличительные признаки и преимущества будут более очевидны из нижеследующего подробного описания варианта выполнения изобретения, представленного в качестве исключительно иллюстративного и не ограничительного примера, со ссылками на прилагаемый схематичный чертеж.
На фиг.1 показаны скорость (NG) газогенератора, заданное значение расхода (WF), регулируемое вычислителем, и ограничителем минимального расхода (WFMIN), задаваемым вычислителем во время теста на отсутствие гашения.
Заданное значение расхода является значением расхода, задаваемым вычислителем системе регулирования, которая действует на положение дозатора топлива. Значение минимального расхода является минимальным значением, определяемым вычислителем, которое фиксирует нижний ограничитель заданного значения расхода, передаваемого вычислителем. Гашение или отсутствие гашения камеры сгорания в случае быстрого уменьшения режима связаны с нормальной установкой этого минимального значения.
Изменение параметров, показанное на фиг.1, разбито на три фазы, обозначенные φ1, φ2 и φ3. Фаза 1 соответствует фазе подготовки теста, во время которой пилот отображает режим, определенный заранее (как правило, 90% от значения при полном газе), и выжидает, пока этот режим стабилизируется. Эту стабилизацию отслеживают вычислителем, который разрешает начать фазу 2, только если эта стабилизация реально достигнута. Фаза 2 соответствует запуску теста вычислителем в ответ на команду пилота или механика, а фаза 3 соответствует возврату к нормальной работе на малых оборотах после теста. Запуск фазы 2 сопровождается калиброванным понижением заданного значения минимального расхода WFMIN ниже значения, определенного вычислителем для нормальной эксплуатации.
Во время фазы 1, поскольку режим стабилизировался на 90%, заданное значение расхода, передаваемое вычислителем, после стабилизации режима является постоянным и равным расходу, необходимому для поддерживания этого значения режима; заданное значение минимального расхода, которое соответствует максимальному понижению, допускаемому вычислителем в случае резкого уменьшения оборотов двигателя, тоже является стабильным и равным значению при нормальной работе.
Когда вычислитель запускает тест, это выражается резким уменьшением заданного значения расхода и его приведением к значению минимального расхода, которое запрограммировано в вычислителе для теста и которое, как было указано выше, произвольно устанавливают в значении, меньшем того, которое имел бы расход при нормальной работе. Это уменьшенное значение заданного минимального расхода точно соответствует тому, которое необходимо протестировать, то есть при котором необходимо проверить отсутствие самовыключения двигателя во время экстренного действия. Режим двигателя быстро понижается во взаимосвязи с инерцией его вращающихся деталей и стабилизируется в случае, представленном на фиг.1, когда действительно не происходит гашения, на данном значении, меньшем значения малого газа.
Фаза 3 соответствует возврату к нормальным условиям с остановкой теста, которая выражается повышением заданного значения расхода до значения, соответствующего малому газу. Повышение заданного значения расхода приводит к увеличению режима двигателя до режима малого газа, при котором он опять стабилизируется. Что касается заданного значения минимального расхода, то оно остается постоянным, за исключением некоторых переходных колебаний.
Для решения поставленной задачи изобретением предлагается установить в вычислителе двигателя, который в любой момент управляет расходом топлива, впрыскиваемого в камеру сгорания, модуль, активация которого запускает специфическую процедуру теста на отсутствие гашения, осуществляемого на земле при работающем двигателе, например, в стационарной точке, то есть во время контроля нормальной работы двигателя, осуществляемого при каждом полете перед взлетом.
Этот тест состоит в запрограммированном уменьшении количества впрыскиваемого топлива таким образом, чтобы имитировать понижение расхода во время экстренного действия, такого как быстрое торможение, и воспроизвести условия состава топливно-воздушной смеси, близкие к условиям, которые возникали бы при таком действии. Уменьшение количества впрыскиваемого топлива осуществляют посредством резкого понижения заданного значения расхода WF, передаваемого вычислителем в систему регулирования, которая управляет положением дозатора, и моментального приведения этого заданного значения WF к заранее определенному минимальному заданному значению WFMIN. Это понижение осуществляют до значения WFMIN, которое меньше заданного значения минимального расхода, применяемого при нормальной работе, чтобы имитировать минимальное отношение топлива к воздуху, через которое может пройти камера сгорания во время действия типа быстрого торможения. Это заданное значение минимального расхода, применяемое для теста, определяет конструкторское бюро во время проектирования двигателя на основании расчетов работы камеры или на основании записей, осуществленных на летательном аппарате во время летных испытаний. Его модулируют в зависимости от условий, в которых происходит этот тест, например, таких как высота аэродрома, на котором находится летательный аппарат, атмосферные условия и т.д. Это модулирование значения, придаваемого минимальному расходу WFMIN во время теста, касается, кроме всего прочего, значения режима двигателя, устанавливаемого в начале теста на отсутствие гашения.
Процедура протекает следующим образом: в зависимости от периодичности, установленной в руководстве по летной эксплуатации или в руководстве по техническому обслуживанию, пилот начинает действие, имитирующее быстрое торможение, посредством воздействия на специальный орган управления, связанный с вычислителем двигателя. Этот вычислитель начинает запрограммированное понижение, задавая значение расхода WF, равное заданному значению минимального расхода WFMIN, заранее определенному для теста, что выражается в перемещении, в направлении закрытия, золотника управления расходом топлива, и пилот проверяет, происходит или нет гашение камеры сгорания. Если гашение не происходит, считают, что двигатель соответствует номинальным условиям, и можно производить полет. Таким образом, пилот знает, что двигатель работоспособен, в том что касается рисков при быстром торможении, и что он может осуществлять такое экстренное действие без риска, если в ходе полета возникнет такая необходимость.
Если во время теста на земле происходит гашение, это значит, что двигатель не соответствует нормальным условиям работы и что необходимо предусмотреть операцию технического обслуживания перед получением разрешения на возобновление полета. Такую операцию технического обслуживания уточняют в руководстве по эксплуатации двигателя, и она может, например, предусматривать снятие двигателя и его отправку на завод. Причину плохой работы будут выявлять как на уровне неисправности системы регулирования и впрыска топлива, так и на уровне снижения характеристик камеры сгорания, например, по причине ее износа.
В рамках этого теста на отсутствие гашения могут быть также предложены дополнительные анализы: можно предусмотреть выявление предела гашения путем нескольких испытаний, затем, в зависимости от найденного значения минимального расхода топлива WFMIN, обеспечивающего отсутствие гашения, адаптируют законы работы вычислителя, чтобы учитывать отмеченное снижение характеристик. Максимальное понижение расхода топлива, установленного вычислителем для нормальной эксплуатации, ограничивают, чтобы гарантировать отсутствие гашения; следовательно, можно продолжать без риска эксплуатировать двигатель, не прибегая к его снятию и к установке работоспособного двигателя на летательном аппарате.

Claims (8)

1. Способ наземного контроля функции предупреждения гашения пламени системы регулирования расхода топлива, впрыскиваемого в камеру сгорания авиационного газотурбинного двигателя, при этом упомянутой системой управляют посредством вычислителя, передающего ей заданное значение (WF) расхода впрыска, при этом упомянутое значение превышает минимальное значение (WFMIN), заранее определенное упомянутым вычислителем, чтобы избегать рисков гашения в случае быстрого понижения заданного значения расхода, отличающийся тем, что содержит осуществление - на работающем газотурбинном двигателе и начиная от определенного режима - уменьшения расхода топлива по запрограммированному понижению для достижения заданного значения расхода, меньшего минимального значения, соответствующего рассматриваемой работе на земле, с последующей проверкой отсутствия гашения камеры сгорания.
2. Способ по п.1, в котором понижение автоматически осуществляют вычислителем двигателя в результате приведения в действие пилотом или механиком соответствующего органа управления, связанного с упомянутым вычислителем.
3. Способ по п.1, в котором режим двигателя в начале контроля модулируют в зависимости от условий температуры и давления на месте осуществления упомянутого контроля нормальной работы.
4. Способ по п.1, в котором понижение расхода топлива во время контроля модулируют в зависимости от условий температуры и давления на месте осуществления упомянутого контроля нормальной работы.
5. Способ определения предельного значения понижения расхода топлива, начиная с которого происходит гашение камеры сгорания авиационного газотурбинного двигателя, посредством последовательного осуществления нескольких проверок по одному из пп.1-4, при этом применяемые понижения каждый раз повышают по отношению к предыдущему контролю.
6. Способ регулирования расхода топлива, впрыскиваемого в камеру сгорания авиационного газотурбинного двигателя, в котором расход топлива адаптируют в зависимости от предела гашения, определенного при помощи способа по п.5.
7. Вычислитель регулирования расхода топлива, впрыскиваемого в авиационный газотурбинный двигатель, в который устанавливают модуль для осуществления способа по одному из пп.1-4.
8. Авиационный газотурбинный двигатель, содержащий вычислитель по предыдущему пункту.
RU2012120659/06A 2009-10-19 2010-10-18 Тест на отсутствие гашения камеры сгорания газотурбинного двигателя RU2539184C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0957303 2009-10-19
FR0957303A FR2951540B1 (fr) 2009-10-19 2009-10-19 Test de non-extinction pour chambre de combustion de turbomachine
PCT/EP2010/065664 WO2011048065A1 (fr) 2009-10-19 2010-10-18 Test de non-extinction pour chambre de combustion de turbomachine

Publications (2)

Publication Number Publication Date
RU2012120659A RU2012120659A (ru) 2013-11-27
RU2539184C2 true RU2539184C2 (ru) 2015-01-20

Family

ID=42110338

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012120659/06A RU2539184C2 (ru) 2009-10-19 2010-10-18 Тест на отсутствие гашения камеры сгорания газотурбинного двигателя

Country Status (12)

Country Link
US (1) US20120210725A1 (ru)
EP (1) EP2491365B1 (ru)
JP (1) JP5643319B2 (ru)
KR (1) KR101757492B1 (ru)
CN (1) CN102575972B (ru)
CA (1) CA2777523C (ru)
ES (1) ES2449693T3 (ru)
FR (1) FR2951540B1 (ru)
IN (1) IN2012DN03150A (ru)
PL (1) PL2491365T3 (ru)
RU (1) RU2539184C2 (ru)
WO (1) WO2011048065A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111814B2 (en) * 2017-12-20 2021-09-07 General Electric Company Turbine engine operational testing
CN110736625B (zh) * 2019-10-08 2021-07-09 中国航发沈阳发动机研究所 一种识别双转子燃气涡轮发动机主燃烧室熄火的方法
CN117740384B (zh) * 2024-02-07 2024-04-16 中国航发四川燃气涡轮研究院 一种燃烧性能敏感性评估方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1732734A1 (ru) * 1989-12-25 1994-04-30 Уфимское агрегатное конструкторское бюро "Молния" Система автоматического управления газотурбинным двигателем
US5596871A (en) * 1995-05-31 1997-01-28 Alliedsignal Inc. Deceleration fuel control system for a turbine engine
RU2168044C2 (ru) * 1994-08-08 2001-05-27 Компрессор Контролз Корпорейшн Способ предотвращения отклонения параметров в газовых турбинах и устройство для его осуществления (варианты)
RU2245491C2 (ru) * 2002-05-22 2005-01-27 Федеральное государственное унитарное предприятие Научно-производственное объединение измерительной техники Способ контроля режима горения в газотурбинной установке и устройство для его осуществления

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011A (en) * 1850-01-08 Mill foe
US4510794A (en) * 1982-12-28 1985-04-16 United Technologies Corporation Afterburner flameholder ion probe
US4649700A (en) * 1985-04-29 1987-03-17 Philip Gardiner Fuel control system
US5259234A (en) * 1992-03-09 1993-11-09 General Electric Company Calibration system for air metering bellmouths
US5396791A (en) * 1993-08-13 1995-03-14 General Electric Company Engine testing mounting adaptor
US6148617A (en) * 1998-07-06 2000-11-21 Williams International, Co. L.L.C. Natural gas fired combustion system for gas turbine engines
JP2000310582A (ja) * 1999-04-27 2000-11-07 Ishikawajima Harima Heavy Ind Co Ltd エンジン運転試験装置
JP4430220B2 (ja) * 2000-10-02 2010-03-10 本田技研工業株式会社 航空機用ガスタービンエンジンの制御装置
US6442943B1 (en) * 2001-05-17 2002-09-03 General Electric Company Methods and apparatus for detecting turbine engine flameout
JP2004019476A (ja) * 2002-06-12 2004-01-22 Ebara Corp ガスタービン装置
JP2005248848A (ja) * 2004-03-04 2005-09-15 Hitachi Ltd ガスタービン診断方法及び装置
JP4511873B2 (ja) * 2004-03-31 2010-07-28 本田技研工業株式会社 ガスタービン・エンジンのセンサ故障検知装置
US7614238B2 (en) * 2005-11-22 2009-11-10 Honeywell International Inc. Method for lean blowout protection in turbine engines
US20090320578A1 (en) * 2007-03-07 2009-12-31 Peltzer Arnold A Test apparatus for a jet engine
US7997083B2 (en) * 2007-08-28 2011-08-16 General Electric Company Method and system for detection of gas turbine combustion blowouts utilizing fuel normalized power response
US7628062B2 (en) * 2007-09-06 2009-12-08 General Electric Company Method and system to determine composition of fuel entering combustor
US20090100918A1 (en) * 2007-09-26 2009-04-23 United Technologies Corp. Systems and Methods for Testing Gas Turbine Engines
US8800290B2 (en) * 2007-12-18 2014-08-12 United Technologies Corporation Combustor
US20090183492A1 (en) * 2008-01-22 2009-07-23 General Electric Company Combustion lean-blowout protection via nozzle equivalence ratio control
US7966802B2 (en) * 2008-02-05 2011-06-28 General Electric Company Methods and apparatus for operating gas turbine engine systems
US7589243B1 (en) * 2008-09-17 2009-09-15 Amyris Biotechnologies, Inc. Jet fuel compositions
US8432440B2 (en) * 2009-02-27 2013-04-30 General Electric Company System and method for adjusting engine parameters based on flame visualization
US8667800B2 (en) * 2009-05-13 2014-03-11 Delavan Inc. Flameless combustion systems for gas turbine engines
US20100319353A1 (en) * 2009-06-18 2010-12-23 John Charles Intile Multiple Fuel Circuits for Syngas/NG DLN in a Premixed Nozzle
US8528429B2 (en) * 2010-01-20 2013-09-10 Babcock & Wilcox Power Generation Group, Inc. System and method for stabilizing a sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1732734A1 (ru) * 1989-12-25 1994-04-30 Уфимское агрегатное конструкторское бюро "Молния" Система автоматического управления газотурбинным двигателем
RU2168044C2 (ru) * 1994-08-08 2001-05-27 Компрессор Контролз Корпорейшн Способ предотвращения отклонения параметров в газовых турбинах и устройство для его осуществления (варианты)
US5596871A (en) * 1995-05-31 1997-01-28 Alliedsignal Inc. Deceleration fuel control system for a turbine engine
RU2245491C2 (ru) * 2002-05-22 2005-01-27 Федеральное государственное унитарное предприятие Научно-производственное объединение измерительной техники Способ контроля режима горения в газотурбинной установке и устройство для его осуществления

Also Published As

Publication number Publication date
RU2012120659A (ru) 2013-11-27
US20120210725A1 (en) 2012-08-23
CN102575972A (zh) 2012-07-11
FR2951540A1 (fr) 2011-04-22
JP5643319B2 (ja) 2014-12-17
EP2491365A1 (fr) 2012-08-29
CA2777523C (fr) 2016-11-01
PL2491365T3 (pl) 2014-05-30
IN2012DN03150A (ru) 2015-09-18
ES2449693T3 (es) 2014-03-20
FR2951540B1 (fr) 2012-06-01
KR101757492B1 (ko) 2017-07-12
CA2777523A1 (fr) 2011-04-28
EP2491365B1 (fr) 2013-12-04
CN102575972B (zh) 2016-01-20
KR20120093241A (ko) 2012-08-22
JP2013508604A (ja) 2013-03-07
WO2011048065A1 (fr) 2011-04-28

Similar Documents

Publication Publication Date Title
EP2356327B1 (en) Adaptive fail-fixed system for fadec controlled gas turbine engines
EP3464834B1 (en) Turbine engine and method of operating
US9387934B2 (en) Method and a rotary wing aircraft having three engines
US10371002B2 (en) Control system for a gas turbine engine
US9371779B2 (en) Method and a device for adjusting a setpoint value of a parameter that influences thrust from a gas turbine engine
US20160265445A1 (en) Overthrust protection system and method
RU2539184C2 (ru) Тест на отсутствие гашения камеры сгорания газотурбинного двигателя
EP3705702A1 (en) Aircraft engine reignition
RU2451923C1 (ru) Способ испытаний маслосистемы авиационного газотурбинного двигателя
CA3002287A1 (en) Detection of uncommanded and uncontrollable high thrust events
JP6185162B2 (ja) 一軸形コンバインドサイクルプラントの過回転速度防止装置をテストするための方法
KOWALSKI et al. Restarting of a jet engine during flying and flight safety
Jankowski et al. Problems of Restarting A Turbojet Engine After the Engine Stopping During the Aircraft Training Flight
Hedges et al. The Boeing 777-300/PW4098 flying test-bed program
Jaw et al. Simulation of an intelligent engine control system for aircraft under adverse conditions
Gouda Operability Issues Encountered in Generic Aero Gas Turbine Engines
Solomon Full authority digital electronic control of Pratt and Whitney 305 turbofan engine
BURCHAM, JR et al. The value of early flight evaluation of propulsion concepts using the NASA F-15 research airplane
SANDERS et al. CHAPTER X ENGINE FUEL CONTROLS

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191019