RU2538429C1 - Способ реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания - Google Patents

Способ реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания Download PDF

Info

Publication number
RU2538429C1
RU2538429C1 RU2014100482/06A RU2014100482A RU2538429C1 RU 2538429 C1 RU2538429 C1 RU 2538429C1 RU 2014100482/06 A RU2014100482/06 A RU 2014100482/06A RU 2014100482 A RU2014100482 A RU 2014100482A RU 2538429 C1 RU2538429 C1 RU 2538429C1
Authority
RU
Russia
Prior art keywords
combustion chamber
piston
external combustion
crankshaft
engine
Prior art date
Application number
RU2014100482/06A
Other languages
English (en)
Inventor
Анатолий Александрович Рыбаков
Original Assignee
Анатолий Александрович Рыбаков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анатолий Александрович Рыбаков filed Critical Анатолий Александрович Рыбаков
Priority to RU2014100482/06A priority Critical patent/RU2538429C1/ru
Application granted granted Critical
Publication of RU2538429C1 publication Critical patent/RU2538429C1/ru

Links

Images

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Изобретение относится к двигателям внутреннего сгорания (ДВС), в частности к способам их реверсирования. Техническим результатом является повышение эффективности управления двигателем. Сущность изобретения заключается в том, что система управления отслеживает мгновенное положение поршней в цилиндре двигателя и открывает тот впускной клапан, при открытом положении которого продукты сгорания из внешней камеры сгорания поступают в рабочую полость того поршня, в которой энергия поступающих из внешней камеры сгорания расширяющихся продуктов сгорания приводит в движение поршень. Кинетическая энергия этого поршня через соединенный с поршнями шток и сочлененный со штоком шатун передается коленчатому валу двигателя при положении коленчатого вала, обеспечивающего его вращение в задаваемом направлении. 2 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области энергомашиностроения.
УРОВЕНЬ ТЕХНИКИ
Ближайший аналог заявленного изобретения - патент 2324060 «Свободнопоршневой генератор газов прямоточного двигателя с двумя поршнями привода компрессора». Принцип его действия состоит в следующем. При пуске свободнопоршневого генератора газов в камеру сгорания 1 форсункой 2 подается топливо и воспламеняется свечой 3 (фиг.1). Продукты сгорания через открытый газораспределительный клапан 4 поступают в левую полость поршня привода компрессора 5, в результате чего поршень привода компрессора 5 и соединенные с ним штоком 6 поршень компрессора 7 и поршень привода компрессора 8 начинают движение слева направо (по рисунку). Воздух из правой полости поршня привода компрессора 5 через обратный клапан 9 вытекает в атмосферу, а через обратный клапан 10 в левую полость поршня компрессора 7 засасывается воздух из атмосферы. Одновременно через обратный клапан 11 из правой полости поршня компрессора 7 воздух подается в камеру сгорания 1, пополняя расход кислорода в процессе горения топлива. Открытый газораспределительный клапан 12 позволяет воздуху свободно вытекать из правой полости поршня привода компрессора 8, не оказывая сопротивления движению поршней, а через обратный клапан 13 в левую полость поршня привода компрессора 8 засасывается воздух из атмосферы. При достижении поршнями окрестностей крайнего правого положения система управления (на фигуре не показана) переводит газораспределительные клапаны 4 и 12 в правое положение. Теперь газы из камеры сгорания 1 через открывшийся газораспределительный клапан 12 поступают в правую полость поршня привода компрессора 8, в результате чего поршни останавливаются, а затем начинают движение справа налево. Все остальные воздухораспределительные клапаны переходят в противоположное положение. Отработавшие газы из левой полости поршня привода компрессора 5 через открывшийся газораспределительный клапан 4 вытекают в атмосферу, а воздух из атмосферы через обратный клапан 14 засасывается в правую полость поршня привода компрессора 5. Воздух из левой полости поршня компрессора 7 через обратный клапан 15 подается в камеру сгорания 1, а воздух из атмосферы через обратный клапан 16 засасывается в правую полость поршня 7. Воздух из левой полости поршня привода компрессора 8 через обратный клапан 17 выбрасывается в атмосферу. В дальнейшем система управления, переводя газораспределительные клапаны 4 и 12 из одного крайнего положения в другое, обеспечивает подачу воздуха в камеру сгорания 1. При достижении рабочего давления газов в камере сгорания 1 открывается заслонка 18 и генерируемые газы через распределительный коллектор 19 поступают в тяговую расширительную машину. Управление текущей мощностью двигателя осуществляется изменением интенсивности подачи топлива в камеру сгорания.
ЦЕЛЬ ИЗОБРЕТЕНИЯ
Цель заявленного изобретения состоит в том, чтобы обеспечить реверсирование вращения коленчатого вала однотактного двигателя с внешней камерой сгорания
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Сущность заявленного изобретения поясняется на примере однотактного двигателя с внешней камерой сгорания и кривошипно-шатунным механизмом (далее - однотактный двигатель) в одноцилиндровом исполнении. Действует он следующим образом. При пуске двигателя система управления подает во внешнюю камеру сгорания 1 форсункой 2 дозу топлива и воспламеняет его свечой зажигания 3 (фиг.2). Топливо горит, и, если поршни 4 и 5 находятся в положении, как показано на фигуре, продукты сгорания из внешней камеры сгорания 1 по трубопроводу 6 через открытый впускной клапан 7 поступают в нижнюю (по рисунку) рабочую полость поршня 4. Под воздействием поступающих в нижнюю рабочую полость поршня 4 продуктов сгорания поршень 4, штоки 8, 9 и поршень 5 начинают движение вверх. Поскольку нижняя площадь поверхности поршня 4 больше его верхней площади поверхности на разность площадей поперечного сечения штоков 8 и 9, то давление сжимаемого в верхней компрессорной полости поршня 4 воздуха больше давления продуктов сгорания в его нижней полости. Поэтому воздух из верхней компрессорной полости поршня 4 через обратный клапан 10 поступает во внешнюю камеру сгорания 1, поддерживая в ней процесс горения периодически подаваемого форсункой 2 топлива. В нижнюю компрессорную полость поршня 5 через обратный клапан 11 засасывается воздух из атмосферы, а из верхней рабочей полости поршня 5 воздух (в дальнейшем отработавшие продукты сгорания) через выпускной клапан 12 выбрасывается в атмосферу. Таким образом, энергия продуктов сгорания через шток 9 и шатун 13 передается коленвалу 14. По прибытию поршней 4 и 5 в окрестности верхней мертвой точки система управления переводит впускной клапан 7 и выпускной клапан 12 в закрытое, а впускной клапан 15 и выпускной клапан 16 - в открытое положение. Теперь продукты сгорания из внешней камеры сгорания 1 по трубопроводу 17 через впускной клапан 15 поступают в верхнюю рабочую полость поршня 5. Поршни 4 и 5 начинают движение вниз, и коленвал двигателя 14 продолжает вращение в прежнем направлении. Сжимаемый в нижней компрессорной полости поршня 5 воздух через обратный клапан 18 поступает во внешнюю камеру сгорания 1, обеспечивая горение периодически подаваемого форсункой 2 топлива. В верхнюю компрессорную полость поршня 4 через обратный клапан 19 засасывается воздух из атмосферы, а из его нижней рабочей полости отработавшие продукты сгорания через выпускной клапан 16 выбрасываются в атмосферу.
Как видно из пояснения принципа действия двигателя, расширение продуктов сгорания в основном происходит только при выбросе их из цилиндра в конце движения поршней, не производя никакой полезной работы. Увеличение эффективности расширения продуктов сгорания в цилиндре во всем диапазоне нагрузок на двигатель осуществляется следующим образом. По аналогии с двигателем внутреннего сгорания (ДВС) цилиндр однотактного двигателя можно представить условно разделенным на два объема. Первый соответствует камере сгорания ДВС - виртуальная камера сгорания. Остальной объем цилиндра, по сути дела, как и в ДВС, - виртуальный рабочий объем. Например, для начала движения поршней 4 и 5 из нижнего положения в верхнее система управления открывает впускной клапан 7 и продукты сгорания поступают из камеры сгорания 1 в виртуальную камеру сгорания цилиндра (часть нижней рабочей полости поршня 4 от его начала движения). Температура и давление поступающих в виртуальную камеру сгорания цилиндра при этом практически равна таковым в камере сгорания 1. Поршни начинают движение снизу вверх, и, когда пройдут соответствующий виртуальной камере сгорания путь, система управления закрывает впускной клапан 7. Доступ продуктов сгорания в цилиндр прекращается, и начинается процесс их расширения во всей нижней рабочей полости поршня 4 - в виртуальной камере сгорания и в виртуальном рабочем объеме цилиндра. Одновременно система управления отслеживает текущие значения скорости поршней 4 и 5, давления продуктов сгорания в камере сгорания 1, в нижней рабочей полости поршня 4 и давления сжимаемого в его верхней компрессорной полости воздуха. В соответствии с этими значениями система управления определяет момент времени открытия перепускного клапана 20, обеспечивающего максимальное расширение продуктов сгорания в нижней рабочей полости поршня 4 к моменту прибытия поршней 4 и 5 в верхнюю мертвую точку, и переводит в этот момент времени перепускной клапан 20 в открытое положение. В результате сжатый в верхней компрессорной полости поршня 4 воздух через перепускной клапан 20 перетекает в нижнюю компрессорную полость поршня 5. Противодействие воздуха в нижней рабочей полости поршня 4 движению поршней резко уменьшается. К этому моменту в нижнюю компрессорную полость поршня 5 уже поступило некоторое количество воздуха из атмосферы. Поступающий туда же через перепускной клапан 20 до определенной степени сжатый в верхней компрессорной полости поршня 4 воздух дополнительно заряжает нижнюю компрессорную полость поршня 5, и засасывание воздуха из атмосферы через обратный клапан 11 прекращается. При этом энергия, затрачиваемая на сжатие воздуха на данной фазе такта, также вместе с воздухом перебрасывается туда же. При этом поступающий сжатый воздух, расширяясь, сообщает дополнительный импульс кинетической энергии поршням 4 и 5. Энергия на преодоление динамического сопротивления в клапане 11 переносятся на клапан 19. То есть моменты времени открытия и закрытия впускного клапана 7 и перепускного клапана 20 система управления определяет таким образом, чтобы обеспечить максимальную эффективность процесса расширения продуктов сгорания.
Управление рециркуляцией выхлопных газов на всех режимах работы положительно влияет на экономические и экологические характеристики двигателя. Для обеспечения рециркуляции выхлопных газов в цилиндр двигателя с целью оптимизации процесса сгорания топлива во всем диапазоне нагрузок на двигатель, система управления для каждого такта определяет соответствующие задаваемой мощности моменты времени закрытия и открытия газораспределительных клапанов массу выхлопных газов для ввода их в компрессорные полости поршней 4 и 5. При движении поршней 4 и 5 из нижней крайней точки в верхнюю крайнюю точку отработавшие продукты сгорания из верхней рабочей полости поршня 5 через выпускной клапан 12 выбрасываются в атмосферу. В заранее определенный системой управления момент времени система управления закрывает выпускной клапан 12 и открывает перепускной клапан 21. Оставшаяся в верхней рабочей полости поршня 5 часть выхлопных газов через перепускной клапан 21 перетекает в нижнюю компрессорную полость поршня 5 и смешивается там с всасываемым через обратный клапан 11 атмосферным воздухом. При последующем движении поршней 4 и 5 из верхней крайней точки в нижнюю смесь выхлопных газов с воздухом через обратный клапан 18 поступает во внешнюю камеру сгорания 1. Одновременно в заранее определенный системой управления момент времени система управления закрывает выпускной клапан 16 и открывает перепускной клапан 22. Оставшаяся в нижней рабочей полости поршня 4 часть выхлопных газов через перепускной клапан 22 перетекает в верхнюю компрессорную полость поршня 5 и там смешивается с всасываемым через обратный клапан 19 воздухом, поле чего смесь выхлопных газов с воздухом через обратный клапан 10 поступает во внешнюю камеру сгорания 1.
Реверсирование вращения коленвала однотактного двигателя осуществляется следующим образом. Если перед пуском однотактного двигателя в одноцилиндровом исполнении поршни 4 и 5 находятся в верхней или нижней мертвой точках, то коленвал 14 и шатун 13 окажутся в положении неустойчивого равновесия. Следовательно, и направление вращения коленвала при пуске окажется стохастичным, непредсказуемым. Задание направления вращения коленвала 14 в этом случае осуществляется следующим образом. Система управления механизмом сцепления соединяет стартер с коленвалом двигателя, проворачивает его и разъединяет их валы. Цель предпусковой операции - вывести коленвал 14 и шатун 13 из положения неустойчивого равновесия. В дальнейшем система управления форсункой 2 подает топливо в камеру сгорания 1 и воспламеняет его свечой зажигания 3. Одновременно система управления определяет мгновенное положение поршней 4 и 5 и коленвала 14. Затем открывает впускной клапан 7 или 15 в зависимости от того, в каком направлении задается вращение коленвала 14. Если угол поворота коленвала относительно штока 9 менее прямого угла и обеспечивает вращение коленвала в задаваемом направлении при движении поршней 4 и 5 из нижней крайней точки в верхнюю точку, система управления открывает впускной клапан 7. В противном случае система управления открывает впускной клапан 15. В обоих случаях поступающие в рабочие полости поршней продукты сгорания через поршни 4, 5, штоки 8, 9 и шатун 13 вращают коленвал 14 в заданном направлении. Однотактный двигатель с двумя и более цилиндрами не нуждается в стартере. В многоцилиндровом исполнении двигателя, как минимум, в одном из цилиндров всегда окажется такой, в котором поршни находятся в положении, при поступлении продуктов сгорания в рабочие полости которых обеспечивается вращение коленвала двигателя в любом задаваемом направлении.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Способ реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания, включающего систему управления, цилиндр с поршнями и впускными клапанами, внешнюю камеру сгорания, шток поршней, шатун и коленчатый вал, отличающийся тем, что для реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания в задаваемом направлении вращения система управления отслеживает мгновенное положение поршней в цилиндре однотактного двигателя с внешней камерой сгорания и открывает тот впускной клапан, при открытом положении которого продукты сгорания из внешней камеры сгорания однотактного двигателя с внешней камерой сгорания поступают в рабочую полость того поршня, в которой энергия поступающих из внешней камеры сгорания однотактного двигателя с внешней камерой сгорания расширяющихся продуктов сгорания приводит в движение поршень, кинетическая энергия которого через соединенный с поршнями шток и сочлененный со штоком шатун передается коленчатому валу однотактного двигателя с внешней камерой сгорания при положении коленчатого вала однотактного двигателя с внешней камерой сгорания, обеспечивающего вращение коленчатого вала однотактного двигателя с внешней камерой сгорания в задаваемом направлении.
ТЕХНИЧЕСКАЯ ПРИМЕНИМОСТЬ ИЗОБРЕТЕНИЯ
Затраты на НИОКР заявленного изобретения не могут значительно отличаться от таковых при проектировании и отработке классических ДВС. При современном состоянии развития электроники создание автоматической системы управления вполне ординарная задача.
ГРАФИЧЕСКИЙ МАТЕРИАЛ
Фиг.1. Схема свободнопоршневого генератора газов прямоточного двигателя с двумя поршнями привода компрессора: 1 - камера сгорания; 2 - форсунка; 3 - свеча зажигания; 4, 12 -газораспределительный клапан; 5, 8 - поршень привода компрессора; 6 - шток; 7 - поршень компрессора; 9, 10, 11, 13, 14, 15, 16, 17 - обратный клапан; 18 - заслонка; 19 - распределительный коллектор.
Фиг.2. Принципиальная схема однотактного двигателя с внешней камерой сгорания: 1 - внешняя камера сгорания; 2 - форсунка; 3 - свеча зажигания; 4, 5 - поршень двигателя; 6, 17 - трубопровод; 7, 15 - впускной клапан; 8, 9 - шток; 10, 11, 18, 19 - обратный клапан; 12, 16 - выпускной клапан; 13 - шатун; 14 - коленвал двигателя; 20, 21, 22 - перепускной клапан.

Claims (1)

  1. Способ реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания, включающего систему управления, цилиндр с поршнями и впускными клапанами, внешнюю камеру сгорания, шток поршней, шатун и коленчатый вал, отличающийся тем, что для реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания в задаваемом направлении вращения система управления отслеживает мгновенное положение поршней в цилиндре однотактного двигателя с внешней камерой сгорания и открывает тот впускной клапан, при открытом положении которого продукты сгорания из внешней камеры сгорания однотактного двигателя с внешней камерой сгорания поступают в рабочую полость того поршня, в которой энергия поступающих из внешней камеры сгорания однотактного двигателя с внешней камерой сгорания расширяющихся продуктов сгорания приводит в движение поршень, кинетическая энергия которого через соединенный с поршнями шток и сочлененный со штоком шатун передается коленчатому валу однотактного двигателя с внешней камерой сгорания при положении коленчатого вала однотактного двигателя с внешней камерой сгорания, обеспечивающего вращение коленчатого вала однотактного двигателя с внешней камерой сгорания в задаваемом направлении.
RU2014100482/06A 2014-01-09 2014-01-09 Способ реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания RU2538429C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014100482/06A RU2538429C1 (ru) 2014-01-09 2014-01-09 Способ реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014100482/06A RU2538429C1 (ru) 2014-01-09 2014-01-09 Способ реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания

Publications (1)

Publication Number Publication Date
RU2538429C1 true RU2538429C1 (ru) 2015-01-10

Family

ID=53288060

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014100482/06A RU2538429C1 (ru) 2014-01-09 2014-01-09 Способ реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания

Country Status (1)

Country Link
RU (1) RU2538429C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637594C1 (ru) * 2016-11-23 2017-12-05 Анатолий Александрович Рыбаков Способ пуска и реверсирования тандемного двухтактного двигателя с внешней камерой сгорания
RU2647950C1 (ru) * 2016-11-02 2018-03-21 Анатолий Александрович Рыбаков Способ реверсирования вращения вала отбора мощности двухтактного двигателя с внешней камерой сгорания

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU244001A1 (ru) * Е. А. Маланюк, В. И. Диманис, А. Н. Пысин, Ю. П. Клюшин Система автоматического управления реверсивным дизелем
FR2286290A1 (fr) * 1974-09-26 1976-04-23 Semt Procede et dispositif pneumatiques de freinage et de redemarrage, en sens inverse, d'un moteur diesel
JPS5670104U (ru) * 1979-10-31 1981-06-10
EP0909883A1 (de) * 1997-10-14 1999-04-21 Wärtsilä NSD Schweiz AG Anordnung und Verfahren zur Ventilsteuerung einer umsteuerbaren Dieselbrennkraftmaschine
RU2324060C1 (ru) * 2006-07-19 2008-05-10 Анатолий Александрович Рыбаков Свободнопоршневой генератор газов прямоточного двигателя с двумя поршнями привода компрессора
JP2010185312A (ja) * 2009-02-10 2010-08-26 Denso Corp ディーゼルエンジンの制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU244001A1 (ru) * Е. А. Маланюк, В. И. Диманис, А. Н. Пысин, Ю. П. Клюшин Система автоматического управления реверсивным дизелем
FR2286290A1 (fr) * 1974-09-26 1976-04-23 Semt Procede et dispositif pneumatiques de freinage et de redemarrage, en sens inverse, d'un moteur diesel
JPS5670104U (ru) * 1979-10-31 1981-06-10
EP0909883A1 (de) * 1997-10-14 1999-04-21 Wärtsilä NSD Schweiz AG Anordnung und Verfahren zur Ventilsteuerung einer umsteuerbaren Dieselbrennkraftmaschine
RU2324060C1 (ru) * 2006-07-19 2008-05-10 Анатолий Александрович Рыбаков Свободнопоршневой генератор газов прямоточного двигателя с двумя поршнями привода компрессора
JP2010185312A (ja) * 2009-02-10 2010-08-26 Denso Corp ディーゼルエンジンの制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647950C1 (ru) * 2016-11-02 2018-03-21 Анатолий Александрович Рыбаков Способ реверсирования вращения вала отбора мощности двухтактного двигателя с внешней камерой сгорания
RU2637594C1 (ru) * 2016-11-23 2017-12-05 Анатолий Александрович Рыбаков Способ пуска и реверсирования тандемного двухтактного двигателя с внешней камерой сгорания

Similar Documents

Publication Publication Date Title
US10480457B2 (en) Two-stroke reciprocating piston combustion engine
KR20120020180A (ko) 연소와 차징 모드를 갖는 스플릿-사이클 공기-하이브리드 엔진
RU2543908C1 (ru) Способ оптимизации процесса расширения продуктов сгорания в цилиндре однотактного двигателя с внешней камерой сгорания
US10487775B2 (en) Systems and methods for piston cooling
KR20120042987A (ko) 부하 제어를 위한 교차 팽창 밸브를 갖는 스플릿-사이클 엔진
WO2015110257A3 (de) Hubkolbenbrennkraftmaschine sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine
RU2538429C1 (ru) Способ реверсирования вращения коленчатого вала однотактного двигателя с внешней камерой сгорания
JP2017521604A (ja) 回転モータ
RU2538231C1 (ru) Способ рециркуляции выхлопных газов в цилиндр однотактного двигателя с внешней камерой сгорания
RU2641998C1 (ru) Способ управления уровнем зарядки пневмоаккумулятора двухтактного двигателя с внешней камерой сгорания
RU2647950C1 (ru) Способ реверсирования вращения вала отбора мощности двухтактного двигателя с внешней камерой сгорания
RU2637594C1 (ru) Способ пуска и реверсирования тандемного двухтактного двигателя с внешней камерой сгорания
JP7036823B2 (ja) 内燃機関および内燃機関を運転する方法
RU2631179C1 (ru) Способ обеспечения действия тандемного двухтактного двигателя энергией продуктов сгорания из общей внешней камеры сгорания
RU2631842C1 (ru) Способ управления коэффициентом избытка воздуха перепускными клапанами между компрессорными и рабочими полостями поршней однотактного двигателя с внешней камерой сгорания
RU2638242C1 (ru) Способ обеспечения действия тандемного двухтактного двигателя энергией продуктов сгорания из общей внешней камеры сгорания и энергией сжатого воздуха из общего пневмоаккумулятора
RU2449138C2 (ru) Двигатель внутреннего сгорания
Islam et al. Simulation of four stroke internal combustion engine
RU2684152C1 (ru) Способ подачи воздуха во внешнюю камеру сгорания двухтактного двигателя с внешней камерой сгорания из нескольких надпоршневых полостей компрессора
RU2431752C1 (ru) Способ оптимизации процесса расширения продуктов сгорания свободнопоршневого генератора газов с внешней камерой сгорания
RU2647011C1 (ru) Поршневая гибридная энергетическая машина объемного действия с уравновешенным приводом
RU2451802C1 (ru) Способ оптимизации процесса расширения продуктов сгорания в цилиндре поршневого двигателя с питанием рабочим телом от свободнопоршневого генератора газов с внешней камерой сгорания
CN107218127B (zh) 一种四汽缸自增压发动机
Jangalwa et al. Scuderi Split Cycle Engine: A Review
RU2578934C1 (ru) Способ реверсирования двигателя внутреннего сгорания стартерным механизмом и системой пневматического привода трёхклапанного газораспределителя с зарядкой пневмоаккумулятора системы воздухом из атмосферы