RU2535704C1 - Способ трехмерной печати огнеупорных изделий - Google Patents

Способ трехмерной печати огнеупорных изделий Download PDF

Info

Publication number
RU2535704C1
RU2535704C1 RU2013118068/05A RU2013118068A RU2535704C1 RU 2535704 C1 RU2535704 C1 RU 2535704C1 RU 2013118068/05 A RU2013118068/05 A RU 2013118068/05A RU 2013118068 A RU2013118068 A RU 2013118068A RU 2535704 C1 RU2535704 C1 RU 2535704C1
Authority
RU
Russia
Prior art keywords
refractory
powder
layer
product
model
Prior art date
Application number
RU2013118068/05A
Other languages
English (en)
Other versions
RU2013118068A (ru
Inventor
Лев Моисеевич Аксельрод
Максим Юрьевич Турчин
Игорь Наилевич Минниханов
Original Assignee
Общество С Ограниченной Ответственностью "Группа "Магнезит"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Группа "Магнезит" filed Critical Общество С Ограниченной Ответственностью "Группа "Магнезит"
Priority to RU2013118068/05A priority Critical patent/RU2535704C1/ru
Publication of RU2013118068A publication Critical patent/RU2013118068A/ru
Application granted granted Critical
Publication of RU2535704C1 publication Critical patent/RU2535704C1/ru

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение относится к способам трехмерной печати огнеупорных изделий. Способ включает создание 3D модели изделия, деление модели изделия на слои в поперечном сечении, нанесение слоя порошкообразного материала, нанесение рисунка сечения модели на слой порошкообразного материала жидким связующим, послойное отвердевание порошкообразного материала по 3D модели до завершения формирования изделия. Порошкообразный материал состоит из смеси дисперсного и зернистого огнеупорного материалов. Смешивание производят в смесительных бегунах до получения однородной массы. В качестве жидкого связующего используют растворы солей магния и/или органическое связующее и/или гидравлическое вяжущее. Полученное изделие выдерживают не менее 2 часов, с последующей сушкой. В порошкообразный материал может быть введен углеродный компонент, пластификатор. Изготовленное изделие может быть подвергнуто термообработке при температуре не менее 180°C. Изобретение обеспечивает создание огнеупорных изделий сложной геометрической формы с изотропными свойствами. 3 з.п. ф-лы, 1 ил., 2 табл., 15 пр.

Description

Изобретение относится к способам трехмерной печати огнеупорных изделий.
В современном мире все больше промышленность переходит на 3D-проектирование конструкций и изделий с последующим изготовлением, с помощью многокоординатных станков ЧПУ.
С начала 80-х годов стали развиваться способы трехмерной печати изделий путем постепенного наращивания (наслоения) материала. (Кунву Лин «Основы САПР», СПб.: Питер, 2004).
Известны различные способы трехмерной печати изделий с применением 3D принтеров: стереолитография (послойное отверждение жидкого фотополимера лазерным лучом), селективное лазерное спекание порошковых материалов (послойное спекание порошковых материалов лазерным лучом), послойное наложение расплавленной полимерной нити, ламинирование, технология склеивания порошков (послойное спекание порошковых материалов связующими (клеящими) веществами).
Основой всех известных способов являются следующие шаги: формирование поперечных сечений изготавливаемого объекта, послойное наложение этих сечений и комбинирование слоев, с созданием заданной геометрии изделия, соответствующей компьютерной 3D модели.
В зависимости от выбранной технологии трехмерной печати изделий могут использоваться различные материалы: металлические и керамические порошки, жидкие смолы, воск, пластик, различные листовые материалы, композитные материалы (из соединений целлюлозы, специальных волокон и других добавок; смесь литейного песка и добавок).
В патенте WO 2011087564 для трехмерной печати изделий применяют следующие материалы: цемент (портландцемент, пуццолан с высоким содержанием извести, оксид магния), песок (двуокись кремния, оливин, хромит, циркон, глинозем, муллит, кварцевое стекло, шамот) и катализатор (водорастворимые силикаты).
Известен способ трехмерной печати изделий в виде последовательных слоев в сечении в соответствии с моделью изделия (RU 2417890 от 19.09.2006 г., МПК B29C 67/04). Основные операции, описанные в указанном изобретении: нанесение слоя порошкообразного материала; нанесение жидкого реагента на слой порошкообразного материала, с конфигурацией, соответствующей определенному слою сечения модели; повторение данных операций для образования последовательных слоев с тем, чтобы получить трехмерное изделие; отверждение трехмерного изделия; и извлечение (отвержденного) трехмерного изделия. В качестве порошкообразных материалов могут использоваться, например, полиакриловая кислота, полиакриловые смолы, полимеры, сополимеры. В качестве жидких реагентов могут использоваться, например, фотоинициаторы, бензофенон, эпоксиакрилаты, алкилбораты.
Известное техническое решение имеет определенные недостатки. Применение известного способа по патенту RU 2417890 ограничено используемыми материалами: органическими полимерами (пластмассы, смолы, растворители). Полученные изделия не подходят для использования при высоких температурах.
Наиболее близким, принятым за прототип, является способ трехмерной печати изделий в виде последовательных слоев в сечении в соответствии с моделью изделия (US 5340656 от 09.04.1993 г., МПК B22F 7/02). Основные операции данного способа: нанесение слоя порошкообразного материала; нанесение жидкого реагента на слой порошкообразного материала, с конфигурацией, соответствующей определенному слою сечения модели; повторение данных операций для образования последовательных слоев с тем, чтобы получить трехмерное изделие; отверждение трехмерного изделия; и извлечение (отвержденного) трехмерного изделия. В патенте US 5340656, в качестве порошкообразных материалов предлагается использовать, например, окись алюминия, двуокись циркония, циркон, карбид кремния. Причем, более крупные частицы предпочтительно, могут использоваться в сухом виде, а мелкие - как в сухом, так и во влажном состоянии, подвергая диспергации специальными веществами (толуол, метилэтилкетон, гексан с добавкой небольшого количества полиизобутилена). В патенте US 5340656 предлагается использовать органические связующие материалы (которые могут быть легко удалены, например, источником тепла) или неорганические, например, на основе силикатов (силикат натрия, тетраэтилортосиликат). Полученные изделия также могут быть подвергнуты обжигу.
Изделия, получаемые по известному способу, с использованием силикатных связующих снижают огнеупорность, хрупки, склонны к повреждениям и не обладают необходимыми эксплуатационными характеристиками.
Технический результат предлагаемого изобретения заключается в создании посредством трехмерной печати огнеупорных изделий с изотропными свойствами, с возможностью выполнения изделий сложной геометрической формы.
Указанный технический результат достигается тем, что по способу трехмерной печати огнеупорных изделий, включающему создание 3D модели изделия, деление модели изделия на слои в поперечном сечении, нанесение слоя порошкообразного материала, нанесение рисунка сечения модели на слой порошкообразного материала жидким связующим, послойное отвердевание порошкообразного материала по 3D модели до завершения формирования изделия,
СОГЛАСНО ИЗОБРЕТЕНИЮ, порошкообразный материал, состоящий из смеси дисперсного и зернистого огнеупорного материала,
в котором зернистый огнеупорный материал с размером зерна более 0,5 мм составляет от 10 до 60 мас. %, а дисперсный огнеупорный материал с размером зерна менее 0,1 мм составляет от 40 до 90 мас. %,
предварительно приготавливают из одного или смеси двух или более огнеупорных компонентов, выбранных из группы, включающей: оксид магния, оксид алюминия, оксид кальция, диоксид кремния, диоксид циркония, оксид хрома, оксид титана, титанат алюминия, магнезиальная шпинель, герцинит, галаксит, корунд, боксит, шамот, андалузит, циркон,
смешивают до получения однородной массы,
в качестве жидкого связующего используют растворы солей магния и/или органическое связующее и/или гидравлическое вяжущее, и/или химико-керамическое связующее, а полученное изделие выдерживают не менее 2 часов, с последующей сушкой.
Дополнительно, в порошкообразный материал вводят углеродный компонент.
Дополнительно, в порошкообразный материал или в растворы солей магния вводится пластификатор.
Дополнительно, изготовленное изделие подвергают термообработке при температуре не менее 180°C.
Выбор огнеупорных компонентов определяется условиями эксплуатации изделий в различных тепловых агрегатах и необходимостью получения требуемых физико-механических свойств изделий: плотности, прочности, термостойкости, теплопроводности, устойчивости к механическим воздействиям в условиях значительного градиента температур, шлакоустойчивости, коррозионной стойкости и т.п.
В контексте настоящего изобретения, в способе трехмерной печати огнеупорных изделий, порошкообразный материал предлагается готовить из следующих огнеупорных материалов.
В качестве оксида магния (MgO) предлагается использовать, в частности:
каустический магнезитовый порошок (каустический периклаз), получаемый в результате улавливания пыли, образующейся при производстве периклазового порошка,
периклазовый порошок, полученный путем обжига природного магнезиального сырья (магнезит, доломит, дунит, оливин и т.п.) при температуре более 900°C,
периклазовый порошок, полученный высокотемпературным обжигом природного магнезиального сырья, при температуре более 1500°C,
периклазовый порошок, полученный путем плавки на блок периклазового порошка в электродуговых печах при температуре более 2800°C,
периклазохромитовый порошок, полученный путем совместной плавки на блок слабоспеченного периклазового порошка и хромитовой руды в электродуговых печах.
Изделия из MgO-содержащих материалов обладают повышенной термостойкостью, прочностью, шлакоустойчивостью, продолжительностью службы (эксплуатации) в условиях воздействия высоких температур.
В качестве Al2O3-содержащего материала предлагается использовать корунд, глинозем, боксит, шамот, андалузит. Оксид алюминия Al2O3 регулирует образование микротрещиноватой структуры, локализует напряжения в изделии, приводит к росту термической стойкости изделий.
Оксид кальция CaO предлагается использовать в виде обожженного и/или плавленого доломита, кальцита, мрамора. Изделия с применением оксида кальция обладают устойчивостью при взаимодействии с основными шлаками. В сочетании с другими огнеупорными компонентами (например, периклазом) обладают высокой температурой начала деформации и достаточно высокой термостойкостью. Оксид кальция может использоваться в качестве добавки (например, в виде известкового молочка) при производстве динасовых изделий, обеспечивая связывание зерен кварцита и высокую прочность изделиям.
Диоксид кремния SiO2 предлагается использовать в виде обожженного и/или плавленого кварцита. Диоксид кремния способствует увеличению термостойкости изделий, устойчивости к воздействию кислых шлаков. Сырьем для производства динаса являются наиболее чистые разновидности распространенных кварцитовых пород, содержащих не менее 95% SiO2.
Диоксид циркония ZrO2 (в виде цирконового концентрата, бадделеитового порошка) способствует повышению термостойкости за счет образования микротрещиноватой структуры, обеспечивает высокую коррозионную стойкость изделиям.
Один из огнеупорных компонентов, выбранных из группы, включающей: оксид магния, оксид алюминия, оксид кальция, диоксид кремния, диоксид циркония, оксид хрома, корунд, боксит, шамот, андалузит, циркон, причем, природный, синтетический или обработанный различным способом - совместным спеканием, кальцинированный, спеченный или плавленый, в порошкообразном материале является основным сырьевым материалом.
Приведенные выше огнеупорные компоненты могут входить в порошкообразный материал в качестве добавки, в количестве 1-25% от общей массы огнеупорного порошка.
Также, в качестве добавки в порошкообразный огнеупорный материал могут входить такие огнеупорные компоненты, как:
- оксид хрома Cr2O3 (в виде хромитовой руды), который способствует повышению термостойкости и шлакоустойчивости;
- оксид титана, который способствует спеканию изделий в процессе обжига, обеспечивая высокую механическую прочность и низкую открытую пористость;
- титанат алюминия TiO2·Al2O3 в виде спеченного и/или плавленого тиалита, который обладает высокой термостойкостью и небольшим термическим расширением.
Использование в способе трехмерной печати изделий огнеупорных компонентов типа шпинелей: алюмомагниевой MgO·Al2O3, алюможелезистой FeAl2O4 - герцинита, галаксита MnAl2O4, способствует формированию термостойкой структуры изделия и повышает устойчивость к истиранию. Указанные шпинели получены плавкой или спеканием глинозема и оксида магния и/или оксида железа. В качестве добавки шпинельные материалы вводятся в количестве 5-25%. При содержании менее 5% - снижаются термостойкость и устойчивость изделий к механическим воздействиям в условиях значительного градиента температур при контакте с обжигаемыми материалами в службе. Содержание более 25% - ведет к увеличению пористости изделий, что повлечет за собой снижение срока их эксплуатации за счет увеличения газопроницаемости и, как следствие, степени пропитки агрессивными компонентами в условиях службы.
При производстве динасовых изделий хромитовая руда (тонкоизмельченной фракции) может вводится в количестве 2-25%, увеличивая шлакоустойчивость и термостойкость, введение большего количества хромитовой руды снижает огнеупорность.
Оксид титана вводится в качестве добавки в количестве 1-4%. Заявленные пределы содержания оксида титана являются оптимальными для достижения требуемых физико-химических характеристик.
Добавку углеродного компонента (в виде графита и/или технического углерода) предлагается вводить в количестве 5-15%. При введении углеродного компонента менее 5% увеличивается открытая пористость изделия, при введении более 15% (повышается шлакоустойчивость, снижается механическая прочность, снижается стойкость к окислению, что приведет к дополнительному введению комплекса антиоксидантов).
Огнеупорные компоненты для порошковой смеси предварительно приготавливают из одного, двух или более огнеупорных оксидных материалов. Подготовка включает измельчение сырьевых материалов путем дробления или помола, фракционирование измельченных материалов путем просеивания и изготовление смесей, предназначенных для дальнейшего формования, в соответствии с рецептурой по составу материалов и зерновому составу (Таблица 1).
Огнеупорные компоненты вводятся в смесь в порошкообразном виде. В соответствии с настоящим изобретением порошкообразный материал состоит из смеси дисперсного и зернистого огнеупорного материала. Доля дисперсного огнеупорного материала с размером зерна менее 0,1 мм составляет от 40 до 90 мас. %, доля зернистого огнеупорного материала с размером зерна более 0,5 мм составляет от 10 до 60 мас. %. Возможны комбинации различных фракций огнеупорного материала: 6-3 мм, 3-1 мм (2-1 мм), 1-0,5 мм - зернистая часть смеси, 0,1-0 мм, 0,063-0 мм - дисперсная часть смеси. Оптимальные зерновые составы огнеупорных компонентов находятся в области, содержащей 10-60% зернистого огнеупорного материала с размером зерна 3,0-0,5 мм, и 40-90% дисперсного огнеупорного материала с размером зерна 0,1-0 мм, при этом суммарное количество огнеупорного порошкообразного материала в каждом случае составляет 100 мас. %.
Размер фракции определяет толщину слоя огнеупорной порошковой смеси, наносимого на подложку. Предпочтительно иметь толщину слоя не более 3 мм.
Подбирая гранулометрический состав порошкообразного материала, состоящего из однокомпонентной шихты или шихты, состоящей из различных видов огнеупорных материалов, изменяя размеры зерен отдельных компонентов, можно добиться необходимых свойств готового изделия.
Смешение компонентов производится в смесительных бегунах, предпочтительно дисперсная фракция (до 0,1 мм) добавляется к зернистой (более 0,5 мм). В процессе смешения в бегунах возможно получение более предпочтительного гранулометрического состава порошкообразного материала в результате дополнительного измельчения.
В качестве связующего материала предлагается использовать (по отдельности или их смесь в произвольной комбинации):
- сульфатно-хлоридные соли (например, хлорид магния (бишофит), сульфат магния),
- органические связующие (например, фенолы, каменноугольный пек, органические клеи), органический растворитель может быть представлен этиленгликолем, фурфуриловым спиртом, поливиниловым спиртом,
- гидравлическое вяжущее (например, дисперсные высокоглиноземистый цемент, каустизированный периклаз),
- химико-керамическое связующее (смесь следующих компонентов: химических - силиката натрия и/или силиката калия, пирофосфата натрия и/или полифосфата натрия и/или триполифосфата натрия; минеральных - талька, микрокремнезема; органических - связующего фенольного порошкообразного и/или лигносульфонатов технических.)
Выбор связующего материала зависит от выбора огнеупорных компонентов и добавок. Количество связующих материалов определяется необходимостью обеспечения достаточной прочности получаемого изделия.
Дополнительно, могут вводиться пластифицирующие добавки в количестве менее 1%, благодаря чему при меньшем содержании влаги получается необходимая плотная структура с меньшей пористостью и усадкой. Количественное содержание указанных добавок подобрано экспериментальным путем для получения необходимой плотной структуры, путем снижения межзеренного трения при уплотнении посредством вибрации. В качестве указанных добавок предлагается использовать, например, кварцевую пыль, оливин, полифосфат натрия, кальцинированная сода и др.
Вводить данные добавки возможно как в сухом (при смешении компонентов), так и жидком виде (в том числе с раствором солей магния).
Сущность предлагаемого способа изготовления керамических изделий заключается в послойном отвердевании порошкообразного огнеупорного материала по 3D-модели, подготовленной методом компьютерного 3D-моделирования. Компьютер посылает управляющий сигнал на 3D-принтер, форсунка (печатающая головка) которого, двигаясь вдоль направлений X и Y, печатает рисунок сечения модели в порошкообразном огнеупорном материале связующим, например раствором сульфатных и/или хлоридных солей магния, и/или органическим связующим. Жидкий пластификатор может подаваться в печатающую головку отдельно или совместно с раствором солей магния. Контакт огнеупорного порошкового компонента и связующего приводит к росту кристаллов, фиксируя частицы порошка. Слой порошка равномерно распределяется скребком каретки при обратном ходе. Вибрация позволяет уплотнить частицы и снизить пористость до приемлемого уровня. При завершении прохода форсунки (печатающей головки) дно матрицы (сменной кассеты) опускается вдоль направления Z, сверху засыпается свежий слой порошкообразного компонента для нового слоя.
Далее приведены примеры конкретного осуществления изобретения, не исключающие другие варианты в пределах формулы предлагаемого изобретения. Для большего понимания заявляемый способ трехмерной печати описан со ссылкой на Фиг.1. На ПК инженера-конструктора подготавливается заданная 3D-модель огнеупорного изделия (с сохранением в формате STL) и пересылается на ПК, управляющий 3D-принтером. Установленное на управляющем компьютере программное обеспечение условно делит модель на n слоев и посылает управляющие сигналы. Управление трехмерной печатью осуществляется с электронного блока управления 1.
Все исходные компоненты, кроме жидких компонентов, смешиваются в соотношении, указанном в таблице 1, в смесительных бегунах, затем полученная смесь высыпается в приемный бункер (2) 3D-принтера. Вес замеса - 500 кг.
Из приемного бункера 2 смесь высыпается в лоток 3, который продвинувшись вдоль направления X, осуществляет засыпку огнеупорного порошкового материала толщиной 3 мм в сменную кассету 4. Слой порошка равномерно распределяется скребком каретки при обратном ходе. Далее печатающая головка 5, двигаясь вдоль направлений X и Y, печатает рисунок сечения модели (соответствующих n-му сечению) на слое порошка жидким связующим веществом. Жидкое связующее вещество поступает в печатающую головку 5 из емкости 8. Далее сменная кассета 5 опускается на 3 мм, после чего рабочий объем подвергается действию вибраторов 6 в течение 3-5 сек. При завершении прохода печатающей головки 5 дно сменной кассеты 4 опускается вдоль направления Z, сверху засыпается свежий слой порошкообразного компонента для нового нанесения связующего материала.
После завершения формирования изделия 7 сменная кассета 4 извлекается из 3D-принтера и отправляется на выдержку в течение 2-24 часов, при которой происходит набор прочности изделия. Сменная кассета 4 ставится на упор в специальной решетке над пустым кюбелем, куда при опускании стенок кассеты на решетку, высыпается неиспользованный порошок, используемый затем вновь. При этом сформированное изделие остается на поднятом относительно стенок дне кассеты, с которого снимается и отправляется на сушку. Сушку изделий производят при температуре 100-200°C.
При необходимости (в зависимости от условий эксплуатации изделий в различных тепловых агрегатах) производится обжиг изделий с образованием керамических связей при температуре 1600-1900°C. Необходимость обжига определяется достижением улучшенных физико-химических свойств изделий: прочность, плотность, стойкость к агрессивным средам и т.п.
Для полученных предлагаемым способом изделий согласно соответствующим ГОСТам определяли открытую пористость и термостойкость (нагрев до 1300°C - вода). Указанные показатели приведены в таблице 2.
Заявляемым способом могут быть изготовлены керамические блоки и изделия сложной геометрии. При использовании предлагаемого способа значительно сокращается время цикла от проектирования до производства (примерно, в 8-12 раз), экономия средств и времени за счет отсутствия пресс-оснастки или опалубки в данном технологическом процессе, которые обычно приходится изготавливать заранее под каждый конкретный образец керамического изделия.
Керамические изделия, полученные по данной технологии, имеют изотропную структуру, в отличие от анизотропной структуры изделий, получаемых при полусухом прессовании, кроме того, практически отсутствует расфракционирование по высоте.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004

Claims (4)

1. Способ трехмерной печати огнеупорных изделий, включающий создание 3D модели изделия, деление модели изделия на слои в поперечном сечении, нанесение слоя порошкообразного материала, нанесение рисунка сечения модели на слой порошкообразного материала жидким связующим, послойное отвердевание порошкообразного материала по 3D модели до завершения формирования изделия, отличающийся тем, что порошкообразный материал, состоящий из смеси дисперсного и зернистого огнеупорного материала, в котором зернистый огнеупорный материал с размером зерна более 0,5 мм составляет от 10 до 60 мас.%, а доля дисперсного огнеупорного материала с размером зерна менее 0,1 мм составляет от 40 до 90 мас.%, предварительно приготавливают из одного или смеси двух или более огнеупорных компонентов, выбранных из группы, включающей: оксид магния, оксид алюминия, оксид кальция, диоксид кремния, диоксид циркония, оксид хрома, оксид титана, титанат алюминия, магнезиальная шпинель, герцинит, галаксит, шамот, андалузит, циркон, смешивая в смесительных бегунах до получения однородной массы, причем в качестве жидкого связующего используют растворы солей магния и/или органическое связующее и/или гидравлическое вяжущее, а полученное изделие выдерживают не менее 2 часов, с последующей сушкой.
2. Способ трехмерной печати огнеупорных изделий по п.1, отличающийся тем, что в порошкообразный материал дополнительно вводится углеродный компонент.
3. Способ трехмерной печати огнеупорных изделий по п.1, отличающийся тем, что в порошкообразный материал или в растворы солей магния вводится пластификатор.
4. Способ трехмерной печати огнеупорных изделий по п.1, отличающийся тем, что изделие может быть подвергнуто термообработке при температуре не менее 180°C.
RU2013118068/05A 2013-04-18 2013-04-18 Способ трехмерной печати огнеупорных изделий RU2535704C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013118068/05A RU2535704C1 (ru) 2013-04-18 2013-04-18 Способ трехмерной печати огнеупорных изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013118068/05A RU2535704C1 (ru) 2013-04-18 2013-04-18 Способ трехмерной печати огнеупорных изделий

Publications (2)

Publication Number Publication Date
RU2013118068A RU2013118068A (ru) 2014-10-27
RU2535704C1 true RU2535704C1 (ru) 2014-12-20

Family

ID=53286083

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013118068/05A RU2535704C1 (ru) 2013-04-18 2013-04-18 Способ трехмерной печати огнеупорных изделий

Country Status (1)

Country Link
RU (1) RU2535704C1 (ru)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567318C1 (ru) * 2014-05-06 2015-11-10 Общество с ограниченной ответственностью "Научно-Производственное Предприятие Интеллектуальные Информационные Системы" Устройство перемещения рабочего стола зd-принтера
RU2635309C1 (ru) * 2016-05-10 2017-11-10 Акционерное общество "Научно-исследовательский институт энергетических сооружений" Состав водостойкого магнезиального вяжущего с нулевыми деформациями (варианты)
WO2018063217A1 (en) * 2016-09-29 2018-04-05 Hewlett-Packard Development Company, Lp Build material management
WO2018118032A1 (en) * 2016-12-21 2018-06-28 Hewlett-Packard Development Company, L.P. Extracting 3d objects
WO2018156938A1 (en) * 2017-02-24 2018-08-30 Hewlett-Packard Development Company, L.P. Three-dimensional printing
RU2668107C1 (ru) * 2017-11-14 2018-09-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Способ изготовления изделий из порошковых керамических материалов
WO2019017926A1 (en) * 2017-07-19 2019-01-24 Hewlett-Packard Development Company, L.P. THREE DIMENSIONAL PRINTING (3D)
WO2019078896A1 (en) * 2017-10-20 2019-04-25 Hewlett-Packard Development Company, L.P. APPARATUS HAVING POROUS MEMBRANE FOR FLUIDIZING PARTICULATE MATERIAL
RU2689833C1 (ru) * 2018-09-19 2019-05-29 Общество с ограниченной ответственностью "ИНТЕХ-М" Способ получения керамических изделий на основе порошков оксидов металлов
RU2693095C1 (ru) * 2017-07-05 2019-07-01 Сакми Кооператива Мекканичи Имола Сочьета' Кооператива Способ и установка для изготовления керамических изделий
RU2699144C1 (ru) * 2018-12-18 2019-09-03 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ изготовления изделия из огнеупорных материалов методом трехмерной печати
WO2019212493A1 (en) * 2018-04-30 2019-11-07 Hewlett-Packard Development Company, L.P. Three-dimensional printing
RU2707372C1 (ru) * 2018-11-12 2019-11-26 Федеральное государственное автономное научное учреждение "Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики" (ЦНИИ РТК) Способ изготовления литейных форм сложной геометрии из песчано-полимерных систем
RU2712996C2 (ru) * 2015-07-31 2020-02-03 Сакми Кооператива Мекканичи Имола Сочьета' Кооператива Линия и способ изготовления декорированных керамических изделий
RU2715184C1 (ru) * 2018-11-30 2020-02-25 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (Институт катализа СО РАН, ИК СО РАН) Способ получения сорбентов
RU2738371C1 (ru) * 2017-08-11 2020-12-11 Косел Кемикалс Ко., Лтд. Композиция самоотверждаемой органической синтетической смолы для аддитивного производства и ее применение
RU2753304C2 (ru) * 2016-07-14 2021-08-13 Фосеко Интернэшнл Лимитед Керамические изделия и способы их производства
US11389867B2 (en) 2017-02-24 2022-07-19 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
WO2023282906A1 (en) * 2021-07-09 2023-01-12 Hewlett-Packard Development Company, L.P. Three-dimensional printing with removable support structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003893A1 (en) * 1988-10-05 1990-04-19 Michael Feygin An improved apparatus and method for forming an integral object from laminations
US6375874B1 (en) * 1996-12-20 2002-04-23 Z Corporation Method and apparatus for prototyping a three-dimensional object
RU2311984C2 (ru) * 2002-08-20 2007-12-10 Экс Уан Корпорейшн Способ литья и средства для его осуществления
RU2417890C2 (ru) * 2005-09-20 2011-05-10 Птс Софтвэар Бв Устройство формирования трехмерного изделия и способ формирования трехмерного изделия
WO2011087564A1 (en) * 2010-01-15 2011-07-21 Massachusetts Institute Of Technology Cement-based materials system for producing ferrous castings using a three dimensional printer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003893A1 (en) * 1988-10-05 1990-04-19 Michael Feygin An improved apparatus and method for forming an integral object from laminations
US6375874B1 (en) * 1996-12-20 2002-04-23 Z Corporation Method and apparatus for prototyping a three-dimensional object
RU2311984C2 (ru) * 2002-08-20 2007-12-10 Экс Уан Корпорейшн Способ литья и средства для его осуществления
RU2417890C2 (ru) * 2005-09-20 2011-05-10 Птс Софтвэар Бв Устройство формирования трехмерного изделия и способ формирования трехмерного изделия
WO2011087564A1 (en) * 2010-01-15 2011-07-21 Massachusetts Institute Of Technology Cement-based materials system for producing ferrous castings using a three dimensional printer

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567318C1 (ru) * 2014-05-06 2015-11-10 Общество с ограниченной ответственностью "Научно-Производственное Предприятие Интеллектуальные Информационные Системы" Устройство перемещения рабочего стола зd-принтера
RU2712996C2 (ru) * 2015-07-31 2020-02-03 Сакми Кооператива Мекканичи Имола Сочьета' Кооператива Линия и способ изготовления декорированных керамических изделий
RU2635309C1 (ru) * 2016-05-10 2017-11-10 Акционерное общество "Научно-исследовательский институт энергетических сооружений" Состав водостойкого магнезиального вяжущего с нулевыми деформациями (варианты)
RU2753304C2 (ru) * 2016-07-14 2021-08-13 Фосеко Интернэшнл Лимитед Керамические изделия и способы их производства
WO2018063217A1 (en) * 2016-09-29 2018-04-05 Hewlett-Packard Development Company, Lp Build material management
US11613081B2 (en) 2016-09-29 2023-03-28 Hewlett-Packard Development Company, L.P. Build material management
WO2018118032A1 (en) * 2016-12-21 2018-06-28 Hewlett-Packard Development Company, L.P. Extracting 3d objects
US11072161B2 (en) 2016-12-21 2021-07-27 Hewlett-Packard Development Company, L.P. Extracting 3D objects
CN109715369A (zh) * 2016-12-21 2019-05-03 惠普发展公司,有限责任合伙企业 提取3d物体
US11583920B2 (en) 2017-02-24 2023-02-21 Hewlett-Packard Development Company, L.P. Three-dimensional printing
US11389867B2 (en) 2017-02-24 2022-07-19 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
US11511338B2 (en) 2017-02-24 2022-11-29 Hewlett-Packard Development Company, L.P. Three-dimensional printing
US11577316B2 (en) 2017-02-24 2023-02-14 Hewlett-Packard Development Company, L.P. Three-dimensional printing
WO2018156938A1 (en) * 2017-02-24 2018-08-30 Hewlett-Packard Development Company, L.P. Three-dimensional printing
RU2693095C1 (ru) * 2017-07-05 2019-07-01 Сакми Кооператива Мекканичи Имола Сочьета' Кооператива Способ и установка для изготовления керамических изделий
US11318532B2 (en) 2017-07-19 2022-05-03 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
CN111032315A (zh) * 2017-07-19 2020-04-17 惠普发展公司,有限责任合伙企业 三维(3d)打印
CN111032315B (zh) * 2017-07-19 2021-10-29 惠普发展公司,有限责任合伙企业 三维(3d)打印
WO2019017926A1 (en) * 2017-07-19 2019-01-24 Hewlett-Packard Development Company, L.P. THREE DIMENSIONAL PRINTING (3D)
RU2738371C1 (ru) * 2017-08-11 2020-12-11 Косел Кемикалс Ко., Лтд. Композиция самоотверждаемой органической синтетической смолы для аддитивного производства и ее применение
WO2019078896A1 (en) * 2017-10-20 2019-04-25 Hewlett-Packard Development Company, L.P. APPARATUS HAVING POROUS MEMBRANE FOR FLUIDIZING PARTICULATE MATERIAL
RU2668107C1 (ru) * 2017-11-14 2018-09-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Способ изготовления изделий из порошковых керамических материалов
WO2019212493A1 (en) * 2018-04-30 2019-11-07 Hewlett-Packard Development Company, L.P. Three-dimensional printing
RU2689833C1 (ru) * 2018-09-19 2019-05-29 Общество с ограниченной ответственностью "ИНТЕХ-М" Способ получения керамических изделий на основе порошков оксидов металлов
RU2707372C1 (ru) * 2018-11-12 2019-11-26 Федеральное государственное автономное научное учреждение "Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики" (ЦНИИ РТК) Способ изготовления литейных форм сложной геометрии из песчано-полимерных систем
RU2715184C1 (ru) * 2018-11-30 2020-02-25 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (Институт катализа СО РАН, ИК СО РАН) Способ получения сорбентов
RU2699144C1 (ru) * 2018-12-18 2019-09-03 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ изготовления изделия из огнеупорных материалов методом трехмерной печати
WO2023282906A1 (en) * 2021-07-09 2023-01-12 Hewlett-Packard Development Company, L.P. Three-dimensional printing with removable support structures

Also Published As

Publication number Publication date
RU2013118068A (ru) 2014-10-27

Similar Documents

Publication Publication Date Title
RU2535704C1 (ru) Способ трехмерной печати огнеупорных изделий
CN108727040B (zh) 多孔耐火浇注材料及其用途和制造
Snelling et al. Binder jetting advanced ceramics for metal-ceramic composite structures
KR101832945B1 (ko) 대용량 공업용 로의 라이닝으로서 비소성 내화물의 이용 및 비소성 내화물로 라이닝된 공업용 로
KR101922751B1 (ko) 경량 세라믹 물질의 제조 방법
CN103167918A (zh) 造型用材料、功能剂、造型制品和制品
CN110678431B (zh) 造型用材料、功能剂、造型制品及制品
KR20190122728A (ko) 다공성 소결 마그네시아의 제조 방법, 소결 마그네시아 과립을 포함하는 중점토 세라믹 내화성 제품의 제조를 위한 뒤채움재, 그 제품 및 그의 제조 방법, 공업로의 라이닝, 및 공업로
JP5775112B2 (ja) 鋳造体、キャスタブル組成物、及びそれらの製造方法
US20230036173A1 (en) Casting elements and methods of making the same using low temperature solidification
CN105859308A (zh) 一种耐火材料和风口组合砖
JP6462347B2 (ja) 鋳型砂とその製造方法
CN109513877A (zh) 一种利用熔模铸造废弃型壳制备的人造球形陶瓷砂
JP2013043180A (ja) 鋳型砂とその製造方法
JP5276861B2 (ja) 鋳型用セラミック骨材及びその製造方法、並びにそれを用いた鋳型
US20230257311A1 (en) 3d ceramic printing
JPH0663684A (ja) 鋳造用セラミック中子の製造方法
JP6595688B2 (ja) 鋳型砂とその製造方法
AU742062B2 (en) Castable refractory composition and methods of making refractory bodies
JPH07110780B2 (ja) 燒結耐火材
JPH05212487A (ja) 鋳型の製造方法