RU2535645C1 - Способ определения характеристик изгибной жесткости протяженных объектов с помощью кривизномера - Google Patents

Способ определения характеристик изгибной жесткости протяженных объектов с помощью кривизномера Download PDF

Info

Publication number
RU2535645C1
RU2535645C1 RU2013126054/28A RU2013126054A RU2535645C1 RU 2535645 C1 RU2535645 C1 RU 2535645C1 RU 2013126054/28 A RU2013126054/28 A RU 2013126054/28A RU 2013126054 A RU2013126054 A RU 2013126054A RU 2535645 C1 RU2535645 C1 RU 2535645C1
Authority
RU
Russia
Prior art keywords
curvature
section
bending
measured
bending stiffness
Prior art date
Application number
RU2013126054/28A
Other languages
English (en)
Other versions
RU2013126054A (ru
Inventor
Виталий Владимирович Шершавин
Николай Иванович Дорошенко
Лев Антонович Мироненко
Андрей Александрович Иванов
Original Assignee
Открытое Акционерное Общество "Московский Вертолетный Завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Московский Вертолетный Завод" filed Critical Открытое Акционерное Общество "Московский Вертолетный Завод"
Priority to RU2013126054/28A priority Critical patent/RU2535645C1/ru
Application granted granted Critical
Publication of RU2013126054A publication Critical patent/RU2013126054A/ru
Publication of RU2535645C1 publication Critical patent/RU2535645C1/ru

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение относится к технике испытаний протяженных объектов с переменной по длине жесткостью. Сущность: объект консольно закрепляют на силовой колонне и с помощью механического кривизномера измеряют кривизну отдельных его участков, средние сечения которых располагаются в заданных расчетных сечениях, при изгибе объекта под действием заданной нагрузки, приложенной к свободному его концу. Кривизну отдельных участков, расположенных в различных сечениях по длине объекта, измеряют путем последовательной перестановки кривизномера от сечения к сечению по реперным шайбам, сначала в исходном деформированном состоянии при изгибе под действием некоторой начальной нагрузки, а затем при изгибе после приложения заданной дополнительной нагрузки. Вычисляют кривизну каждого участка, соответствующую изгибающему моменту от заданной нагрузки, как разность значений кривизны, измеренной кривизномером в двух указанных деформированных состояниях объекта, и определяют изгибную жесткость в расчетном сечении как частное от деления изгибающего момента в среднем сечении участка на измеренную кривизну, умноженное на поправочный коэффициент, который предварительно находят расчетным способом по известным функциям распределения номинальных изгибных жесткостей объекта и изгибающих моментов, задаваемых при испытании, как отношение номинального значения средней кривизны участка к номинальному значению кривизны в среднем его сечении. Технический результат: повышение точности и снижение трудоемкости. 1 з.п. ф-лы, 4 ил.

Description

Изобретение относится к технике испытаний и имеет целью повышение точности и снижение трудоемкости способа определения изгибной жесткости с помощью кривизномера протяженных объектов с переменной по длине жесткостью.
Известен способ определения изгибной жесткости образцов постоянного сечения (Деформация конструкционных материалов. Учебное пособие. - Министерство образования и науки РФ Томский политехнический университет. - Томск изд. ТПУ, 2004 г.- Стр.8-12), в котором один конец образца защемляют в приспособлении, установленном на неподвижном основании, к свободному его концу прикладывают поперечную нагрузку, измеряют линейные или угловые перемещения концевого сечения образца относительно базовой системы координат, связанной с основанием, и, пользуясь известными расчетными зависимостями для перемещений консоли постоянного сечения, определяют величину изгибной жесткости. Например, при измерении линейного перемещения h, изгибную жесткость образца определяют по формуле EI=P'L3/3h, где L - расстояние точки приложения силы P от заделки.
Указанный способ имеет следующие недостатки, затрудняющие его использование для определения жесткостных характеристик протяженных объектов с переменной по длине жесткостью: измеряемый прогиб концевого сечения образца при консольном изгибе является интегральной функцией изгибной жесткости всего изгибаемого участка и изгибная жесткость, определенная этим способом, характеризует некоторую среднюю жесткость образца в целом, при этом жесткости в конкретных его сечениях остаются неизвестными; для измерения этим способом изгибной жесткости отрезков протяженного объекта, расположенных в различных его сечениях по длине, требуется соответствующим образом перемещать места заделки и приложения нагрузки, что сопряжено с большими трудозатратами; на точность измерения упругого прогиба концевого сечения образца относительно неподвижного основания существенное влияние могут оказывать деформации приспособления и узлов крепления образца, вызывающие линейные и угловые перемещения образца как твердого тела, что приводит к появлению соответствующих погрешностей измерения упругого прогиба, для учета или компенсации которых требуется выполнение трудоемких прецизионных измерений.
По приведенным выше причинам область применения известного способа определения изгибной жесткости, основанного на измерениях перемещений отдельных точек объекта, ограничивается главным образом лабораторными испытаниями маломерных образцов.
Наиболее близким аналогом заявляемого изобретения является способ определения изгибной жесткости объекта типа крыла (Пособие для проведения лабораторных работ по дисциплине «Конструкция и прочность летательных аппаратов». Лабораторная работа №1. Экспериментально-расчетное исследование деформаций авиационных конструкций - Министерство транспорта РФ. Московский государственный технический университет гражданской авиации. - М.: МГТУГА, 2006 г. - Стр. 5-11), заключающийся в том, что объект консольно закрепляют на силовой колонне и с помощью кривомера Упадышева измеряют кривизну отдельных его участков при изгибе объекта под действием заданной поперечной нагрузки, приложенной к свободному его концу, и определяют изгибную жесткость как частное от деления изгибающего момента в среднем сечении участка на измеренную кривизну.
Рассматриваемый способ определения изгибной жесткости по измеренной кривизне основан на известном из сопротивления материалов уравнении изгиба балки в виде:
k ( x ) = 1 / ρ ( x ) = M ( x ) / E I ( x ) ,     (1)
Figure 00000001
устанавливающем функциональную зависимость кривизны k(х) (радиуса кривизны ρ(х)) упругой оси балки в текущем сечении х от изгибающего момента М(х) и жесткости EI(х) в этом сечении. При известных значениях кривизны и изгибающего момента в расчетном сечении из уравнений (1) может быть определена изгибная жесткость:
E I ( x ) = M ( x ) / k ( x ) ,     (2)
Figure 00000002
Кривомер Упадышева представляет собой трех опорную раму, одна из опор которой подвижная и снабжена индикатором для измерения ее перемещения, обусловленного изгибом контролируемого участка объекта. По величине измеренного перемещения определяют кривизну дуги контролируемого участка, как кривизну дуги окружности проведенной через три точки контакта опор кривомера с поверхностью объекта по формуле:
k o = 4 h / a 2 ,     (3)
Figure 00000003
где h - перемещение подвижной опоры кривомера, измеряемое индикатором, a - база кривомера, равная расстоянию между его крайними опорами.
Изгибную жесткость определяют как частное от деления изгибающего момента в среднем сечении контролируемого участка на измеренную кривизну по формуле:
E I o = M / k o ,     (4)
Figure 00000004
где изгибающий момент определяют как произведение приложенной к свободному концу объекта силы на плечо относительно среднего сечения участка.
Известный способ реализуют следующим образом: объект консольно закрепляют на силовой колонне, в исходном состоянии при изгибе объекта под действием собственного веса на его поверхность в одно из заданных расчетных сечений устанавливают кривомер, нагружают объект изгибающим моментом путем приложения к свободному его концу сосредоточенной силы P, затем определяют разность показаний Δλ индикатора кривомера при изменении нагрузки от 0 до P и перемещение h=Δλ, соответствующее величине деформации контролируемого участка при изгибе силой ρ от исходного состояния, далее по формуле (3) вычисляют кривизну ko и по формуле (4) определяют изгибную жесткость RIo.
Для определения изгибной жесткости в другом расчетном сечении объект разгружают и вновь выполняют цикл всех перечисленных операций по нагружению объекта, измерению перемещения h и вычислению кривизны ko.
Этот способ в случае использования его для определения жесткостных характеристик протяженного объекта с переменной по длине изгибной жесткостью имеет следующие недостатки: большую трудоемкость, из-за необходимости выполнения многократных циклов нагружения объекта для измерения кривизны контролируемых участков, расположенных в различных сечениях по его длине, например, у лопастей несущего винта число таких участков может быть 20 и более; не предусмотрены меры по предупреждению возможных смещений кривомера по поверхности объекта при его деформациях в процессе нагружения, вызывающих появление неконтролируемых погрешностей измерения кривизны; изгибная жесткость, определяемая по формуле (4) через кривизну ko, характеризует среднюю изгибную жесткость всего контролируемого участка, при этом искомая жесткость в среднем (расчетном) сечении участка остается неизвестной. Это связано с тем, что при выводе формулы (4) в исходное выражение (2) для изгибной жесткости EI(x) вместо кривизны k(x) в среднем сечении участка введена кривизна ko (3), которая, как кривизна окружности, имеет постоянную величину по длине участка, и в общем случае при переменной жесткости контролируемого участка не будет равна жесткости в его среднем сечении. Ввиду этого известный способ не позволяет выполнить оценку соответствия фактических (измеренных) жесткостей объекта с переменной по длине жесткостью расчетным данным, задаваемыми значениями жесткостей в ряде расчетных сечений объекта.
Целью изобретения является снижение трудоемкости и повышение точности определения характеристик распределения изгибной жесткости по длине протяженного объекта, с использованием кривомера для измерения изгибной деформации отдельных его участков.
Поставленная задача решается тем, что в способе определения характеристик изгибной жесткости протяженных объектов, где объект консольно закрепляют на силовой колонне и с помощью механического кривизномера измеряют кривизну отдельных его участков, средние сечения которых располагаются в заданных расчетных сечениях, при изгибе объекта под действием заданной нагрузки, приложенной к свободному его концу, определяют изгибную жесткость как частное от деления изгибающего момента в среднем сечении участка на измеренную кривизну, в соответствии с заявляемым изобретением кривизну отдельных участков, расположенных в различных сечениях по длине объекта, измеряют путем последовательной перестановки кривизномера от сечения к сечению по реперным шайбам, предварительно наклеенным на поверхность объекта, сначала в исходном деформированном состоянии при изгибе под действием некоторой начальной нагрузки, а затем при изгибе после приложения заданной дополнительной нагрузки, после чего вычисляют кривизну каждого участка, соответствующую изгибающему моменту от заданной нагрузки, как разность значений кривизны, измеренной кривизномером в двух указанных деформированных состояниях объекта, и определяют изгибную жесткость в расчетном сечении как частное от деления изгибающего момента в среднем сечении участка на измеренную кривизну, умноженное на поправочный коэффициент, который предварительно находят расчетным способом по известным функциям распределения номинальных изгибных жесткостей объекта и изгибающих моментов, задаваемых при испытании, как отношение номинального значения средней кривизны участка к номинальному значению кривизны в среднем его сечении.
Реперные шайбы применяют для обеспечения точной установки и фиксации кривизномера относительно расчетного сечения, при этом реперные шайбы наклеивают на поверхность объекта парами в местах расположения двух крайних опор кривизномера, причем одну из шайб в паре изготавливают с конусной центрирующей поверхностью, а другую - с продольным клиновидным пазом.
На фиг.1 представлена схема измерения изгибной деформации участка объекта кривизномером.
На фиг.2 представлена схема расположения кривизномера на объекте.
На фиг.3 представлен вид в продольном разрезе крайних опор кривизномера, установленных шаровыми наконечниками в реперные шайбы.
На фиг.4 представлен вид сверху пары реперных шайб с конусным отверстием и клиновидным продольным пазом.
Способ реализуется следующим образом.
В предлагаемом способе используется кривизномер 1 (фиг.1 и 2), который схематически представляет собой раму с тремя опорами 2, 3, 4 (фиг.1 и 2), две из которых опоры 2 и 3 (фиг.1 и 2) жесткие, а одна из крайних опор - опора 4 (фиг.1 и 2) является подвижной и снабжена индикатором 5 (фиг.2) для измерения ее линейного перемещения h (фиг.1), обусловленного изгибом контролируемого участка объекта 6 (фиг.2). Размер а расстояния между крайними опорами 2 и 4 (фиг.1 и 2) определяет базу кривизномера 1 (фиг.1 и 2) и длину контролируемого участка.
Кривизномер 1 (фиг.1 и 2) как средство измерения изгибной деформации характеризуется следующими свойствами: кривизномером 1 (фиг.1 и 2) непосредственно измеряют стрелку прогиба f дуги поверхности деформированного участка в продольной плоскости объекта, при этом величина перемещения h, измеряемого индикатором 5 (фиг.2) кривизномера 1 (фиг.1 и 2), равна удвоенной величине стрелки прогиба: h=2f (фиг.1); кривизномером 1 (фиг.1 и 2) определяют кривизну дуги контролируемого участка, как кривизна дуги окружности со стрелкой прогиба f, проведенной через три точки x1, x2, x3 (фиг.1, 2) контакта опор 2, 3, 4 (фиг.1, 2) кривизномера 1 (фиг.1 и 2) с поверхностью объекта 6 (фиг.2), при этом связь кривизны с размером а базы кривизномера 1 (фиг.1 и 2) и величиной измеряемого перемещения h устанавливается следующей формулой кривизномера:
k o = 4 h / a 2 ,     (5)
Figure 00000005
С помощью формулы кривизномера также рассчитывают вторую разностную производную функцию прогибов контролируемого участка по координатам трех точек на сетке с шагом, равным а/2:
y'' = 4 ( y 1 2y 2 + y 3 ) /a 2 ,    (6)
Figure 00000006
при этом в системе координат OXY, связанной с кривизномером 1 (фиг.1), точки x1, x2 и x3 (фиг.1 и 2) в сечениях по опорам 2, 3, 4 (фиг.1 и 2) кривизномера 1 (фиг.1 и 2) имеют следующие ординаты: y1=y2=0, y3=h. В результате формула (6) для второй разностной производной принимает вид, эквивалентный формуле (5) для кривизны ko:
y ' ' = k o = 4 h / a 2     (7)
Figure 00000007
Измерения кривизны и определение изгибной жесткости в заявляемом способе выполняют в следующем порядке.
Объект 6 (фиг.2), например лопасть, закрепляют на силовой колонне (не показана). По продольной оси объекта размечают положение расчетных сечений 7 (фиг 2), а также точек x1, x2 и x3 контакта опор 2, 3, 4 (фиг.1 и 2) кривизномера 1 (фиг.1 и 2) с поверхностью объекта 6 (фиг.2), при этом средняя опора 3 (фиг.1 и 2) кривизномера 1 (фиг.1 и 2) располагается в точке x2 расчетного сечения 7 (фиг.2).
Для обеспечения точной установки и фиксации положения кривизномера 1 (фиг.1 и 2) относительно расчетного сечения x2 при выполнении измерения кривизны отдельных участков объекта 6 (фиг.2) используют реперные шайбы 8 и 9 (фиг.2, 3, 4). Их наклеивают на поверхность объекта 6 (фиг.2) парами с помощью двухсторонней клейкой подложки 10 (фиг.3, 4) в точках x1 и x2 контакта двух крайних опор 2 и 4 (1 и 2) кривизномера 1 (фиг.1 и 2). При этом шайба 8 (фиг.3 и 4) имеет конусную центрирующую поверхность, а шайба 9 (фиг.3 и 4) - продольный клиновидный паз, который при установке шайбы 8 и 9 (фиг.2) ориентируют вдоль продольной оси объекта.
Измерения кривизны участков производят сначала в исходном деформированном состоянии объекта 6 (фиг.2) под действием некоторой начальной нагрузки, например собственного веса, а затем после приложения к свободному концу объекта 6 (фиг.2) дополнительно заданной поперечной нагрузки, при этом в каждом из деформированных состояний измерения производят сразу во всех расчетных сечениях, путем последовательной перестановки кривизномера 1 (фиг.1, 2) по длине объекта 6 (фиг.2) от сечения к сечению по реперным шайбам 8 и 9 (фиг.2, 3, 4).
Кривизну каждого участка, соответствующую изгибающему моменту от заданной нагрузки, определяют как разность значений кривизны, измеренной кривизномером 1 (фиг.1 и 2) в двух указанных деформированных состояниях объекта 6 (фиг.2).
Изгибную жесткость в среднем сечении x2 контролируемого участка определяют как частное от деления изгибающего момента в среднем сечении на измеренную кривизну, умноженное на поправочный коэффициент:
E I 2 = ( M 2 / k 0 ) F k ,     (8)
Figure 00000008
Поправочный коэффициент Fk компенсирует погрешность определения изгибной жесткости известным способом. Появление этой погрешности связанно с тем, что в известном способе определяют среднюю изгибную жесткость контролируемого участка как отношение изгибающего момента в среднем сечении к средней кривизне участка, измеренной кривизномером: EIo=M2/ko, в то время как искомую жесткость в среднем сечении контролируемого участка необходимо определять как отношение изгибающего момента в среднем сечении участка к кривизне в этом сечении: EI2=M2/k2. Отношение EI2/EIo=ko/k2 устанавливает связь между указанными двумя жесткостями, величина которого, вычисленная по номинальным значениям средней кривизны koном и кривизы k2ном в среднем сечении контролируемого участка, определяет значение поправочного коэффициента в формуле (8):
F k = k o н о м / k 2. н о м      (9)
Figure 00000009
При этом кривизну k2ном определяют как частное от деления изгибающего момента в среднем сечении участка на номинальное значение изгибной жесткости в этом сечении k2ном=M2/EI2ном, а кривизну koном находят в виде второй разностной производной (7), вычисляемой по координатам трех точек расчетной функции прогибов контролируемого участка в сечениях по опорам кривизномера.
Соответствие фактических (измеренных) жесткостей объекта расчетным данным оценивают величиной относительной разности измеренных и номинальных значений изгибной жесткости в среднем сечении контролируемого участка.
Совокупность перечисленных новых признаков заявляемого способа определения изгибной жесткости с помощью механического кривизномера обеспечивает повышение точности и радикальное снижение трудоемкости, а также расширяет его возможности и области применения. Так, применительно к лопастям несущего винта этот способ может быть использован для решения широкого круга задач по контролю жесткостных характеристик на всех этапах цикла их разработки, производства и эксплуатации:
а) на этапе разработки в лабораторных условиях опытного производства: для оценки соответствия жесткостных характеристик опытных образцов лопастей проектным данным, для проверки влияния вводимых новых конструктивных решений на изменение жесткостных характеристик лопасти, для контроля состояния лопастей после проведения разного рода испытаний (тепловых, прочностных и др.);
б) в области серийного производства: для идентификации жесткостных характеристик каждой выпускаемой лопасти, для контроля стабильности качества изготовления лопастей; для оценки влияния вводимых уточнений или возможных отклонений режимов технологического процесса на изменение жесткостных характеристик лопастей;
в) в эксплуатации: для оценки влияния на жесткостные характеристики лопастей эксплуатационных факторов (нагрев солнечным излучением, повышенная влажность и др).

Claims (2)

1. Способ определения характеристик изгибной жесткости протяженных объектов, заключающийся в том, что объект консольно закрепляют на силовой колонне и с помощью механического кривизномера измеряют кривизну отдельных его участков, средние сечения которых располагаются в заданных расчетных сечениях, при изгибе объекта под действием заданной нагрузки, приложенной к свободному его концу, и определяют изгибную жесткость как частное от деления изгибающего момента в среднем сечении участка на измеренную кривизну, отличающийся тем, что кривизну отдельных участков, расположенных в различных сечениях по длине объекта, измеряют путем последовательной перестановки кривизномера от сечения к сечению по реперным шайбам, предварительно наклеенным на поверхность объекта, сначала в исходном деформированном состоянии при изгибе под действием некоторой начальной нагрузки, а затем при изгибе после приложения заданной дополнительной нагрузки, после чего вычисляют кривизну каждого участка, соответствующую изгибающему моменту от заданной нагрузки, как разность значений кривизны, измеренной кривизномером в двух указанных деформированных состояниях объекта, и определяют изгибную жесткость в расчетном сечении как частное от деления изгибающего момента в среднем сечении участка на измеренную кривизну, умноженное на поправочный коэффициент, который предварительно находят расчетным способом по известным функциям распределения номинальных изгибных жесткостей объекта и изгибающих моментов, задаваемых при испытании, как отношение номинального значения средней кривизны участка к номинальному значению кривизны в среднем его сечении.
2. Способ по п.1, отличающийся тем, что для точной установки и фиксации кривизномера относительно расчетного сечения реперные шайбы наклеивают на поверхность объекта парами в местах расположения двух крайних опор кривизномера, при этом одну из шайб в паре изготавливают с конусной центрирующей поверхностью, а другую - с клиновидным продольным пазом.
RU2013126054/28A 2013-06-06 2013-06-06 Способ определения характеристик изгибной жесткости протяженных объектов с помощью кривизномера RU2535645C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013126054/28A RU2535645C1 (ru) 2013-06-06 2013-06-06 Способ определения характеристик изгибной жесткости протяженных объектов с помощью кривизномера

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013126054/28A RU2535645C1 (ru) 2013-06-06 2013-06-06 Способ определения характеристик изгибной жесткости протяженных объектов с помощью кривизномера

Publications (2)

Publication Number Publication Date
RU2013126054A RU2013126054A (ru) 2014-12-20
RU2535645C1 true RU2535645C1 (ru) 2014-12-20

Family

ID=53278059

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013126054/28A RU2535645C1 (ru) 2013-06-06 2013-06-06 Способ определения характеристик изгибной жесткости протяженных объектов с помощью кривизномера

Country Status (1)

Country Link
RU (1) RU2535645C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659861C2 (ru) * 2016-09-07 2018-07-04 Ростовский вертолетный производственный комплекс Публичное акционерное общество "Роствертол" Универсальное приспособление для определения жесткостных характеристик лопастей на изгиб в плоскости тяги
RU2704753C1 (ru) * 2018-10-08 2019-10-30 Ростовский вертолетный производственный комплекс Публичное акционерное общество "Роствертол" имени Б.Н.Слюсаря Универсальное приспособление сравнения жесткости лопастей несущих или рулевых винтов вертолётов на изгиб в плоскости тяги
RU2745947C1 (ru) * 2020-07-02 2021-04-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский автомобильно-дорожный государственный технический университет (МАДИ)" Способ определения изгибной жесткости полимерных композиционных материалов при различных температурных условиях
RU2772081C2 (ru) * 2020-07-30 2022-05-16 Акционерное общество Научная организация "Тверской институт вагоностроения" (АО НО "ТИВ") Способ определения изгибной жесткости объекта

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU834428A1 (ru) * 1979-04-12 1981-05-30 Серпуховское Высшее Военное Командноеучилище Им. Ленинского Комсомола Способ определени изгибной жесткостиКОНСТРуКции
SU1714425A2 (ru) * 1990-01-26 1992-02-23 Всесоюзный научно-исследовательский институт метизной промышленности Способ определени изгибной жесткости гибких образцов
US20020108449A1 (en) * 2001-02-13 2002-08-15 Harjit Kohli Method and apparatus to detect faults in conduits
RU2435153C1 (ru) * 2010-05-17 2011-11-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет информационных технологий, механики и оптики" Устройство для определения жесткостных характеристик анизотропных стержней

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU834428A1 (ru) * 1979-04-12 1981-05-30 Серпуховское Высшее Военное Командноеучилище Им. Ленинского Комсомола Способ определени изгибной жесткостиКОНСТРуКции
SU1714425A2 (ru) * 1990-01-26 1992-02-23 Всесоюзный научно-исследовательский институт метизной промышленности Способ определени изгибной жесткости гибких образцов
US20020108449A1 (en) * 2001-02-13 2002-08-15 Harjit Kohli Method and apparatus to detect faults in conduits
RU2435153C1 (ru) * 2010-05-17 2011-11-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет информационных технологий, механики и оптики" Устройство для определения жесткостных характеристик анизотропных стержней

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659861C2 (ru) * 2016-09-07 2018-07-04 Ростовский вертолетный производственный комплекс Публичное акционерное общество "Роствертол" Универсальное приспособление для определения жесткостных характеристик лопастей на изгиб в плоскости тяги
RU2704753C1 (ru) * 2018-10-08 2019-10-30 Ростовский вертолетный производственный комплекс Публичное акционерное общество "Роствертол" имени Б.Н.Слюсаря Универсальное приспособление сравнения жесткости лопастей несущих или рулевых винтов вертолётов на изгиб в плоскости тяги
RU2745947C1 (ru) * 2020-07-02 2021-04-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский автомобильно-дорожный государственный технический университет (МАДИ)" Способ определения изгибной жесткости полимерных композиционных материалов при различных температурных условиях
RU2772081C2 (ru) * 2020-07-30 2022-05-16 Акционерное общество Научная организация "Тверской институт вагоностроения" (АО НО "ТИВ") Способ определения изгибной жесткости объекта

Also Published As

Publication number Publication date
RU2013126054A (ru) 2014-12-20

Similar Documents

Publication Publication Date Title
Motra et al. Assessment of strain measurement techniques to characterise mechanical properties of structural steel
CN105527075B (zh) 用于共振疲劳试验的力矩校准的方法和装置
CN108519175B (zh) 基于布拉格光纤光栅的可变量程的土体压力测量方法
CN102313523B (zh) 一种光纤光栅应变传感器灵敏度标定方法
Ocokoljić et al. Contemporary frame of measurement and assessment of wind-tunnel flow quality in a low-speed facility
CN105352800A (zh) 钢箱梁疲劳裂纹扩展速率测试方法
Debski et al. Experimental study on the effect of eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles
JP6142074B2 (ja) 疲労試験装置
RU2535645C1 (ru) Способ определения характеристик изгибной жесткости протяженных объектов с помощью кривизномера
CN103115827A (zh) 沥青混合料重复加载四点弯曲劲度模量测试方法
CN209689818U (zh) 一种简易的力传感器标定装置
Kalita et al. Design and uncertainty evaluation of a strain measurement system
RU2595321C1 (ru) Пятикомпонентные тензовесы
US2785569A (en) Wind tunnel force and moment measuring device
CN104299483B (zh) 一种电桥式杨氏模量组合仪
RU127464U1 (ru) Стенд для измерения вертикальной нагрузки, воздействующей на объект авиационной техники
CN203364754U (zh) 用于扩孔试验的极限扩孔率测量装置
CN202974770U (zh) 杨氏模量测量仪
Heaney et al. Distributed sensing of a cantilever beam and plate using a fiber optic sensing system
CN109187184B (zh) 一种土压力测试演示***及方法
CN109883611A (zh) 一种简易的力传感器标定装置和方法
KR100934860B1 (ko) 외장형 풍동저울의 교정장치
CN110686632A (zh) 一种h形截面钢压杆初始几何缺陷的测量方法
CN204155503U (zh) 一种电桥式杨氏模量组合仪
RU2745947C1 (ru) Способ определения изгибной жесткости полимерных композиционных материалов при различных температурных условиях

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PD4A Correction of name of patent owner