RU2534538C1 - Сложный силикат редкоземельных элементов в наноаморфном состоянии - Google Patents

Сложный силикат редкоземельных элементов в наноаморфном состоянии Download PDF

Info

Publication number
RU2534538C1
RU2534538C1 RU2013118914/05A RU2013118914A RU2534538C1 RU 2534538 C1 RU2534538 C1 RU 2534538C1 RU 2013118914/05 A RU2013118914/05 A RU 2013118914/05A RU 2013118914 A RU2013118914 A RU 2013118914A RU 2534538 C1 RU2534538 C1 RU 2534538C1
Authority
RU
Russia
Prior art keywords
intensity
red
hours
cooled
state
Prior art date
Application number
RU2013118914/05A
Other languages
English (en)
Other versions
RU2013118914A (ru
Inventor
Михаил Георгиевич Зуев
Сергей Юрьевич Соковнин
Владислав Генрихович Ильвес
Инна Викторовна Бакланова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского Отделения РАН
Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского Отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского Отделения РАН, Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского Отделения РАН filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского Отделения РАН
Priority to RU2013118914/05A priority Critical patent/RU2534538C1/ru
Publication of RU2013118914A publication Critical patent/RU2013118914A/ru
Application granted granted Critical
Publication of RU2534538C1 publication Critical patent/RU2534538C1/ru

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

Изобретение может быть использовано для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в осветительных системах и оптических дисплеях. Сложный силикат редкоземельных элементов состава Sr2Gd8(1-x)Eu8xSi6O26 (0,001≤x≤0,5) в наноаморфном состоянии используют в качестве люминофора красного свечения. Предложенный люминофор обладает высокой интенсивностью красного свечения, при этом интенсивность оранжевого свечения к красному составляет 14-16%, т.е. уменьшена по сравнению с известными люминофорами. 3 пр.

Description

Изобретение относится к люминофорам красного цвета свечения, используемым для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения в системах WLED и оптических дисплеях.
Известен люминофор состава SrY4(1-x)Eu4x(SiO43, где 0,1≤x≤0,8, (патент РФ 2379328, МПК C09K 11/79, 11/55, 11/59, 2010 год).
Недостатком известного люминофора является невысокая интенсивность красного свечения. Интенсивность красного свечения при 632,5 нм и при 708,4 нм составляет в сумме 37000 отн. ед. При этом интенсивность оранжевой компоненты при 590,3 нм составляет 7000 отн. ед. (18,5% от интенсивности красного излучения).
Известен нанолюминофор состава Ca2Gd8Si6O26: Eu (Sensors and Actuators В: Chemical V.146 (2010) P.395), имеющий нанокристаллические частицы сферической формы.
Недостатком этого люминофора является невысокая интенсивность красного излучения (30000 отн. ед.) в интервале длин волн 610-630 нм, а также значительная интенсивность оранжевого излучения в интервале 580-600 нм (25% от интенсивности красного излучения).
Известен люминофор в нанокристаллическом состоянии состава Sr2GdxY7.9-xEu0.1(SiO4)6O2 (Materials Chemistry and Physics, V.84 (2004), P.279).
Недостатком люминофора является невысокая интенсивность красного излучения (32000 отн. ед.) в интервале длин волн 620-700 нм и высокое отношение интенсивности оранжевого излучения (580-600 нм) к интенсивности красного излучения (22%).
Таким образом, перед авторами стояла задача разработать люминофор красного цвета свечения с более высокой интенсивностью излучения, при этом характеризующегося низкой интенсивностью оранжевого излучения.
Поставленная задача решена в предлагаемом сложном силикате редкоземельных элементов состава Sr2Gd8(1-x)Eu8xSi6O26 (0,001≤x≤0,5) в наноаморфном состоянии в качестве люминофора красного свечения.
В настоящее время в патентной и научно-технической литературе не описан люминофор предлагаемого состава в наноаморфном состоянии.
Спектр люминесценции предлагаемого люминофора состава Sr2Gd8(1.x)Eu8xSi6O26 (0,001≤x≤0,5) состоит из красного излучения (620-700 нм) с интенсивностью 670000-680000 отн. ед. и оранжевой компоненты (540-600 нм). При этом отношение интенсивности оранжевой компоненты к интенсивности красной компоненты составляет 14-16%. Таким образом, отношение интенсивности оранжевого свечения к красному для наноаморфного люминофора уменьшается по сравнению с известными люминофорами.
Резкое увеличение интенсивности красной компоненты и перераспределение интенсивностей красного и оранжевого свечения обусловлено, по-видимому, уменьшением безызлучательных потерь энергии возбуждения в наноаморфном состоянии за счет ослабления электронно-колебательного взаимодействия ионов Eu3+ с ближайшим кислородным окружением, что является следствием эффекта квантового ограничения в наноаморфных частицах.
Исследования, проведенные авторами, позволили сделать вывод, что новое соединение состава Sr2Gd8(1.x)Eu8xSi6O26, где 0,001≤x≤0,5, в виде наноаморфных частиц, обладающее свойством, которое позволяет использовать его в качестве люминофора в красной области свечения, может быть получено только при условии соблюдения значений 0,001≤x≤0,5. При несоблюдении этих значений целевой продукт образуется в виде смеси нанокристаллических и наноаморфных частиц. При этом наблюдается снижение интенсивности красного свечения (в 1,5 и более раз).
Люминофор в наноаморфном состоянии может быть получен следующим способом. Берут силикаты Sr2Gd8Si6O26 и Sr2Eu8Si6O26 в соотношении (0,999-0,5):(0,5-0,001) соответственно, тщательно перетирают указанные ингредиенты в присутствии этилового спирта, обжигают на воздухе при температуре 1300-1500°C в течение 100-115 ч поэтапно с измельчением смеси после каждого этапа: нагревают до 1300°C и выдерживают в течение 22-37 часов; затем продукт охлаждают и тщательно измельчают; нагревают до 1400°C и выдерживают в течение 19 часов, затем вновь продукт охлаждают и тщательно измельчают; нагревают до 1450°C и выдерживают в течение 26 часов, затем охлаждают и тщательно измельчают; нагревают до 1500°C и выдерживают в течение 33 часов, охлаждают и тщательно измельчают. Полученный продукт прессуют в таблетку диаметром 20-30 мм, высотой 5-12 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1400-1450°C в течение 40-45 часов. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 4-4,5 Па). Время испарения - 30-35 минут. Условия проведения процесса: ускоряющее напряжение в установке - 40-45 кВ, длительность импульса - 90-100 мкс, частота подачи импульсов - 90-100 Гц, ток пучка - 0,3-0,4 А. Контроль состава конечного продукта осуществляют химическим анализом. Контроль наноаморфного состояния проводят с помощью электронной микроскопии, рентгенофазового анализа (РФА) и электронографии. Люминесценцию возбуждают лазером с длиной волны 514,5 нм. Спектры люминесценции получают на спектрометре и регистрируют с помощью фотоэлектронного умножителя (ФЭУ).
Получение и применение нового соединения иллюстрируются следующими примерами.
Пример 1. Берут силикаты Sr2Gd8Si6O26 и Sr2Eu8Si6O26 в соотношении 0,813:0,187, соответственно, тщательно перетирают указанные ингредиенты в присутствии этилового спирта, обжигают на воздухе при температуре 1300-1500°C в течение 115 ч поэтапно с измельчением смеси после каждого этапа: нагревают до 1300°C и выдерживают в течение 37 часов; затем продукт охлаждают и тщательно измельчают; нагревают до 1400°C и выдерживают в течение 19 часов, затем вновь продукт охлаждают и тщательно измельчают; нагревают до 1450°C и выдерживают в течение 26 часов, затем охлаждают и тщательно измельчают; нагревают до 1500°C и выдерживают в течение 33 часов, охлаждают и тщательно измельчают. Полученный продукт прессуют в таблетку диаметром 30 мм, высотой 12 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1400°C в течение 40 часов. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 4-4,5 Па). Время испарения - 35 минут. Условия проведения процесса: ускоряющее напряжение в установке - 40 кВ, длительность импульса - 90 мкс, частота подачи импульсов - 90 Гц, ток пучка - 0,3 А. По данным химического анализа состав конечного продукта соответствует формуле Sr2Gd6,504Eu1,496Si6O26, где x=0,187. Наноаморфное состояние подтверждено данными электронной микроскопии, РФА и электронографии. Люминесценцию возбуждают лазером с длиной волны 514,5 нм. Спектр люминесценции состоит из красного излучения (620-700 нм) с интенсивностью 680000 отн. ед. и оранжевой компоненты (540-600 нм). Интенсивность оранжевой компоненты составляет 14% от интенсивности красного излучения.
Пример 2. Берут силикаты Sr6Gd8Si6O26 и Sr2Eu8Si6O26 в соотношении 0,5:0,5, соответственно, тщательно перетирают указанные ингредиенты в присутствии этилового спирта, обжигают на воздухе при температуре 1300-1500°C в течение 100 ч поэтапно с измельчением смеси после каждого этапа: нагревают до 1300°C и выдерживают в течение 22 часов; затем продукт охлаждают и тщательно измельчают; нагревают до 1400°C и выдерживают в течение 19 часов, затем вновь продукт охлаждают и тщательно измельчают; нагревают до 1450°C и выдерживают в течение 26 часов, затем охлаждают и тщательно измельчают; нагревают до 1500°C и выдерживают в течение 33 часов, охлаждают и тщательно измельчают. Полученный продукт прессуют в таблетку диаметром 20 мм, высотой 5 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1450°C в течение 45 часов. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент Ru 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 4-4,5 Па). Время испарения - 30 минут. Условия проведения процесса: ускоряющее напряжение в установке - 45 кВ, длительность импульса - 100 мкс, частота подачи импульсов - 100 Гц, ток пучка - 0.4 А. По данным химического анализа состав конечного продукта соответствует формуле Sr2Gd4Eu4Si6O26, где x=0,5. Наноаморфное состояние подтверждено данными электронной микроскопии, РФА и электронографии. Люминесценцию возбуждают лазером с длиной волны 514,5 нм. Спектр люминесценции состоит из красного излучения (620-700 нм) с интенсивностью 675000 отн. ед. и оранжевой компоненты (540-600 нм). Интенсивность оранжевой компоненты составляет 15% от интенсивности красного излучения.
Пример 3. Берут силикаты Sr2Gd8Si6O26 и Sr2Eu8Si6O26 в соотношении 0,999:0,001, соответственно, тщательно перетирают указанные ингредиенты в присутствии этилового спирта, обжигают на воздухе при температуре 1300-1500°C в течение 115 ч поэтапно с измельчением смеси после каждого этапа: нагревают до 1300°C и выдерживают в течение 37 часов; затем продукт охлаждают и тщательно измельчают; нагревают до 1400°C и выдерживают в течение 19 часов, затем вновь продукт охлаждают и тщательно измельчают; нагревают до 1450°C и выдерживают в течение 26 часов, затем охлаждают и тщательно измельчают; нагревают до 1500°C и выдерживают в течение 33 часов, охлаждают и тщательно измельчают. Полученный продукт прессуют в таблетку диаметром 30 мм, высотой 12 мм при комнатной температуре и давлении 250-255 МПа. Затем отжигают при температуре 1400°C в течение 40 часов. Полученную таблетку в качестве мишени помещают в устройство для получения нанопорошков посредством испарения мишени импульсным электронным пучком в газе низкого давления (патент RU 2353573). Мишень испаряют на стеклянную подложку в вакууме (остаточное давление 4-4,5 Па). Время испарения - 35 минут. Условия проведения процесса: ускоряющее напряжение в установке - 40 кВ, длительность импульса - 90 мкс, частота подачи импульсов - 90 Гц, ток пучка - 0,3 А. По данным химического анализа состав конечного продукта соответствует формуле Sr2Gd7,992Eu0,008Si6O26, где х=0,001. Наноаморфное состояние подтверждено данными электронной микроскопии, РФА и электронографии. Люминесценцию возбуждают лазером с длиной волны 514,5 нм. Спектр люминесценции состоит из красного излучения (620-700 нм) с интенсивностью 670000 отн. ед. и оранжевой компоненты (540-600 нм). Интенсивность оранжевой компоненты составляет 16% от интенсивности красного излучения.
Таким образом, авторами предлагается новое химическое соединение состава Sr2Gd8(1-x)Eu8xSi6O26, где 0,001≤x≤0,5, которое может быть использовано в качестве люминофора красного света свечения.

Claims (1)

  1. Сложный силикат редкоземельных элементов состава Sr2Gd8(1-x)Eu8xSi6O26 (0,001≤x≤0,5) в наноаморфном состоянии в качестве люминофора красного свечения.
RU2013118914/05A 2013-04-23 2013-04-23 Сложный силикат редкоземельных элементов в наноаморфном состоянии RU2534538C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013118914/05A RU2534538C1 (ru) 2013-04-23 2013-04-23 Сложный силикат редкоземельных элементов в наноаморфном состоянии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013118914/05A RU2534538C1 (ru) 2013-04-23 2013-04-23 Сложный силикат редкоземельных элементов в наноаморфном состоянии

Publications (2)

Publication Number Publication Date
RU2013118914A RU2013118914A (ru) 2014-10-27
RU2534538C1 true RU2534538C1 (ru) 2014-11-27

Family

ID=53380588

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013118914/05A RU2534538C1 (ru) 2013-04-23 2013-04-23 Сложный силикат редкоземельных элементов в наноаморфном состоянии

Country Status (1)

Country Link
RU (1) RU2534538C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579135C1 (ru) * 2014-12-09 2016-03-27 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского Отделения РАН Силикат редкоземельных элементов в наноаморфном состоянии
RU2626020C1 (ru) * 2016-02-18 2017-07-21 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского Отделения РАН Сложный силикат редкоземельных элементов в наноаморфном состоянии
RU2686137C1 (ru) * 2018-07-12 2019-04-24 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Сложный силикат редкоземельных элементов и способ его получения

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060836A2 (en) * 2006-11-10 2008-05-22 Intematix Corporation Aluminum- silicate based orange-red phosphors with mixed divalent and trivalent cations
RU2379328C2 (ru) * 2008-04-02 2010-01-20 Институт химии твердого тела Уральского отделения Российской Академии наук Сложный силикат редкоземельных элементов и способ его получения

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060836A2 (en) * 2006-11-10 2008-05-22 Intematix Corporation Aluminum- silicate based orange-red phosphors with mixed divalent and trivalent cations
RU2379328C2 (ru) * 2008-04-02 2010-01-20 Институт химии твердого тела Уральского отделения Российской Академии наук Сложный силикат редкоземельных элементов и способ его получения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BENLI CHU et. al, Luminescence and energy transfer in Sr 2 Gd x Y 7.9-x Ln 0.1 (SiO 4 ) 6 O 2 (Ln= Sm, Dy, Eu), Materials Chemistry and Physics, 2004, V 84, p. 279-283. G. SEETA RAMA RAJU et. al, The influence of sintering temperature on photoluminescence properties of oxyapatite Eu 3+ :Ga 2 Gd 8 Si 6 O 26 nanophosphors, Sensors and Actuators B: Chemical, 2010, V 146, p. 395-402 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579135C1 (ru) * 2014-12-09 2016-03-27 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского Отделения РАН Силикат редкоземельных элементов в наноаморфном состоянии
RU2626020C1 (ru) * 2016-02-18 2017-07-21 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского Отделения РАН Сложный силикат редкоземельных элементов в наноаморфном состоянии
RU2686137C1 (ru) * 2018-07-12 2019-04-24 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Сложный силикат редкоземельных элементов и способ его получения

Also Published As

Publication number Publication date
RU2013118914A (ru) 2014-10-27

Similar Documents

Publication Publication Date Title
Das et al. Controllable white light emission from Dy 3+–Eu 3+ co-doped KCaBO 3 phosphor
Kumar et al. Sunlight-activated Eu 2+/Dy 3+ doped SrAl 2 O 4 water resistant phosphorescent layer for optical displays and defence applications
Shan et al. Optimization method for green SrAl2O4: Eu2+, Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design
Sahu et al. Structural characterization and optical properties of dysprosium doped strontium calcium magnesium di-silicate phosphor by solid state reaction method
Ratnam et al. Luminescent properties of orange emissive Sm3+-activated thermally stable phosphate phosphor for optical devices
Kiran et al. Synthesis and luminescence properties of MgO: Sm3+ phosphor for white light-emitting diodes
Roh et al. Enhanced photoluminescence property of Dy3+ co-doped BaAl2O4: Eu2+ green phosphors
Dutczak et al. Red luminescence and persistent luminescence of Sr3Al2O5Cl2: Eu2+, Dy3+
Koparkar et al. Effect of partially replacement of Gd3+ ions on fluorescence properties of YBO3: Eu3+ phosphor synthesized via precipitation method
Hussin et al. The origin of emission in strontium magnesium pyrophosphate doped with Dy2O3
Singh et al. Synthesis, photoluminescence, thermoluminescence and electron spin resonance investigations of CaAl12O19: Eu phosphor
Verma et al. Photoluminescent and thermoluminescent studies of Dy 3+ and Eu 3+ doped Y 2 O 3 phosphors
RU2534538C1 (ru) Сложный силикат редкоземельных элементов в наноаморфном состоянии
Pavitra et al. Luminescent properties of Gd3+ sensitized low-phonon energy CaGd4O7: Tb3+ green emitting novel phosphors
Wang et al. Luminescent properties of a reddish orange long afterglow phosphor SrSnO3: Sm3+
Yang et al. Ultraviolet long afterglow emission in Bi3+ doped CdSiO3 phosphors
Singh et al. Structural and luminescent properties of Eu 3+-doped GdSrAl 3 O 7 nanophosphor
Sokolnicki Enhanced luminescence of Tb3+ due to efficient energy transfer from Ce3+ in a nanocrystalline Lu2Si2O7 host lattice
Kaur et al. RETRACTED ARTICLE: Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review
Xue et al. Long afterglow properties of the blue emission from Pr3+-activated Sr5Ta4O15 phosphor
Huang et al. Synthesis, vacuum ultraviolet and ultraviolet spectroscopy of Ce3+ ion doped olgite Na (Sr, Ba) PO4
Jaiswal et al. Luminescence enhancement of high temperature hexagonal phase of Ba0. 99MgAl10O17: Eu0. 01 nanophosphor synthesized at moderately low temperature
Zhou et al. A novel green emitting phosphor Ca1. 5Y1. 5Al3. 5Si1. 5O12: Tb3+
Munirathnam et al. Synthesis, photoluminescence and thermoluminescence properties of LiNa3P2O7: Tb3+ green emitting phosphor
Noto et al. Cathodoluminescence mapping and thermoluminescence of Pr3+ doped in a CaTiO3/CaGa2O4 composite phosphor

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190424