RU2534251C1 - Method of obtaining thermally stable nanocomposite polyethyleneterephthalate fibre - Google Patents

Method of obtaining thermally stable nanocomposite polyethyleneterephthalate fibre Download PDF

Info

Publication number
RU2534251C1
RU2534251C1 RU2013117997/05A RU2013117997A RU2534251C1 RU 2534251 C1 RU2534251 C1 RU 2534251C1 RU 2013117997/05 A RU2013117997/05 A RU 2013117997/05A RU 2013117997 A RU2013117997 A RU 2013117997A RU 2534251 C1 RU2534251 C1 RU 2534251C1
Authority
RU
Russia
Prior art keywords
polymer
carbon nanotubes
fibre
nanocomposite
granules
Prior art date
Application number
RU2013117997/05A
Other languages
Russian (ru)
Other versions
RU2013117997A (en
Inventor
Сергей Юрьевич Петрунин
Виктор Евгеньевич Ваганов
Виктор Дмитриевич Захаров
Максим Юрьевич Попов
Виктор Витальевич Решетняк
Владимир Юрьевич Орлов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ)
Priority to RU2013117997/05A priority Critical patent/RU2534251C1/en
Publication of RU2013117997A publication Critical patent/RU2013117997A/en
Application granted granted Critical
Publication of RU2534251C1 publication Critical patent/RU2534251C1/en

Links

Abstract

FIELD: chemistry.
SUBSTANCE: method of obtaining a thermally stable nanocomposite polyethyleneterephthalate fibre due to the modification of an initial polymer with carbon nanotubes, including heating in a thermostatted mixer until melt is obtained, with constant mixing, and the supply of nanotubes to the melt, the polymer hardening, applying it to obtain, in particular, by crushing, granules, placing them into an extruder and formation of fibre, is characterised by the fact, that to melting subjected is a tenth part of the polymer, separated from the total volume, with the supply into it of a water solution of the carbon nanotubes, processed with ultrasound, with further mixing of the obtained hardened polymer granules with the remaining part of the initial polymer.
EFFECT: obtaining the nanocomposite polyethylenetereohthalate fibre with higher indices of thermal stability with minimal expenditures for its production.
1 tbl

Description

Изобретение относится к химии и технологии полимеров и касается способов получения термостабильного нанокомпозитного волокна, которое может найти применение в текстильной промышленности, в строительстве, а также в других отраслях промышленности.The invention relates to the chemistry and technology of polymers and relates to methods for producing a thermostable nanocomposite fiber, which may find application in the textile industry, in construction, as well as in other industries.

Из уровня техники известен способ получения модифицированных полимерных изделий на основе полиэтилентерефталата (ПЭТФ) (например, US 2009/088512), в котором смешивают ПЭТФ с добавкой-модификатором и формуют готовое изделие при температуре, близкой к температуре плавления ПЭТФ. Основным препятствием на пути реализации этого способа является то, что не все перспективные модификаторы выдерживают без разложения нагревание до температуры плавления ПЭТФ. Кроме того, не все добавки химически совместимы с ПЭТФ, что влечет за собой сложность получения однородного расплава и, как следствие, сложность получения материала со стабильными характеристиками, однородного по механическим, оптическими и иным свойствам.The prior art method for producing modified polymer products based on polyethylene terephthalate (PET) (for example, US 2009/088512), in which PET is mixed with a modifier additive and a finished product is formed at a temperature close to the melting point of PET. The main obstacle to the implementation of this method is that not all promising modifiers withstand, without decomposition, heating to the melting point of PET. In addition, not all additives are chemically compatible with PET, which entails the difficulty of obtaining a uniform melt and, as a consequence, the difficulty of obtaining a material with stable characteristics, uniform in mechanical, optical and other properties.

Из US 2006/0235136 известен способ получения термостабильного полимерного волокна нанокомпозитной структуры. При этом рассматриваемый полимер нагревается до температуры 200°C, так чтобы динамическая вязкость составляла порядка 100000 Пуаз (10000 Па·с в системе СИ). Получаемый расплав полимера смешивается с углеродными нанотрубками при температуре не менее 200°C, до образования вязкой смеси. Вязкий раствор полимера с углеродными нанотрубками продувается инертным газом для удаления кислорода. Очищенный от кислорода полимер с углеродными нанотрубками охлаждается до затвердевания, дробится, так чтобы размер получаемых гранул на превышал 3 мм в диаметре. Гранулы твердого полимера загружаются в бункер-накопитель и повторно продуваются инертным газом для удаления кислорода, содержащегося между ними. Полученные очищенные от кислорода полимерные гранулы, содержащие углеродные нанотрубки загружаются в экструдер и формуется волокно нанокомпозитной структуры. По совокупности существенных признаков изобретение по US 2006/0235136 является прототипом заявляемого изобретения.From US 2006/0235136, a method is known for producing a thermostable polymer fiber of a nanocomposite structure. In this case, the polymer under consideration is heated to a temperature of 200 ° C, so that the dynamic viscosity is of the order of 100,000 Poise (10,000 Pa · s in the SI system). The resulting polymer melt is mixed with carbon nanotubes at a temperature of at least 200 ° C, until a viscous mixture is formed. A viscous polymer solution with carbon nanotubes is purged with an inert gas to remove oxygen. The oxygen-purified polymer with carbon nanotubes is cooled to solidification, crushed, so that the size of the resulting granules exceeds 3 mm in diameter. The solid polymer granules are loaded into the storage hopper and re-purged with an inert gas to remove the oxygen contained between them. The obtained oxygen-free polymer granules containing carbon nanotubes are loaded into an extruder and a fiber of a nanocomposite structure is formed. In the aggregate of essential features, the invention according to US 2006/0235136 is a prototype of the claimed invention.

Недостатком указанного способа является сложность введения и равномерного распределения углеродных нанотрубок в объеме материала, что является определяющим с точки зрения повышения термостабильности. В данном случае порошок углеродных нанотрубок продолжительное время перемешивается с расплавом полимера, для их равномерной диспергации в объеме вещества. Этот процесс связан со значительными энергетическими и временными затратами.The disadvantage of this method is the complexity of the introduction and uniform distribution of carbon nanotubes in the volume of the material, which is crucial from the point of view of increasing thermal stability. In this case, the carbon nanotube powder is mixed for a long time with the polymer melt, for their uniform dispersion in the bulk of the substance. This process is associated with significant energy and time costs.

Таким образом, задачей, на решение которой направленно данное изобретение является получение нанокомпозитного полиэтилентерефталатного волокна повышенной термостабильности с минимальными затратами на его производство.Thus, the task to which this invention is directed is to obtain a nanocomposite polyethylene terephthalate fiber of increased thermal stability with minimal costs for its production.

Указанная задача решается, за счет усовершенствования способа введения и равномерного распределения углеродных нанотрубок в объем полиэтилентерефталата. Для этого от общего объема полимера отделяют десятую часть, нагревают в термостатируемом смесителе до получения расплава при постоянном перемешивании и подают на расплав водный раствор углеродных нанотрубок, обработанный ультразвуком, затвердевший полимер дробят на гранулы, полученные гранулы, содержащие углеродные нанотрубки перемешивают с оставшейся частью исходного полимера, помещают в экструдер и формуют волокно.This problem is solved by improving the method of introduction and uniform distribution of carbon nanotubes into the volume of polyethylene terephthalate. For this, a tenth of the total polymer volume is separated, heated in a thermostatic mixer to obtain a melt with constant stirring, and an aqueous solution of carbon nanotubes treated with ultrasound is fed to the melt, the hardened polymer is crushed into granules, the obtained granules containing carbon nanotubes are mixed with the remaining part of the original polymer placed in an extruder and spun fiber.

В процессе изучения и лабораторных испытаний возможных вариантов модификации и равномерного распределения углеродных нанотрубок в объеме полиэтилентерефталата было найдено, что для промышленного получения термостабильного нанокомпозитного волокна вместо энергоемкой операции перемешивания расплава полимера с порошком углеродных нанотрубок для их равномерной диспергации, может быть использован способ, основанный на введении углеродных нанотрубок в расплав полиэтилентерефталата в виде водной суспензии. Было показано, что данный метод введения углеродных нанотрубок в полимер в отличии от прототипа является наиболее энергоэффективным. Использование данной технологии позволяет получать полиэтилентерефталатное волокно с равномерно распределенными в нем углеродными нанотрубками.In the process of studying and laboratory tests of possible modifications and uniform distribution of carbon nanotubes in the volume of polyethylene terephthalate, it was found that for the industrial production of thermostable nanocomposite fiber instead of the energy-intensive operation of mixing the polymer melt with carbon nanotube powder for their uniform dispersion, a method based on introducing carbon nanotubes into molten polyethylene terephthalate in the form of an aqueous suspension. It was shown that this method of introducing carbon nanotubes into a polymer, in contrast to the prototype, is the most energy efficient. Using this technology allows to obtain polyethylene terephthalate fiber with carbon nanotubes evenly distributed in it.

Изобретение иллюстрируется примерами получения термостабильного нанокомпозитного полиэтилентерефталатного волокна. В качестве примеров приведены способы получения термостабильного нанокомпозитного полиэтилентерефталатного волокна за счет модификации матрицы материала углеродными нанотрубками. Во всех приведенных примерах углеродные нанотрубки смешивали с водой и обрабытывали ультразвуком. От основного объема полиэтилентерефталата отделяли десятую часть, помещали в термостатируемый смеситель, нагревали до получения расплава и подавали на него суспензию с углеродными нанотрубками, при этом расплавленный полимер отвердевал и дробился на гранулы. Полученный гранулы полиэтилентерефталата с углеродными нанотрубками смешивали с основной частью полимера, перемешивали, помешали в экструдер и формовали волокно. Во всех приведенных примерах в качестве модифицирующей добавки использовали более дешевые многослойные углеродные нанотрубки по сравнению с однослойными углеродными нанотрубками, применяемыми в прототипе. Использование менее дорогих углеродных нанотрубок в совокупности с новым способом их введения в объем полимера позволило достичь заявленного технического результата, заключающегося в получении нанокомпозитного полиэтилентерефталатного волокна повышенной термостабильности с снижением затрат на его производство.The invention is illustrated by examples of the production of thermostable nanocomposite polyethylene terephthalate fiber. Examples are given of methods for producing a thermostable nanocomposite polyethylene terephthalate fiber by modifying the material matrix with carbon nanotubes. In all the examples cited, carbon nanotubes were mixed with water and sonicated. A tenth of the main volume of polyethylene terephthalate was separated, placed in a thermostatic mixer, heated to obtain a melt, and a suspension of carbon nanotubes was applied to it, while the molten polymer solidified and crushed into granules. The obtained granules of polyethylene terephthalate with carbon nanotubes were mixed with the main part of the polymer, mixed, mixed into an extruder and formed into a fiber. In all these examples, as a modifying additive used cheaper multilayer carbon nanotubes compared to single-walled carbon nanotubes used in the prototype. The use of less expensive carbon nanotubes in conjunction with a new method of introducing them into the polymer volume allowed us to achieve the claimed technical result, which consists in obtaining nanocomposite polyethylene terephthalate fiber with increased thermal stability with a reduction in the cost of its production.

ПримерExample

Для получения образца 2: 4 кг полиэтилентерефталата помещали в термостатируемый смеситель нагревали при перемешивании до температуры 280-300°C до получения расплава. Отвешивали 0,4 кг многослойных углеродных нанотрубок, смешивали с 12 л воды и обрабатывали ультразвуком в течении 15 минут с частотой ультразвуковых колебаний 24000 Гц. Полученную суспензии с многослойными углеродными нанотрубками подавали на расплав полиэтилентерефталата в термостатируемый смеситель, скорость вращения лопастей смесителя составляла 2000 об/мин., при этом происходило резкое остывание полимера, затвердевание и измельчение на гранулы. Твердые гранулы полиэтилентерефталата модифицированные углеродными нанотрубками, смешивали с 36 кг исходного, не модифицированного полиэтилентерефталалта, перемешивали, загружали в экструдер и формовали волокно.To obtain a sample, 2: 4 kg of polyethylene terephthalate was placed in a thermostatic mixer, heated with stirring to a temperature of 280-300 ° C until a melt was obtained. 0.4 kg of multilayer carbon nanotubes were weighed out, mixed with 12 L of water and sonicated for 15 minutes with a frequency of ultrasonic vibrations of 24,000 Hz. The resulting suspension with multilayer carbon nanotubes was fed to the polyethylene terephthalate melt in a thermostatic mixer, the rotation speed of the mixer blades was 2000 rpm, and the polymer was suddenly cooled, solidified and crushed into granules. The solid granules of polyethylene terephthalate modified with carbon nanotubes were mixed with 36 kg of the original unmodified polyethylene terephthalate, mixed, loaded into an extruder and formed into a fiber.

В остальных примерах способ получения нанокомпозитного волокна оставался неизменным, изменялась лишь концентрация углеродных нанотрубок в водной суспензии и соответственно в общем объеме полиэтилентерефталата.In the remaining examples, the method for producing the nanocomposite fiber remained unchanged, only the concentration of carbon nanotubes in the aqueous suspension and, accordingly, in the total volume of polyethylene terephthalate changed.

Оценку термостабильности полученного волокна проводили по ГОСТ 21793-76 «Пластмассы. Метод определения кислородного индекса». Данный ГОСТ не устанавливает классификации материалов в зависимости от величины кислородного индекса - минимальной концентрации кислорода в кислородно-азотной смеси, выраженной в объемных процентах, при которой будет поддерживаться горение испытуемого материала, чем больше кислородный индекс, тем труднее зажечь материал. Значение кислородного индекса в зависимости от концентрации углеродных нанотрубок в объеме полимера представлены в таблице. Кислородный индекс для немодифицированного полиэтилентерефталатного волокна равен 21. При введение в объем полиэтилентерефталата углеродных нанотрубок кислородный индекс повышается, так при концентрации 5% от массы всего полимера кислородный индекс составляет 27. При увеличении концентрации углеродных нанотрубок в объеме полимера сверх 5% кислородный индекс не изменяется. Кислородный индекс для полиэилентерефталатного волокна полученного по способу описанному в прототипе в зависимости от концентрации углеродных нанотрубок в объеме полимера именяется от 24 до 27.The thermal stability of the obtained fiber was evaluated according to GOST 21793-76 “Plastics. Method for determining the oxygen index. " This GOST does not establish the classification of materials depending on the value of the oxygen index - the minimum concentration of oxygen in the oxygen-nitrogen mixture, expressed in volume percent, at which the test material will be supported by combustion, the higher the oxygen index, the more difficult it is to ignite the material. The oxygen index value depending on the concentration of carbon nanotubes in the polymer volume is presented in the table. The oxygen index for unmodified polyethylene terephthalate fiber is 21. When carbon nanotubes are introduced into the volume of polyethylene terephthalate, the oxygen index rises, so at a concentration of 5% by weight of the total polymer, the oxygen index is 27. When the concentration of carbon nanotubes in the polymer exceeds 5%, the oxygen index does not change. The oxygen index for the polyethylene terephthalate fiber obtained by the method described in the prototype, depending on the concentration of carbon nanotubes in the polymer volume, is called from 24 to 27.

Во всех случаях кислородный индекс модифицированного волокна превышал кислородный индекс чистого волокна, что свидетельствует о том, что нанокомпозитное полиэтилентерефталатное волокно приобрело свойство повышенной термостабильности. Во всех случаях был достигнут результат, заключающийся в получении нанокомпозитного полиэтилентерефталатного волокна с повышенными показателями термостабильности при снижении затрат на его производство по сравнению прототипом.In all cases, the oxygen index of the modified fiber exceeded the oxygen index of pure fiber, which indicates that the nanocomposite polyethylene terephthalate fiber has acquired the property of increased thermal stability. In all cases, the result was achieved, which is to obtain a nanocomposite polyethylene terephthalate fiber with increased thermal stability while reducing the cost of its production compared to the prototype.

Таблица.Table. № п/пNo. p / p Концентрация углеродных нанотрубок в водном раствореThe concentration of carbon nanotubes in aqueous solution Концентрация углеродных нанотрубок в общем объеме полиэтилентерефта лата, % массThe concentration of carbon nanotubes in the total volume of polyethylene terephthalate lat,% mass Кислородный индексOxygen index 1one Образец 1Sample 1 00 00 2121 22 Образец 2Sample 2 3,33.3 1one 2323 33 Образец 3Sample 3 6,66.6 22 2424 4four Образец 4Sample 4 9,99.9 33 2626 55 Образец 5Sample 5 13,213,2 4four 2727 66 Образец 6Sample 6 16,516.5 55 2727 77 Образец 7Sample 7 19,819.8 66 2727 88 Образец 8Sample 8 23,123.1 77 2727 99 ПрототипPrototype -- 0-5%0-5% 24-2724-27

Claims (1)

Способ получения термостабильного нанокомпозитного полиэтилентерефталатного волокна, за счет модифицирования исходного полимера углеродными нанотрубками, включающего нагрев в термостатируемом смесителе до получения расплава при постоянном перемешивании и подачи на расплав углеродных нанотрубок, затвердевание полимера, получением из него в частности, дроблением, гранул, их помещением в экструдер и формованием волокна, отличающийся тем, что расплаву подвергают десятую часть полимера, отделенную от общего объема с подачей в него водного раствора углеродных нанотрубок, обработанный ультразвуком, с последующим перемешиванием полученных затвердевших гранул полимера с оставшейся частью исходного полимера. A method for producing a thermostable nanocomposite polyethylene terephthalate fiber by modifying the initial polymer with carbon nanotubes, including heating in a thermostatic mixer to obtain a melt with constant stirring and feeding carbon nanotubes to the melt, hardening the polymer, in particular, crushing it, granules, and placing them into an extruder and spinning the fiber, characterized in that the tenth of the polymer is separated from the total volume by feeding aq. ultrasonic solution of carbon nanotubes, followed by mixing the obtained hardened polymer granules with the remainder of the original polymer.
RU2013117997/05A 2013-04-18 2013-04-18 Method of obtaining thermally stable nanocomposite polyethyleneterephthalate fibre RU2534251C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013117997/05A RU2534251C1 (en) 2013-04-18 2013-04-18 Method of obtaining thermally stable nanocomposite polyethyleneterephthalate fibre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013117997/05A RU2534251C1 (en) 2013-04-18 2013-04-18 Method of obtaining thermally stable nanocomposite polyethyleneterephthalate fibre

Publications (2)

Publication Number Publication Date
RU2013117997A RU2013117997A (en) 2014-11-10
RU2534251C1 true RU2534251C1 (en) 2014-11-27

Family

ID=53380711

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013117997/05A RU2534251C1 (en) 2013-04-18 2013-04-18 Method of obtaining thermally stable nanocomposite polyethyleneterephthalate fibre

Country Status (1)

Country Link
RU (1) RU2534251C1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2389739C2 (en) * 2005-08-08 2010-05-20 Кабот Корпорейшн Polymer compositions containing nanotubes
US7906208B2 (en) * 2004-10-29 2011-03-15 Centre National de la Recherche Scientifique—CNRS Composite fibers including at least carbon nanotubes, methods for obtaining same and use thereof
RU2464176C2 (en) * 2007-02-21 2012-10-20 Джонс Мэнвилл Юроп Гмбх Composite materials suitable for direct decoration and method of their manufacture and their use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906208B2 (en) * 2004-10-29 2011-03-15 Centre National de la Recherche Scientifique—CNRS Composite fibers including at least carbon nanotubes, methods for obtaining same and use thereof
RU2389739C2 (en) * 2005-08-08 2010-05-20 Кабот Корпорейшн Polymer compositions containing nanotubes
RU2464176C2 (en) * 2007-02-21 2012-10-20 Джонс Мэнвилл Юроп Гмбх Composite materials suitable for direct decoration and method of their manufacture and their use

Also Published As

Publication number Publication date
RU2013117997A (en) 2014-11-10

Similar Documents

Publication Publication Date Title
Akhtar et al. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications
Wang et al. Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites
Matuana et al. Study of cell nucleation in microcellular poly (lactic acid) foamed with supercritical CO2 through a continuous-extrusion process
Liang et al. Crystalline properties of poly (L-lactic acid) composites filled with nanometer calcium carbonate
Zhang et al. Thermal and mechanical properties of natural rubber composites reinforced with cellulose nanocrystals from southern pine
Ma et al. Production of thermoplastic starch/MMT‐sorbitol nanocomposites by dual‐melt extrusion processing
Motloung et al. Cellulose nanostructure-based biodegradable nanocomposite foams: A brief overview on the recent advancements and perspectives
WO2007049721A1 (en) Polyglycolic acid resin particle composition and process for production thereof
US9186835B2 (en) Process for producing exfoliated and/or dispersed polymer composites and/or nanocomposites via solid-state/melt extrusion (SSME)
Xiao et al. Dispersion and mechanical properties of polypropylene/multiwall carbon nanotubes composites obtained via dynamic packing injection molding
CN104151768A (en) Carbon fiber reinforced ABS (Acrylonitrile Butadiene Styrene) resin composite material with superior heat conductivity and preparation method
Silva et al. Rheological and mechanical characterization of poly (methyl methacrylate)/silica (PMMA/SiO2) composites
Sitticharoen et al. Rheological and mechanical properties of silica-based bagasse-fiber-ash-reinforced recycled HDPE composites
US20050148703A1 (en) Polymer composites containing keratin
Ahmad et al. Mechanical, thermal and physical characteristics of oil palm (Elaeis Guineensis) fiber reinforced thermoplastic composites for FDM–Type 3D printer
Huang et al. The effect of talc on the mechanical, crystallization and foaming properties of poly (lactic acid)
Wu et al. Effect of crystalline structure on the cell morphology and mechanical properties of polypropylene foams fabricated by core‐back foam injection molding
Venkatraman et al. Premixed cellulose nanocrystal reinforcement of polyamide 6 for melt processing
RU2534251C1 (en) Method of obtaining thermally stable nanocomposite polyethyleneterephthalate fibre
Yu et al. Preparation of poly (propylene carbonate)/nano calcium carbonate composites and their supercritical carbon dioxide foaming behavior
Zhang et al. Rheology and crystallisation of PLA containing PLA-grafted nanosilica
Cherizol et al. Evaluation of the influence of fibre aspect ratio and fibre content on the rheological characteristic of high yield pulp fibre reinforced polyamide 11 “HYP/PA11” green composite
Shishavan et al. Comprehensive investigation of morphological properties of ABS/nanoclay/PMMA polymeric nanocomposite foam
Wang et al. Rheological investigations in understanding shear‐enhanced crystallization of isotactic poly (propylene)/multi‐walled carbon nanotube composites
Othman Bamboo fiber as fillers for polypropylene-nanoclay via injection molding

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170419