RU2531398C2 - Способ подготовки сжатого воздуха, устройство для подготовки сжатого воздуха, а также транспортное средство с таким устройством - Google Patents

Способ подготовки сжатого воздуха, устройство для подготовки сжатого воздуха, а также транспортное средство с таким устройством Download PDF

Info

Publication number
RU2531398C2
RU2531398C2 RU2011153791/05A RU2011153791A RU2531398C2 RU 2531398 C2 RU2531398 C2 RU 2531398C2 RU 2011153791/05 A RU2011153791/05 A RU 2011153791/05A RU 2011153791 A RU2011153791 A RU 2011153791A RU 2531398 C2 RU2531398 C2 RU 2531398C2
Authority
RU
Russia
Prior art keywords
compressed air
temperature
oil
preparing
pressure pipe
Prior art date
Application number
RU2011153791/05A
Other languages
English (en)
Other versions
RU2011153791A (ru
Inventor
Кевин ПЕНДЦИЗ
Хайнрих ДИКМЕЙЕР
Original Assignee
Вабко Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Вабко Гмбх filed Critical Вабко Гмбх
Publication of RU2011153791A publication Critical patent/RU2011153791A/ru
Application granted granted Critical
Publication of RU2531398C2 publication Critical patent/RU2531398C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0002Casings; Housings; Frame constructions
    • B01D46/0005Mounting of filtering elements within casings, housings or frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/002Air treatment devices
    • B60T17/004Draining and drying devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/041Removal or measurement of solid or liquid contamination, e.g. filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/048Arrangements for compressed air preparation, e.g. comprising air driers, air condensers, filters, lubricators or pressure regulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Drying Of Gases (AREA)
  • Compressor (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

В устройстве для подготовки сжатого воздуха для транспортных средств находящийся под статическим давлением в напорном трубопроводе сжатый воздух вначале очищают от загрязнений, таких как углеводородные соединения и маслосодержащие продукты, и затем сушат. Чтобы обеспечить эффективную очистку сжатого воздуха от загрязнений и водяного пара и при помощи простых средств создать используемое в транспортных средствах устройство для подготовки сжатого воздуха, предусмотрено согласно изобретению доводить сжатый воздух перед очисткой от загрязнений до такой температуры, что присутствующие в газообразной форме загрязнения конденсируются, а содержащаяся в сжатом воздухе масса воды выделяется в виде пара. 3 н. и 12 з.п. ф-лы, 4 ил.

Description

Изобретение относится к способу подготовки сжатого воздуха для одного или нескольких пневматических потребителей указанного в ограничительной части пункта 1 формулы изобретения типа, устройству для подготовки сжатого воздуха согласно ограничительной части пункта 6 формулы изобретения, а также к транспортному средству с таким устройством для подготовки сжатого воздуха.
Для снабжения пневматических потребителей, таких как пневматические тормоза транспортных средств, сжатым воздухом известны устройства, поставляющие сжатый воздух, компрессоры которых сжимают всасываемый воздух и подают по напорному трубопроводу в накопительную емкость для его забора в случае необходимости. При использовании в транспортных средствах нежелательно, чтобы сжатый воздух содержал влагу. Из DE 10 2006 035772 А1 известно устройство для подготовки сжатого воздуха для транспортных средств, которое в напорном трубопроводе предусматривает устройство по удалению влаги, так что сжатый воздух сушат перед впуском в накопительную емкость.
Однако сжатый воздух часто загрязнен также вредными компонентами всасываемого воздуха, равно как маслосодержащими продуктами и продуктами разложения масла из процесса сжатия компрессором, смазываемого обычно маслом. Эти загрязнения - содержащиеся вместе с водой в сжатом воздухе - в дальнейшем для простоты употребления обозначены как маслосодержащие продукты. Большая часть маслосодержащих продуктов представляют собой аэрозоли, которые перемещаются вместе со сжатым воздухом и, следовательно, могут попадать во всю систему сжатого воздуха. Там они могут вызывать повреждения, например, вследствие разбухания, склеивания или разложения уплотнительных элементов. Чтобы защитить устройство сжатого воздуха и соединенную с ним аппаратуру от загрязнения маслосодержащими продуктами, сжатый воздух в напорном трубопроводе, как правило, очищают от маслосодержащих продуктов.
Следует отметить, что уже предлагались решения по подготовке сжатого воздуха, в которых перед осушкой осуществляют очистку от масла. При этом известно, что в качестве устройства для очистки от масла устанавливают отдельный фильтр, например коалесцентный фильтр или масляной сепаратор. При этом недостатком является, что сепарируемые маслосодержащие продукты выдуваются в окружающую среду. Масляные сепараторы отделяют по принципу циклона лишь аэрозоли определенной величины и таким образом во многих случаях их применения не обеспечивают достаточную эффективность очистки. В частности, фильтрация сжатого воздуха перед прохождением через осушку приводит к тому, что устройство для очистки от масла заполняют маслосодержащими продуктами вместе с водой. Фильтрующий блок сепарирует таким образом большую массу жидкости в виде смеси масла и воды, которая удаляется в больших количествах, что обусловливает, в свою очередь, необходимость частого технического обслуживания и ремонта фильтра и при известных условиях ухудшает его функционирование.
Было предложено также, чтобы очистка от масла производилась только после влагопоглотителя. В DE 103135 75 А1 раскрывается картриджное устройство для сушилки воздуха, в которой средство для удаления вредных химических соединений, в частности углеродных соединений, расположено в направлении воздушного потока после влагопоглотителя. Однако фильтрация только после влагопоглотителя регулярно приводит к чрезмерному загрязнению влагопоглотителя, что заметно снижает эффективность осушки.
Задача изобретения состоит в том, чтобы создать устройство для подготовки сжатого воздуха и способ создания сжатого воздуха для пневматических потребителей, которые обеспечивают эффективную очистку сжатого воздуха от маслосодержащих продуктов и водяного пара, без выброса отсепарированных маслосодержащих продуктов в окружающую среду, и которые могут быть применены в транспортных средствах с помощью простых средств.
Эта задача решается согласно изобретению за счет способа с признаками пункта 1 формулы изобретения, устройства для подготовки сжатого воздуха с признаками пункта 6 формулы изобретения, а также транспортного средства с признаками пункта 15 формулы изобретения.
При подготовке сжатого воздуха согласно изобретению с очисткой от маслосодержащих продуктов на первой стадии и последующей сушкой предусмотрено, что перед очисткой от масла сжатый воздух доводят до такой температуры, что углеводородные соединения конденсируются, а содержащаяся в сжатом воздухе масса воды выделяется в виде пара. При этом очистка сжатого воздуха от масла осуществляется путем фильтрации при такой выбранной температуре, при которой маслосодержащие продукты полностью конденсируются и таким образом в виде аэрозолей или в жидкой форме могут легко подвергаться фильтрации, а вода все еще в форме водяного пара выделяется в сжатом воздухе и проходит через фильтр. Затем водяной пар при последующей сушке может быть без особых затруднений эффективно удален из сжатого воздуха.
Температуру подбирают настолько высокой, что влага в сжатом воздухе установки, поставляющей сжатый воздух, с учетом условий окружающей среды и соответствующей степени сжатия все еще остается в виде водяного пара в сжатом воздухе. С другой стороны, температуру подбирают настолько низкой, что маслосодержащие продукты полностью или почти полностью конденсируются. Предпочтительным значением температуры, при температуре окружающей среды, например -40°C, считается входная температура при очистки от масла -15°С. При температуре окружающей среды 20°С входная температура может составлять предпочтительно 70°С, а при температуре окружающей среды 40°С, она может составлять, например, 100°С. Напорный трубопровод и, при определенных условиях, установленные в нем устройства и агрегаты взаимно подгоняются таким образом, что на входе устройства подготовки воздуха, то есть в проточном направлении перед устройством для удаления маслосодержащих продуктов, поддерживается предусмотренная согласно изобретению температура в сжатом воздухе, при которой масло конденсируется и водяной балласт выделяется в виде пара.
При сепарации или отделении масла фильтрацией согласно изобретению и независимо при этом от происходящего водоотделения, маслосодержащие продукты составляют лишь меньший объем, который легче манипулируется, соответственно проще удаляется. Сепарируемая в целом в больших количествах вода чище и может выбрасываться в окружающую среду. Кроме того, подготовка воздуха согласно изобретению надежно защищает сушилку и заготовленный в ней влагопоглотитель. Если сушильный блок выполнен в форме картриджа с заготовленным в нем влагопоглотителем, то сроки техобслуживания картриджа значительно продлеваются и соответственно даже не требуется замена картриджа. Так как подготовка сжатого воздуха в высшей степени эффективна в отношении сепарации масла, то можно полностью отказаться от грубой фильтрации в картридже с влагопоглотителем, так что проще выполненные компоненты достаточны для полной подготовки воздуха. Кроме того, заявленная очистка сжатого воздуха от масла полностью улавливает и удаляет масляный балласт, так что в окружающую среду не попадают маслосодержащие продукты. Таким образом, принимаются во внимание растущие требования по защите окружающей среды в отношении транспортных средств.
Уровень температуры согласно изобретению, который приводит к конденсации только масляных аэрозолей, может регулироваться простыми средствами с учетом характеристик компрессора и сжатия за счет конструктивного исполнения напорного трубопровода 4. С этой целью соответственно подбирают длину трубопровода, поперечное сечение трубопровода, теплопроводность и теплоемкость напорного трубопровода, а также подбирают его ход при укладке в транспортном средстве таким образом, что напорный трубопровод создает желаемую температуру сжатого воздуха.
Предпочтительно, в участке напорного трубопровода, который находится в проточном направлении перед устройством для удаления масла, расположено устройство, влияющее на температуру сжатого воздуха. Благодаря применению этого устройства температуру на входе фильтрующего блока устанавливают на предусмотренном изобретением уровне, при котором маслосодержащие продукты представлены в форме аэрозолей и водяной пар остается выделенным в сжатом воздухе. Так как сжатый воздух при сжатии компрессором нагревается, то этот влияющий на температуру сжатого воздуха блок представляет собой охладитель, который устанавливает сжатый воздух на уровне согласно изобретению. С этой целью в особенно предпочтительном варианте осуществления изобретения предусмотрен управляющий или регулирующий блок, который настраивает охладитель в качестве управляющего элемента для регулирования или управления температуры.
В предпочтительном варианте осуществления изобретения сжатый воздух после очистки дополнительно охлаждают, чтобы последующая осушка могла производиться эффективно. С одной стороны, в процессе охлаждения вода конденсируется и может удаляться непосредственно как жидкость. С другой стороны, дальнейший процесс влагопоглощения (снижение точки росы) настолько более эффективен, насколько ниже температура, при которой он протекает. Если при температуре окружающей среды, которая находится явно выше точки замерзания, входная температура опускается максимально близко к температуре окружающей среды, между тем как при более низкой температуре окружающей среды входная температура порядка 25 ... 30 К целесообразно находится выше температуры окружающей среды, то исключается замерзание сушилки вследствие образования льда.
Очистка сжатого воздуха от масла осуществляется фильтрацией, хотя могут быть использованы альтернативно также другие методы подготовки воздуха, например установка масляного сепаратора. В качестве фильтра может быть применен предпочтительно коалесцентный фильтр, который предлагает экономически более выгодную возможность фильтрации. Коалесцентный фильтр может представлять собой целесообразно часть блока подготовки воздуха (APU=Air Processing Unit), так что речь идет о компактном компоненте, в который интегрированы также сушильный блок и, при необходимости, другие компоненты в зависимости от мощности APU. APU представляет собой комбинирование в одном компактном корпусе очистку от масла и сушилку, а также соответствующее охлаждение, так что заметно снижается число компонентов устройства, поставляющего сжатый воздух. Компактная конструкция соответствует возрастающим требованиям при использовании в транспортных средствах, в которых для установки устройств, снабжающих сжатым воздухом, как правило, выделяется лишь очень небольшое пространство. Кроме того, вследствие ограниченного числа компонентов в APU возможен простой и быстрый монтаж.
Эффективность заявленной сепарации масла в результате очистки сжатого воздуха и последующего водоотделения обеспечивает монтаж компонентов, которые в сравнении с используемыми по сей день агрегатами могут быть конструктивно простыми и разработанными лишь сообразно их целевому назначению.
Конструктивное исполнение масляного фильтра в форме картриджа, наряду с легким манипулированием и установкой, имеет то преимущество, что предусматривается лишь периодичность замены масляного фильтра.
В одном другом предпочтительном варианте осуществления изобретения в напорном трубопроводе между фильтрующим блоком и сушильным блоком находится запорный клапан, который служит для того, чтобы удерживать под давлением участок от компрессора до запорного клапана, когда сушилка воздуха сушильного блока продувается для регенерации влагопоглотителя. С одной стороны, этим исключается то, что возникающие соответственно в процессе продувки высокие скорости течения уносят с собой загрязнения из фильтрующего блока, то есть масляного фильтра или масляного сепаратора, в следующий участок трубопровода. С другой стороны, при регенерации на фильтрующем блоке по-прежнему удерживается давление и таким образом аккумулируется энергия для восстановления уровня давления после регенерации. Запорный клапан может быть управляем извне электронной подготовкой воздуха или также управляем автоматически.
Ниже примеры осуществления изобретения поясняются более детально на основе чертежей. При этом показано:
Фиг.1 - проточная блок-схема устройства подготовки сжатого воздуха;
Фиг.2 - проточная блок-схема альтернативного варианта осуществления устройства подготовки сжатого воздуха;
Фиг.3 - проточная блок-схема другого варианта осуществления устройства подготовки сжатого воздуха;
Фиг.4 - графическое изображение хода во времени входной температуры сжатого воздуха перед очисткой от масла.
На фигурах и в нижеследующем описании для одинаковых компонентов и устройств используются соответственно одни и те же позиции.
На Фиг.1 показано устройство 1 для подготовки сжатого воздуха для транспортного средства, которое включает в себя компрессор 2, который всасывает воздух из окружающей среды и сжимает его, и который через напорный трубопровод 3 соединен с накопительной емкостью 4. К накопительной емкости 4 подключены не показанные здесь агрегаты транспортного средства и потребители снабжаются из нее сжатым воздухом. Компрессор 2 приводится от двигателя 5, который может быть, например, приводным двигателем транспортного средства.
В напорном трубопроводе 3 предусмотрено устройство 6 для подготовки сжатого воздуха, которое содержит фильтрующий блок 7 и расположенный позади фильтрующего блока 7 в проточном направлении 8 напорного трубопровода 3 сушильный блок 9. Фильтрующий блок 7 включает в себя расположенный в напорном трубопроводе 3 коалесцентный фильтр 10 для улавливания загрязнений, в частности маслосодержащих продуктов. При этом с фильтром 10 согласована емкость 11 для сбора отфильтрованного масла. Коалесцентный фильтр 10 собирает аэрозоли, а также находящиеся в жидкой форме маслосодержащие продукты. Жидкие маслосодержащие продукты попадают в сжатый воздух либо непосредственно из смазываемого маслом компрессора, либо конденсируются на стенке напорного трубопровода. Напорный трубопровод 3 оснащен обводной линией (байпас) для коалесцентного фильтра 10 и в этом байпасе установлен обратный клапан 12. Обратный клапан 12 открывает известным образом при достижении давления срабатывания байпас, так что на коалесцентном фильтре 10 падает уровень давления.
В сушильном блоке 9 сушат уже очищенный от масляных аэрозолей сжатый воздух. Сушильный блок 9 имеет в показанном примере расположенную в напорном трубопроводе 3 воздушную сушилку 13 с клапаном для удаления воды, при этом сконденсированный и отсепарированный водяной балласт сжатого воздуха отводится через выпуск 14. Внутри сушильного блока 9 в напорном трубопроводе 3 между воздушной сушилкой 13 и накопительной емкостью 4 предусмотрен обратный клапан 15, который поддерживает рабочее давление в накопительной емкости 4.
Напорный трубопровод 3 на своем участке между компрессором 2 и фильтрующим блоком 7 выполнен таким образом, что сжатый воздух на входе 16 устройства 6 для подготовки сжатого воздуха доводится до такой температуры, что масляной балласт сжатого воздуха конденсируется и содержащаяся, кроме того, в сжатом воздухе масса воды отделяется в форме пара. Таким образом, в фильтрующем блоке 7 маслосодержащие продукты отфильтровываются из сжатого воздуха, а протекающий водяной пар удаляется затем в сушильном блоке 9 из сжатого воздуха. Температура сжатого воздуха в напорном трубопроводе 3 выше относительно температуры окружающей среды в связи со сжатием в компрессоре 2. Регулировка (настройка) уровня температуры согласно изобретению, который приводит к конденсации только масляных аэрозолей, может осуществляться с учетом характеристик компрессора и сжатия за счет конструктивного исполнения напорного трубопровода 3. С этой целью соответственно подбирают длину трубопровода, поперечное сечение трубопровода, теплопроводность и теплоемкость напорного трубопровода, а также подбирают его ход при укладке в транспортном средстве таким образом, что напорный трубопровод создает желаемую температуру сжатого воздуха. Обратный клапан 12 в фильтрующем блоке 7 ограничивает давление на входе 16 устройства 6 для подготовки сжатого воздуха и способствует тому, что даже при закупорке фильтра обеспечивается дальнейшее снабжение потребителей сжатым воздухом. При закупорке повышается давление на входе 16. Когда оно достигает определенного значения, обратный клапан 12 открывается и освобождает байпас.
Чтобы добиться эффективного водоотделения в сушильном блоке 9, в напорном трубопроводе 3 между фильтрующим блоком 7 и сушильным блоком 9 предусмотрено непоказанное охлаждение, так что оказывается содействие конденсации водяного пара на этом участке трубопровода перед входом в сушильный блок 9.
Коалесцентный фильтр 10 может быть выполнен в форме картриджа, так что имеет место легко заменяемый компонент. При этом фильтрующий картридж может представлять собой составную часть компактно сконструированного и включающего в себя также воздушную сушилку и накопительную емкость 4 блока подготовки воздуха или, по-другому, Air Processing Unit (APU).
В напорном трубопроводе 3 между фильтрующим блоком 7 и сушильным блоком 9 расположен запорный клапан 17, который служит для того, чтобы удерживать под давлением участок от компрессора до запорного клапана 17, когда воздушная сушилка 13 продувается (деаэрируется) для регенерации влагопоглотителя.
На Фиг.2 показан альтернативный вариант осуществления фильтрующего блока 18, который в показанном на Фиг.1 изображении может быть использован вместо помещенного там фильтрующего блока 7. В фильтрующем блоке 18 на Фиг.2 в проточном направлении 8 напорного трубопровода 3 перед и позади коалесцентного фильтра 10 расположен соответственно охладитель 19, соответственно, 20, которые понижают температуру протекающего через них сжатого воздуха. С каждым из охладителей 19, 20 согласована обводная линия (байпас) напорного трубопровода 3, которые снабжены соответственно обратными клапанами 21, соответственно, 22. Обратные клапаны 21, 22 открываются в проточном направлении 8, если соответствующий охладитель 19, 20 закупоривается, например, в случае замерзания. Находящийся в проточном направлении 8 перед коалесцентным фильтром 10 охладитель 19 понижает сжатый компрессором и соответственно одновременно нагретый сжатый воздух до предусмотренного согласно изобретению уровня температуры, при котором маслосодержащие продукты в сжатом воздухе конденсируются, но ввиду еще достаточно высокого уровня температуры остается отделенный водяной пар. Расположенный в проходном направлении 8 позади коалесцентного фильтра 10 охладитель 20 понижает дальше уровень температуры освобожденного от маслосодержащих продуктов сжатого воздуха, так что водяной пар после фильтрации масла быстро конденсируется и осушка протекает очень эффективно. Понижение составляет, например, 25 К. Перед входом в подключенный после фильтрующего блока 18 и не показанный здесь сушильный блок 9 (Фиг.1) сжатый воздух содержит еще только влагу, которая сепарируется в сушильном блоке 9, так что сушильный блок защищен от вредоносных маслосодержащих продуктов.
Отфильтрованные через коалесцентный фильтр 10 маслосодержащие продукты улавливаются в накопительной емкости 11 и таким образом могут простым образом периодически удаляться. Улавливание маслосодержащих продуктов в устройствах, снабжающих сжатым воздухом, на транспортных средствах позволяет, во-первых, использовать также такие компрессоры, которые в процессе сжатия отправляют маслосодержащие продукты и продукты разложения масла в сжатый воздух. Эти продукты могут при этом полностью улавливаться при соответствующей изобретению фильтрации масла и таким образом последовательно противодействовать выбросу в окружающую среду. Во-вторых, полное улавливание маслосодержащих продуктов и недопущение выброса в окружающую среду уже сейчас учитывает возможные законодательные ограничения по выбросу транспортным средством всех вредных веществ, а не только выброс отработанных газов.
На Фиг.3 показан фильтрующий блок 27 для подготовки сжатого воздуха для электронно-управляемого устройства, поставляющего сжатый воздух. Устройство, поставляющее сжатый воздух, согласовано с электронным блоком 28 управления, который управляет подготовкой сжатого воздуха в напорном трубопроводе 3. Фильтрующий блок 27 показанным на Фиг.1 и соответственно описанным образом расположен между компрессором и сушильным блоком в напорном трубопроводе 3. Фильтрующий блок 27 включает в себя коалесцентный фильтр 10, который согласован описанным выше образом с улавливающей емкостью 11 для улавливания отфильтрованных маслосодержащих продуктов. Степень наполнения улавливающей емкости 11 регистрирует прибор 29 для измерения уровня жидкости. В показанном примере прибор 29 для измерения уровня жидкости посредством сигнальной линии 30 связан с электронным блоком 28 управления, так что блок 28 управления может определять уровень наполнения накопительной емкости и при необходимости подавать оповещение для опорожнения емкости 11.
В проточном направлении 8 напорного трубопровода 3 соответственно перед и после коалесцентного фильтра 10 установлены охладители 19, 20. Оба охладителя 19, 20, аналогично варианту осуществления с Фиг.2, согласованы с байпасной линией напорного трубопровода 3. В байпасных линиях установлен соответственно управляющие клапаны 31, 32, которые через сигнальные линии 30 управляются блоком 28 управления. Управляющие клапаны 31, 32 в показанном примере осуществления выполнены как 2/2-ходовые клапаны, так что блок 28 управления в зависимости от положения подключения управляющих клапанов 31, 32 может направлять по потребности сжатый воздух через соответствующий охладитель 19, 20 или в обход охладителей по соответствующим байпасным линиям. Как альтернатива, вместо управляемых извне управляющих клапанов 31, 32 могут использоваться, например, зависящие от температуры, автоматически подключаемые клапаны.
Находящийся впереди в проточном направлении 8 управляющий клапан 31 служит для блока 28 управления в качестве управляющего элемента для управления температурой сжатого воздуха перед коалесцентным фильтром 10. Чтобы регулировать соответствующую изобретению температуру сжатого воздуха, при котором на входе коалесцентного фильтра 10 господствует температура, при которой маслосодержащие продукты конденсируются, а водяной пар остается отделенным в воздушном потоке, при помощи датчика 33 температуры перед фильтром 6 измеряют входную температуру как управляющую величину и включением и отключением охлаждения устанавливают предварительно заданное номинальное значение. Включение охлаждения в предлагаемом примере осуществления выполняют закрытием управляющего клапана 31, так что подлежащий очистке сжатый воздух подвергается воздействию работающего охладителя 19. Для отключения охлаждения, управляющий клапан 31 переключается соответственно блоком управления 28 в проходное положение. Как альтернатива управлению может быть предусмотрено также регулирование входной температуры коалесцентного фильтра 10.
Находящийся ниже по потоку относительно фильтра 10 охладитель 20 соответствующим образом включают при помощи блока 28 управления, который для настройки заданной выходной температуры фильтрующего блока 27 определяет выходную температуру второго охладителя 20 посредством находящегося ниже по потоку относительно охладителя 20 датчика 34 температуры. Посредством соответствующей настройки открытия/закрытия управляющего клапана 32 второго охладителя 20 осуществляется настройка желаемой выходной температуры, при которой достигается эффективная осушка сжатого воздуха.
В зоне входа воздуха в фильтр 10, то есть между промежуточным охладителем 19 и фильтром 10, кроме датчика 33 температуры предусмотрен датчик 35 давления. Измерительный сигнал датчика 35 давления подается на блок 28 управления. Возможное при помощи сигнала датчика 35 давления определение возникающего динамического давления (давление подпора) перед фильтром 10 может быть использовано в качестве контроля надлежащего функционирования фильтрации масла или также для определения интервалов замены фильтра. Как альтернатива, перед промежуточным охладителем 19 расположен датчик 35 давления или другой датчик давления.
Фильтрующий блок 27 вместе с сушильным блоком 9 (Фиг.1) соединен в компактный блок, который управляется блоком 28 управления. Поэтому речь идет об электронно-управляемом устройстве подготовки воздуха (E-APU). Такое устройство для подготовки воздуха может включать также другие компоненты такие, например, как защитный клапан для предохранения различных контуров сжатого воздуха.
На Фиг.4 на основе графического изображения хода температуры сжатого воздуха перед масляным фильтром показан принцип действия управления подготовки сжатого воздуха через температуру сжатого воздуха. Этот графический ход температуры обозначен кривой Tфакт. В дополнение к кривой температуры диаграмма согласно Фиг.4 содержит графическое изображение состояния переключения охлаждения. Охлаждение включается и отключается блоком управления описанным к Фиг.3 образом, так что отображает представленный на Фиг.4 прямоугольный ход кривой функции охладителя. При этом расположенные по оси Х отрезки кривой охладителя соответствуют состоянию «выключено». Отрезки кривой охладителя, расположенные между отрезками времени с отключенным охлаждением, соответствуют состоянию переключения охладителя «включено». На этих отрезках времени с включенным охлаждением температура Тфакт сжатого воздуха понижается перед масляным фильтром и удерживается в пределах температурного окна, в котором маслосодержащие продукты конденсируются. Чтобы температуру сжатого воздуха установить в интервале, в котором маслосодержащие продукты конденсируются, а водяной пар остается отделенным в воздушном потоке, управлению задаются граничные значения температурного интервала. Если температура Тфакт сжатого воздуха при включенном охлаждении достигает нижнего граничного значения Тном-мин (ном - номинальный; мин - минимальный), в этом случае блок управления переключает управляющий клапан 31 (Фиг.3) в проходное положение, так что охлаждение отключается и температура Тфакт повышается. При достижении максимального значения Тном-макс управляющий клапан 31 вновь переключается, так что сжатый воздух протекает через охладитель 19 и вновь охлаждается.
Для сравнения, как показано на Фиг.4, также может осуществляться регулирование второго охладителя 20 позади коалесцентного фильтра 10. При этом задается более низкая номинальная температура и удерживается в также заданном температурном окне путем включения и отключения охлаждения.
Все указанные в описании чертежей, в пунктах формулы изобретения и во введении к описанию признаки, могут быть использованы как по отдельности, так и любым другим образом в комбинации друг с другом. Поэтому изобретение не ограничивается описанными или заявленными комбинациями признаков. Более того, все комбинации признаков следует считать раскрытыми.

Claims (15)

1. Способ подготовки сжатого воздуха для одного или нескольких пневматических потребителей, при этом сжатый воздух в напорном трубопроводе (3) вначале очищают от загрязнений, таких как углеводородные соединения и маслосодержащие продукты, и затем сушат, отличающийся тем, что сжатый воздух перед очисткой от загрязнений доводят до такой температуры (Тфакт), что присутствующие в газообразной форме загрязнения конденсируются и содержащаяся в сжатом воздухе масса воды выделена в виде пара.
2. Способ по п.1, отличающийся тем, что температура (Тфакт) сжатого воздуха перед очисткой управляется или регулируется.
3. Способ по п.1 или 2, отличающийся тем, что сжатый воздух перед очисткой охлаждают.
4. Способ по п.2, отличающийся тем, что температура (Тфакт) сжатого воздуха перед очисткой управляется или регулируется путем включения и отключения охладителя (19) сжатого воздуха.
5. Способ по п.1, отличающийся тем, что сжатый воздух после очистки и перед осушкой охлаждают.
6. Устройство для подготовки сжатого воздуха с проводящим сжатый воздух напорным трубопроводом (3), в котором в проточном направлении (8) последовательно друг за другом расположены устройство (7, 18, 27) для удаления загрязнений, таких как углеводородные соединения и маслосодержащие продукты, и сушильный блок (13), отличающееся тем, что напорный трубопровод (3) в своем расположенном в проточном направлении (8) перед устройством (7, 18, 27) для удаления загрязнений участке выполнен таким образом, что присутствующие в газообразной форме загрязнения конденсируются и содержащаяся в сжатом воздухе масса воды выделена в виде пара.
7. Устройство для подготовки сжатого воздуха по п.6, отличающееся тем, что напорный трубопровод (3) относительно своей длины трубопровода, и/или поперечного сечения трубопровода, и/или теплопроводности и теплоемкости, а также своего хода рассчитан таким образом, что присутствующие в газообразной форме загрязнения конденсируются и содержащаяся в сжатом воздухе масса воды выделена в виде пара.
8. Устройство для подготовки сжатого воздуха по п.6 или 7, отличающееся тем, что в напорном трубопроводе (3), в его участке, расположенном в проточном направлении (8) перед устройством (7, 18, 27) для удаления загрязнения, установлен блок (19), оказывающий влияние на температуру (Тфакт) сжатого воздуха.
9. Устройство для подготовки сжатого воздуха по п.8, отличающееся тем, что блок, оказывающий влияние на температуру (Тфакт) сжатого воздуха, представляет собой охладитель (19).
10. Устройство для подготовки сжатого воздуха по п.7, отличающееся тем, что в напорном трубопроводе (3) между фильтрующим блоком (7) и сушильным блоком (9) расположен запорный клапан (17).
11. Устройство для подготовки сжатого воздуха по п.9, отличающееся тем, что предусмотрен взаимодействующий с охладителем блок регулирования или управления температуры (Тфакт) сжатого воздуха.
12. Устройство для подготовки сжатого воздуха по п.6, отличающееся тем, что устройство (7, 18, 27) для удаления загрязнений включает в себя коалесцентный фильтр (10).
13. Устройство для подготовки сжатого воздуха по п.6, отличающееся тем, что устройство (7, 18, 27) для удаления загрязнений выполнено в форме картриджа.
14. Устройство для подготовки сжатого воздуха по п.6, отличающееся тем, что устройство (7, 18, 27) для удаления загрязнений и сушильный блок (13) образуют один конструктивный блок.
15. Транспортное средство с устройством для подготовки сжатого воздуха по одному из пп.6-13, которое выполнено с возможностью эксплуатации способом по одному из пп.1-5.
RU2011153791/05A 2009-05-28 2010-03-12 Способ подготовки сжатого воздуха, устройство для подготовки сжатого воздуха, а также транспортное средство с таким устройством RU2531398C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009023044.0 2009-05-28
DE102009023044A DE102009023044A1 (de) 2009-05-28 2009-05-28 Verfahren zur Aufbereitung von Druckluft, Druckluftaufbereitungseinrichtung sowie Kraftfahrzeug mit derartiger Einrichtung
PCT/EP2010/001560 WO2010136090A1 (de) 2009-05-28 2010-03-12 Verfahren zur aufbereitung von druckluft, druckluftaufbereitungseinrichtung sowie kraftfahrzeug mit derartiger einrichtung

Publications (2)

Publication Number Publication Date
RU2011153791A RU2011153791A (ru) 2013-07-10
RU2531398C2 true RU2531398C2 (ru) 2014-10-20

Family

ID=42173145

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011153791/05A RU2531398C2 (ru) 2009-05-28 2010-03-12 Способ подготовки сжатого воздуха, устройство для подготовки сжатого воздуха, а также транспортное средство с таким устройством

Country Status (7)

Country Link
US (1) US8840709B2 (ru)
EP (1) EP2435160B1 (ru)
CN (2) CN102438725A (ru)
BR (1) BRPI1014401A2 (ru)
DE (1) DE102009023044A1 (ru)
RU (1) RU2531398C2 (ru)
WO (1) WO2010136090A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011102169A1 (de) * 2011-05-20 2013-05-16 Linde Aktiengesellschaft Verdichten von Medien
DE102012007342A1 (de) * 2011-12-23 2013-06-27 Wabco Gmbh Druckluftversorgungsanlage, Druckluftversorgungssystem und Fahrzeug, insbesondere PKW mit einer Druckluftversorgungsanlage
DE102013101499A1 (de) * 2013-02-14 2014-08-14 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Drucklufteinrichtung eines Fahrzeugs mit Fliehkraftabscheider
WO2015188266A1 (en) 2014-06-10 2015-12-17 Vmac Global Technology Inc. Methods and apparatus for simultaneously cooling and separating a mixture of hot gas and liquid
DE102014116672B4 (de) * 2014-11-14 2016-08-18 Kaeser Kompressoren Se Zwischenkühlerbypass
US9932234B2 (en) * 2015-07-13 2018-04-03 Hamilton Sundstrand Corporation Membrane-based air separation module
US11035768B2 (en) * 2017-12-13 2021-06-15 South-Tek Systems, LLC Early warning system for error detection in nitrogen generators
US10807582B2 (en) * 2018-03-27 2020-10-20 Bendix Commercial Vehicle Systems Llc Effluent processing apparatus and method for a vehicle air brake charging system
US11767837B2 (en) * 2019-11-14 2023-09-26 Vanair Manufacturing, Inc. Compressor control systems and air compressor systems and vehicles equipped therewith
CN111974113B (zh) * 2020-08-26 2022-06-28 南京亘丰智能环境科技有限公司 一种能够进行自冷却的净化装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504596A2 (de) * 1991-03-20 1992-09-23 Knorr-Bremse Ag Druckluftversorgungseinrichtung für Druckluftanlagen von Fahrzeugen
DE4313573A1 (de) * 1993-04-26 1994-10-27 Leobersdorfer Maschf Verringerung der Kondensation von Wasserdampf und Austreiben von Kondensat während der Kompression von Luft
RU83712U1 (ru) * 2009-03-04 2009-06-20 Леонид Григорьевич Кузнецов Установка для осушки сжатого воздуха

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT394167B (de) * 1990-03-21 1992-02-10 Jenbacher Werke Ag Drucklufteinrichtung, insbesondere fuer mobile druckluftsysteme
JP2000073978A (ja) * 1998-08-28 2000-03-07 Hitachi Ltd 油冷式回転型圧縮機
DE10313575B4 (de) 2003-03-21 2014-01-23 Wabco Gmbh Kartuscheeinrichtung für einen Lufttrockner
DE102004056954A1 (de) * 2004-11-23 2006-06-01 Pneumatik Berlin Gmbh Ptm Verfahren und Vorrichtung zur Erzeugung medizinischer Druckluft
US7819958B2 (en) * 2005-08-08 2010-10-26 Bendix Commerical Vehicle Systems Llc Purge valve
DE102006035772A1 (de) 2006-08-01 2008-02-07 Wabco Gmbh Druckluftversorgungseinrichtung für Kraftfahrzeuge
CN101332398A (zh) * 2007-06-29 2008-12-31 华懋科技股份有限公司 压缩空气净化***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504596A2 (de) * 1991-03-20 1992-09-23 Knorr-Bremse Ag Druckluftversorgungseinrichtung für Druckluftanlagen von Fahrzeugen
DE4313573A1 (de) * 1993-04-26 1994-10-27 Leobersdorfer Maschf Verringerung der Kondensation von Wasserdampf und Austreiben von Kondensat während der Kompression von Luft
RU83712U1 (ru) * 2009-03-04 2009-06-20 Леонид Григорьевич Кузнецов Установка для осушки сжатого воздуха

Also Published As

Publication number Publication date
US8840709B2 (en) 2014-09-23
RU2011153791A (ru) 2013-07-10
WO2010136090A1 (de) 2010-12-02
US20120067205A1 (en) 2012-03-22
EP2435160A1 (de) 2012-04-04
CN102438725A (zh) 2012-05-02
BRPI1014401A2 (pt) 2016-04-05
DE102009023044A1 (de) 2010-12-02
CN105879561A (zh) 2016-08-24
EP2435160B1 (de) 2018-05-16

Similar Documents

Publication Publication Date Title
RU2531398C2 (ru) Способ подготовки сжатого воздуха, устройство для подготовки сжатого воздуха, а также транспортное средство с таким устройством
US5575833A (en) Refrigerant recycling system and apparatus
CN104349829B (zh) 油分离器
US6712885B1 (en) Siloxane removal system
US5377501A (en) Oil separator for conditioning recovered refrigerant
AU8303498A (en) Twin tower air dryer
JP2000512710A (ja) 内燃機関の排気ガスをろ過するための装置と方法、およびそのような装置を装備したビークル
US4939903A (en) Refrigerant recovery and purification system and method
US8858669B2 (en) Oil coalescing filter
CN104508401A (zh) 回收和再生来自a/c设备的制冷剂的装置和方法
CN101384322A (zh) 用于处理过程废水或工业废水的装置
US6408637B1 (en) Apparatus and method for recovering and recycling refrigerant
CA2064401C (en) Air line vapor trap with air-warming system
US5327741A (en) Refrigerant recovery and purification machine
EP0632740B1 (en) Method and apparatus for the treatment of gas streams
US5533358A (en) Refrigerant recovering system
EP1488842A1 (en) Air environment control system
JPH05280836A (ja) 冷却器の冷媒回収清浄装置及び方法
CN110193240A (zh) 可除湿过滤空气的空压桶
JP7222643B2 (ja) 油冷式圧縮機のドレンの処理部構造
JP6280842B2 (ja) オイルセパレータ
JP6345541B2 (ja) オイルセパレータ
US5100562A (en) Refrigerant recycling system
US5433081A (en) Refrigerant recovery and purification method and apparatus with oil adsorbent separator
US5873263A (en) Equipment and process for fluid purification and recovery

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210313