RU2525294C1 - Устройство управления и обеспечения живучести двигателя двойного питания - Google Patents

Устройство управления и обеспечения живучести двигателя двойного питания Download PDF

Info

Publication number
RU2525294C1
RU2525294C1 RU2013104966/07A RU2013104966A RU2525294C1 RU 2525294 C1 RU2525294 C1 RU 2525294C1 RU 2013104966/07 A RU2013104966/07 A RU 2013104966/07A RU 2013104966 A RU2013104966 A RU 2013104966A RU 2525294 C1 RU2525294 C1 RU 2525294C1
Authority
RU
Russia
Prior art keywords
bridge
thyristor
thyristors
converter
anode
Prior art date
Application number
RU2013104966/07A
Other languages
English (en)
Inventor
Юрий Николаевич Дементьев
Георгий Иванович Однокопылов
Иван Георгиевич Однокопылов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2013104966/07A priority Critical patent/RU2525294C1/ru
Application granted granted Critical
Publication of RU2525294C1 publication Critical patent/RU2525294C1/ru

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано в регулируемом трехфазном электроприводе, выполненном на основе надсинхронного вентильного каскада, асинхронного вентильного каскада или двигателя двойного питания. Технический результат: обеспечение живучести электропривода, выполненного на основе двигателя двойного питания при аварийных отказах полумоста роторного преобразователя или/и сетевого преобразователя с отказами типа «невыключение» или «невключение» тиристора. Устройство управления и обеспечения живучести двигателя двойного питания содержит асинхронный двигатель, преобразователь частоты, состоящий из регулируемого выпрямителя и инвертора, трехфазный трансформатор. Выпрямитель выполнен как сетевой тиристорный преобразователь, а инвертор - как роторный тиристорный преобразователь, выполненные по мостовой трехфазной схеме. Устройство дополнительно содержит датчики тока, защитные элементы, два резервных полумоста, каждый из которых составлен из трех симисторов и двух резервных тиристоров, и микроконтроллер, который подключен ко всем тиристорам и симисторам. Упомянутые элементы соединены так, как указано в материалах заявки. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к электротехнике, в частности к регулируемому трехфазному электроприводу, выполненному на основе надсинхронного вентильного каскада, асинхронного вентильного каскада или двигателя двойного питания с обеспечением свойства живучести при отказах преобразователя частоты, питающего роторные обмотки.
Известен асинхронный электропривод со свойством живучести (патент РФ на полезную модель №67354, МПК6 H02P 5/00, опубл. 10.10.2007), содержащий трехфазный асинхронный двигатель, каждая фаза которого через датчики тока подключена к соответствующей преобразовательной ячейке трехфазного преобразователя частоты, задатчик частоты вращения, блок диагностики, который связан с преобразовательными ячейками и с микроконтроллером, который подключен к датчику скорости, к задатчику частоты вращения, к трем датчикам тока и к преобразовательным ячейкам.
Асинхронный электропривод может быть применен для обеспечения живучести асинхронного двигателя с фазным ротором с сохранением кругового вращающегося поля в аварийном двухфазном режиме.
Недостатком этого технического решения является невозможность восстановления работоспособности электропривода, выполненного на основе двигателя двойного питания, при аварийном отказе одного из ключей преобразователя частоты, питающего роторные обмотки, кроме того, при отказах ключей типа «невыключение» невозможно восстановить работоспособность преобразователя частоты.
Известно устройство для регулирования частоты вращения двигателя двойного питания (патент РФ №2076450, МПК6 H02P7/36, H02P7/63, опубл. 27.03.1997), выбранное в качестве прототипа, содержащее преобразователь частоты, состоящий из регулируемого выпрямителя, силовой вход которого подключен через согласующий трансформатор к питающей сети, а управляющий вход - к задатчику напряжения, и инвертора, силовой вход которого подключен к выходу выпрямителя, а силовой выход - к обмоткам ротора двигателя, обмотки статора которого предназначены для подключения к питающей сети. К управляющему входу инвертора подключен выход формирователя импульсов, выполненного в виде динистров шести оптопар, светодиоды которых собраны в трехфазный мост, к выходу которого подключен резистор. Катушка реверсирующего контактора подключена к питающей сети через замыкающий контакт центробежного реле, установленного на одном валу с двигателем. Основные переключающие контакты реверсирующего контактора включены в две фазы статорной обмотки двигателя двойного питания, а первые вспомогательные переключающие контакты упомянутого контактора включены в цепи между двумя фазными обмотками ротора двигателя и двумя первичными обмотками фазосдвигающего на угол 150o трансформатора, собранного по схеме звезда зигзаг. Вторые вспомогательные переключающие контакты контактора включены в цепи между двумя вторичными обмотками трехфазного фазосдвигающего трансформатора и двумя входами трехфазного светодиодного моста. Третья первичная обмотка фазосдвигающего трансформатора подключена непосредственно к третьей обмотке ротора двигателя, а третья вторичная обмотка непосредственно к третьему входу светодиодного моста.
Недостатком этого технического решения является невозможность восстановления работоспособности электропривода при аварийном отказе одного из тирмсторов преобразователя частоты питающего роторные обмотки, кроме того, при отказах тиристоров типа «невыключение» невозможно восстановить работоспособность преобразователя частоты.
Задачей заявляемого изобретения является обеспечение живучести электропривода, выполненного на основе двигателя двойного питания, при аварийных отказах полумоста роторного преобразователя или/и сетевого преобразователя с отказами типа «невыключение» или «невключение» тиристора.
Поставленная задача решена за счет того, что устройство управления и обеспечения живучести двигателя двойного питания содержит асинхронный двигатель, статорные обмотки которого подключены к сети переменного тока, преобразователь частоты, состоящий из регулируемого выпрямителя и инвертора, и трехфазный трансформатор, подключенный к сети переменного тока.
В отличие от прототипа в качестве выпрямителя выбран сетевой тиристорный преобразователь, а в качестве инвертора использован роторный тиристорный преобразователь, выполненные по мостовой трехфазной схеме. При этом каждый полумост роторного тиристорного преобразователя подключен через соответствующий датчик тока к соответствующей роторной обмотке асинхронного двигателя и через соответствующий защитный элемент к аноду первого и к катоду второго тиристоров первого резервного полумоста. Катод первого и анод второго тиристоров образуют общую точку, к которой первыми силовыми выводами подключены три симистора первого резервного полумоста, вторые силовые выводы которых подключены к указанным датчикам тока. Каждый полумост сетевого тиристорного преобразователя подключен через свой датчик тока к соответствующей вторичной обмотке трехфазного трансформатора и через соответствующий защитный элемент к аноду первого и к катоду второго тиристоров второго резервного полумоста. Катод первого и анод второго тиристоров образуют общую точку, к которой первыми силовыми выводами подключены три симистора второго резервного полумоста, вторые силовые выводы которых подключены к этим датчикам тока. Катод первого тиристора первого резервного полумоста подключен к аноду первого тиристора второго резервного полумоста, а анод второго тиристора первого резервного полумоста через дроссель подключен к катоду второго тиристора второго резервного полумоста. Все защитные элементы подключены к общей точке вторичной обмотки трансформатора, все датчики тока, защитные элементы и задатчик частоты вращения подключены к микроконтроллеру, который подключен ко всем тиристорам и симисторам, при этом все защитные элементы одинаковы.
Каждый защитный элемент содержит две плавкие вставки, которые включены между выводами каждого полумоста и выводами соответствующего резервного полумоста. Катод первого и анод второго коротящего тиристора подключены к соответствующему полумосту соответствующего тиристорного преобразователя, а анод первого и катод второго коротящего тиристора подключены к общей точке трехфазного трансформатора. Аноды и управляющие электроды коротящих тиристоров подключены к микроконтроллеру.
Следует отметить, что при отказе одного из тиристоров сетевого или роторного тиристорного преобразователя возможны отказы двух типов: «невыключение» или «невключение» тиристоров.
Отказ типа «невыключение» одного из тиристоров роторного тиристорного преобразователя приведет к намагничиванию постоянным током ротора асинхронного двигателя, появлению электромагнитного тормозного момента и перегреву асинхронного двигателя, отказ типа «невключение» одного из тиристоров сетевого тиристорного преобразователя приведет к однополупериодному питанию соответствующей роторной обмотки и появлению электромагнитного тормозного момента и перегреву асинхронного двигателя. В результате асинхронный двигатель достигает предельного состояния работоспособности с последующим разрушением.
Таким образом, отказ одного из тиристоров сетевого или роторного тиристорного преобразователя приводит к неработоспособности электропривода.
Технический результат, обеспечиваемый приведенной совокупностью существенных признаков, состоит в том, что в предложенном техническом решении восстановление работоспособности осуществляют следующим образом:
1. Осуществляют диагностику отказа соответствующего полумоста роторного тиристорного преобразователя или/и сетевого тиристорного преобразователя на основе данных, полученных с датчиков тока. Диагностику производят в программе микроконтроллера и формируют соответствующий бит отказа.
2. Одновременно подают управление отказавшего полумоста на резервный полумост роторного тиристорного преобразователя или/и сетевого тиристорного преобразователя. Формируют управление симистором и защитным элементом соответствующие отказавшему полумосту роторного тиристорного преобразователя или/и сетевого тиристорного преобразователя.
В результате происходит блокировка отказавшего полумоста роторного или/и сетевого тиристорного преобразователя и за счет подключения резервного полумоста - полное восстановление функционирования электропривода.
Это позволяет при нулевых колебаниях частоты вращения для отказа типа «невключение» тиристоров и незначительных колебаниях частоты вращения для отказа типа «невыключение» тиристоров восстановить функционирование электропривода и избежать потери работоспособности и разрушения электропривода, выполненного на основе двигателя двойного питания, по сравнению со случаем реализации схемы прототипа и тем самым обеспечить свойство живучести электропривода.
На фиг. 1 изображена схема двигателя двойного питания с обеспечением свойства живучести.
На фиг. 2 изображена принципиальная схема защитного элемента.
Устройство управления и обеспечения живучести двигателя двойного питания (фиг. 1) содержит асинхронный двигатель 1, статорные обмотки которого подключены к сети переменного тока, а роторные обмотки через датчики тока 2, 3 и 4 подключены к роторному тиристорному преобразователю 5 (РТП) и к резервному полумосту 6 (Р1).
Резервный полумост 6 (Р1) состоит из трех симисторов 7-9, включенных в цепь трехфазного переменного тока ротора и двух резервных тиристоров 10 и 11, включенных в цепь постоянного тока, причем тиристор 11 подключен катодом к клемме 12, а тиристор 10 подключен анодом к клемме 13.
Роторный тиристорный преобразователь 5 (РТП) выполнен по мостовой трехфазной схеме с помощью тиристоров 14-19. Каждый полумост тиристорного преобразователя 5 (РТП) через соответствующие защитные элементы 20 (ЗЭ1), 21 (ЗЭ2) и 22 (ЗЭ3) подключен в цепь постоянного тока (клеммы 12 и 13).
Первичная обмотка трехфазного трансформатора 23 подключена к трехфазной сети переменного тока, а вторичная обмотка через датчики тока 24, 25 и 26 подключена к сетевому тиристорному преобразователю 27 (СТП) и к второму резервному полумосту 28 (Р2). Резервный полумост 28 (Р2) состоит из трех симисторов 29-31, включенных в цепь трехфазного переменного тока вторичной обмотки трансформатора 23 и двух резервных тиристоров 32 и 33, подключенных к цепи постоянного тока, причем тиристор 32 подключен анодом к клемме 12, а тиристор 33 подключен катодом через дроссель 34 к клемме 13.
Сетевой тиристорный преобразователь 27 (СТП) выполнен по мостовой трехфазной схеме с помощью тиристоров 35-40. Каждый полумост сетевого тиристорного преобразователя 27 (СТП) через соответствующие защитные элементы 41 (ЗЭ4), 42 (ЗЭ5) и 43 (ЗЭ6) подключено в цепь постоянного тока. Все защитные элементы 20 (ЗЭ1), 21 (ЗЭ2), 22 (ЗЭ3), 41 (ЗЭ4), 42 (ЗЭ5) и 43 (ЗЭ6) подключены к общей точке вторичной обмотки трансформатора 23.
Выходы датчиков тока 2-4 и 24-26 подключены к микроконтроллеру 44 (МК), к которому подключен также задатчик частоты вращения 45 (ЗЧВ). Микроконтроллер 44 (МК) подключен ко всем тиристорам: 10, 11, 14-19, 32, 33, 35-40 и симисторам: 7-9, 29-31.
Защитные элементы 21 (ЗЭ2), 22 (ЗЭ3), 41 (ЗЭ4), 42 (ЗЭ5), 43 (ЗЭ6) одинаковы. Роторный тиристорный преобразователь 5 (РТП) одним концом подключен к катоду коротящего тиристора 46 (защитного элемента 20 (ЗЭ1), фиг. 2) и через плавкую вставку 47 к клемме постоянного тока 12. Другим концом роторный тиристорный преобразователь 5 (РТП) подключен к аноду тиристора 48 и через плавкую вставку 49 к клемме постоянного тока 13. Общая точка вторичной обмотки трехфазного трансформатора 23 подключена к аноду тиристора 46 и к катоду тиристора 48. Аноды и управляющие электроды тиристоров 46 и 48 подключены к микроконтроллеру 44 (МК).
Обеспечение живучести двигателя двойного питания осуществляется следующим образом. На обмотку статора асинхронного двигателя 1 подают напряжение постоянной амплитуды и частоты, а на обмотку ротора через трехфазный трансформатор 23, сетевой тиристорный преобразователь 2 и роторный тиристорный преобразователь 5 (РТП) - регулируемое трехфазное напряжение, направленное встречно ЭДС обмотки ротора и превышающее его по величине. Определяют моменты коммутации тиристоров 14 - 19 роторного тиристорного преобразователя 5 (РТП) и, коммутируя эти тиристоры с помощью микроконтроллера 44 (МК), устанавливают заданную частоту вращения асинхронного двигателя 1. Регулирование частоты вращения осуществляют изменением величины подведенного к обмотке ротора напряжения путем изменения сигнала задатчика частоты вращения 45 (ЗЧВ). С помощью датчиков тока 2-4 и 24-26 диагностируют отказ полумоста роторного 5 (РТП) или/и сетевого тиристорного преобразователя 27 (СТП) и формируют в микроконтроллере 44 (МК) соответствующий бит отказа. В случае обнаружения отказа одного из полумостов включают выявленным битом отказа соответствующий защитный элемент отказавшего полумоста роторного 5 (РТП) или/и сетевого тиристорного преобразователя 27 (СТП). При включении тиристоров 46 и 48 на короткое время, плавкие вставки 47 и 49 перегорают и поступление напряжения на отказавший полумост прекращается. Далее управление подают на резервный полумост 6 (Р1), в случае отказа полумоста роторного тиристорного преобразователя 5 (РТП), и на второй резервный полумост 28 (Р2) - в случае отказа полумоста сетевого тиристорного преобразователя 27 (СТП). В случае отказа полумоста роторного тиристорного преобразователя 5 (РТП) резервный полумост 6 (Р1) подключают через симисторы 7 - 9 к соответствующим фазам питающего напряжения ротора асинхронного двигателя 1. В случае отказа полумоста сетевого тиристорного преобразователя 27 (СТП) второй резервный полумост 28 (Р2) через симисторы 35 - 40 подключают к соответствующей фазе вторичной обмотки трансформатора 23. Управление на соответствующие симисторы формируют по логической функции ИЛИ для тиристоров отказавшего полумоста, при этом подачу управляющих сигналов из микроконтроллера 44 в соответствующие защитные элементы 20 - 22 и 41 - 43, резервные полумосты 6 (Р1) и 28 (Р2) и симисторы 7-9 и 29 - 31 подают одновременно, и тем самым минимизируют время восстановления.
В результате предотвращается аварийная ситуация при отказах электропривода типа: «невыключение» или «невключение» тиристоров роторного или/и сетевого тиристорного преобразователя с обеспечением живучести двигателя двойного питания.

Claims (2)

1. Устройство управления и обеспечения живучести двигателя двойного питания, содержащее асинхронный двигатель, статорные обмотки которого подключены к сети переменного тока, преобразователь частоты, состоящий из регулируемого выпрямителя и инвертора, трехфазный трансформатор подключен к сети переменного тока, отличающееся тем, что в качестве выпрямителя выбран сетевой тиристорный преобразователь, а в качестве инвертора использован роторный тиристорный преобразователь, выполненные по мостовой трехфазной схеме, при этом каждый полумост роторного тиристорного преобразователя подключен через соответствующий датчик тока к соответствующей роторной обмотке асинхронного двигателя и через соответствующий защитный элемент к аноду первого и к катоду второго тиристоров первого резервного полумоста, причем катод первого и анод второго тиристоров образуют общую точку, к которой первыми силовыми выводами подключены три симистора первого резервного полумоста, вторые силовые выводы которых подключены к указанным датчикам тока, а каждый полумост сетевого тиристорного преобразователя подключен через свой датчик тока к соответствующей вторичной обмотке трехфазного трансформатора и через соответствующий защитный элемент к аноду первого и к катоду второго тиристоров второго резервного полумоста, причем катод первого и анод второго тиристоров образуют общую точку, к которой первыми силовыми выводами подключены три симистора второго резервного полумоста, вторые силовые выводы которых подключены к этим датчикам тока, катод первого тиристора первого резервного полумоста подключен к аноду первого тиристора второго резервного полумоста, а анод второго тиристора первого резервного полумоста через дроссель подключен к катоду второго тиристора второго резервного полумоста, все защитные элементы подключены к общей точке вторичной обмотки трансформатора, все датчики тока, защитные элементы и задатчик частоты вращения подключены к микроконтроллеру, который подключен ко всем тиристорам и симисторам, при этом все защитные элементы одинаковы.
2. Устройство по п.1, отличающееся тем, что каждый защитный элемент содержит две плавкие вставки, которые включены между выводами каждого полумоста и выводами соответствующего резервного полумоста, катод первого и анод второго коротящего тиристора подключены к соответствующему полумосту соответствующего тиристорного преобразователя, а анод первого и катод второго коротящего тиристора подключены к общей точке трехфазного трансформатора, аноды и управляющие электроды коротящих тиристоров подключены к микроконтроллеру.
RU2013104966/07A 2013-02-07 2013-02-07 Устройство управления и обеспечения живучести двигателя двойного питания RU2525294C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013104966/07A RU2525294C1 (ru) 2013-02-07 2013-02-07 Устройство управления и обеспечения живучести двигателя двойного питания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013104966/07A RU2525294C1 (ru) 2013-02-07 2013-02-07 Устройство управления и обеспечения живучести двигателя двойного питания

Publications (1)

Publication Number Publication Date
RU2525294C1 true RU2525294C1 (ru) 2014-08-10

Family

ID=51355303

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013104966/07A RU2525294C1 (ru) 2013-02-07 2013-02-07 Устройство управления и обеспечения живучести двигателя двойного питания

Country Status (1)

Country Link
RU (1) RU2525294C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2076450C1 (ru) * 1994-01-06 1997-03-27 Липецкий государственный технический университет Способ регулирования частоты вращения двигателя двойного питания и устройство для его осуществления
RU67534U1 (ru) * 2007-05-31 2007-10-27 Государственное унитарное предприятие Нижегородское отделение - дочернее предприятие Всероссийского научно-исследовательского института железнодорожного транспорта Министерства путей сообщения Российской Федерации Устройство оповещения обслуживающего персонала о приближении поезда
JP4647684B2 (ja) * 2007-06-28 2011-03-09 三菱電機株式会社 電力変換装置
EP2312745A1 (en) * 2008-08-08 2011-04-20 Shunxin Zhou A system for driving asynchronously multiple motors by one inverter and for realizing frequency variation and speed adjusting of rotors
DE102010056323A1 (de) * 2010-12-27 2012-06-28 Audi Ag Verfahren zum Betreiben einer Drehfelkdmaschine sowie Anordnung mit Drehfeldmashine, insbesondere im Kraftfahrzeug
KR20120078533A (ko) * 2010-12-31 2012-07-10 엘에스산전 주식회사 유도전동기 스톨 방지회로, 유도전동기 구동시스템 및 유도전동기 스톨 방지방법
RU2460190C1 (ru) * 2011-04-06 2012-08-27 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ управления и обеспечения живучести трехфазного асинхронного двигателя вращательного или поступательного движения
US8264209B2 (en) * 2007-03-24 2012-09-11 Woodward Kempen Gmbh Method of and apparatus for operating a double-fed asynchronous machine in the event of transient mains voltage changes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2076450C1 (ru) * 1994-01-06 1997-03-27 Липецкий государственный технический университет Способ регулирования частоты вращения двигателя двойного питания и устройство для его осуществления
US8264209B2 (en) * 2007-03-24 2012-09-11 Woodward Kempen Gmbh Method of and apparatus for operating a double-fed asynchronous machine in the event of transient mains voltage changes
RU67534U1 (ru) * 2007-05-31 2007-10-27 Государственное унитарное предприятие Нижегородское отделение - дочернее предприятие Всероссийского научно-исследовательского института железнодорожного транспорта Министерства путей сообщения Российской Федерации Устройство оповещения обслуживающего персонала о приближении поезда
JP4647684B2 (ja) * 2007-06-28 2011-03-09 三菱電機株式会社 電力変換装置
EP2312745A1 (en) * 2008-08-08 2011-04-20 Shunxin Zhou A system for driving asynchronously multiple motors by one inverter and for realizing frequency variation and speed adjusting of rotors
DE102010056323A1 (de) * 2010-12-27 2012-06-28 Audi Ag Verfahren zum Betreiben einer Drehfelkdmaschine sowie Anordnung mit Drehfeldmashine, insbesondere im Kraftfahrzeug
KR20120078533A (ko) * 2010-12-31 2012-07-10 엘에스산전 주식회사 유도전동기 스톨 방지회로, 유도전동기 구동시스템 및 유도전동기 스톨 방지방법
RU2460190C1 (ru) * 2011-04-06 2012-08-27 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ управления и обеспечения живучести трехфазного асинхронного двигателя вращательного или поступательного движения

Similar Documents

Publication Publication Date Title
Marques et al. A new diagnostic technique for real-time diagnosis of power converter faults in switched reluctance motor drives
CN107134952B (zh) 电动机驱动装置
JP5797751B2 (ja) 電圧インバータおよびそのようなインバータの制御方法
CN101272125B (zh) 一种具有容错功能的电机驱动***
JP2013529055A5 (ru)
JP5967299B2 (ja) 電力変換装置及びその制御方法
US20070114223A1 (en) System and method for providing power and control through a rotating interface
JP5809029B2 (ja) 無停電電源装置
CN101667804A (zh) 半桥结构的多相永磁容错电机控制***
CN109756164A (zh) 发电机中的反磁场绕组
CN110957753A (zh) 用于控制电功率***的不间断功率源的***及方法
Cordeiro et al. Fault-tolerant voltage-source-inverters for switched reluctance motor drives
CN108631673A (zh) 一种永磁同步电机容错***矢量控制方法
Yeh et al. Induction motor-drive systems with fault tolerant inverter-motor capabilities
CN108667379A (zh) 一种两相永磁同步电机容错***直接转矩控制方法
JPWO2021144867A5 (ru)
US10855215B2 (en) Power generation system technical field
RU2525294C1 (ru) Устройство управления и обеспечения живучести двигателя двойного питания
Zhou et al. A fault tolerant control system for hexagram inverter motor drive
TWI505625B (zh) Power conversion system and its control method
Saha et al. Analysis of different types of faults exhibited in switched reluctance motor drives
Jiang et al. Open-circuit fault diagnosis of a dual-winding fault-tolerant permanent magnet motor drive for aerospace applications
RU2488216C1 (ru) Регулируемый электропривод с повышенными характеристиками надежности
WO2014078923A1 (pt) Sistema e método de proteção e controle para motores bivolt e compressor
Zhu et al. Fault remedial strategies in a fault-tolerant brushless permanent magnet AC motor drive with redundancy

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150208